心肌缺血再灌注损伤采用缺血预处理和后处理的相关作用和机制研究
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
miRNA对心肌细胞缺血再灌注损伤的干预作用机制研究进展符珍珍1,彭瑜2,张钲21 兰州大学第一临床医学院心脏中心,兰州730000;2 兰州大学第一医院心脏中心摘要:心肌缺血再灌注损伤(MIRI)是急性心肌梗死患者预后不良的主要因素,也是血流再通治疗所面临的主要挑战。
现有研究表明,部分miRNA能够通过抑制程序性细胞死亡因子4、磷酸酶和紧张素同源物、Toll样受体4、肿瘤坏死因子超家族家族成员FASLG蛋白、分泌型磷蛋白1等蛋白表达,减少凋亡蛋白的活性及表达量,减少细胞凋亡,从而减轻MIRI。
miRNA还可通过调节氧化应激和线粒体能量代谢、调节细胞自噬和细胞增殖等机制,达到减轻MIRI的目的。
实验研究发现,多种手段调节miRNA表达,有助于减轻MIRI动物心肌细胞凋亡。
然而目前相关技术并不完善,基于miRNA治疗方案的临床应用尚有待进一步研究。
关键词:微小RNA;心肌缺血再灌注损伤;细胞凋亡;细胞自噬;细胞增殖doi:10.3969/j.issn.1002-266X.2023.32.027中图分类号:R542.2 文献标志码:A 文章编号:1002-266X(2023)32-0112-04急性心肌梗死(AMI)是全球心血管疾病患者死亡的主要原因之一[1],随着各种药物和再灌注技术的应用,AMI患者急性期病死率有所下降,但仍然高,高病死率与心肌梗死面积的增加密切相关[2]。
研究表明,心肌缺血再灌注损伤(MIRI)是导致再灌注后心肌梗死面积增加的主要原因[3-4]。
MIRI可引发一系列不良生物学效应,包括氧化应激和炎症反应加剧、凋亡相关信号通路激活、细胞内钙超载、线粒体功能障碍、细胞膜功能损害及微血管损伤等,这些因素加重组织缺氧损伤并扩大了梗死面积[5-7]。
微小RNA(miRNA)是一类分子量在21~25 nt的非编码RNA[8],参与基因转录后表达调控,能通过促进体内各种mRNA的降解和沉默[9],导致细胞生理功能改变,并最终影响疾病的发生发展[10]。
• 文献综述 •63心肌缺血再灌注损伤(myocardial ischemic reperfusion in j ury ,MIRI )指心肌缺血恢复血流供应后,造成代谢功能障碍及结构损伤加重的现象[1]。
MIRI 是临床上常见的疾病,其病理过程与冠状动脉血管形成术,冠状动脉重建术,心脏移植等术后并发症密切相关[2]。
MIRI 涉及的机制复杂,尚有待更深入的研究阐述。
近年来,由于电生理学、基因组学和蛋白组学等技术的应用,对MIRI 机制的研究也获得了一定的进步,其主要机制概述如下:1 氧自由基与MIRI自由基(free radical ),又称游离基,指在外层电子轨道上具有不配对的单个电子、原子、原子团或分子的总称[3]。
由机体内氧诱发化学性质活泼的自由基称为氧自由基,包括羟自由基和超氧阴离子。
生理状态下自由基存在较少,在细胞缺血时,其氧自由基清除能力下降[4]。
当组织恢复血液供应时,触发氧自由基“爆增”并累积,攻击自身和周围细胞,造成损伤[5]。
自由基损伤细胞膜,致其结构破坏造成心肌酶溢漏;自由基氧化破坏机体蛋白,改变蛋白酶表面结构使功能受损;自由基诱导遗传物质DNA 、RNA 断键或破损,影响核酸正常功能[6]。
自由基可导致心律失常,心肌损伤,细胞凋亡等事件[7]。
2 炎症反应与MIRIMIRI 发生时心脏组织内皮结构受损触发功能障碍,而中性粒细胞趋集、黏附血管内皮是炎症“级联”反应的诱发阶段[8]。
激活的中性粒细胞合成释放肿瘤坏死因子、IL-1、IL-6 等炎症介质,介导其他炎症细胞共同攻击心肌组织[9]。
此外,白细胞浸润在MIRI 中涉及的主要机制为,MIRI 使细胞膜受损和膜磷脂降解,具有很强趋化作用的白三烯等代谢产物增多,使更多白细胞循环浸润,对心肌细胞造成多次损伤。
MIRI 时,心肌缺血细胞生成大量的促炎介质如补体C 5a 、LPS 、IL-8等,激活并诱导心肌细胞多种黏附如ICAM-1,ICAM-2等分子表达[10]。
缺血—再灌注损伤与缺血预处理及缺血后处理的保护作用机制(一)作者:马建伟杜会博温晓竞【关键词】缺血;再灌注损伤;缺血预处理缺血是临床上最常见的症状之一,尤其是心脏缺血损伤一直是众多学者研究和关注的问题。
既往认为短暂的心肌缺血造成的心肌可逆性损伤会使之更难以耐受再次缺血损伤。
因此认为多次短暂缺血必然发生累加而导致心肌坏死。
80年代Murry1]首次在狗的实验中发现短暂的冠脉缺血可以使心脏在经历后续长期缺血时的心梗面积较单纯长期缺血时的面积明显缩小,于是提出缺血预处理的概念。
而在2003年,Zhao等2]在犬心肌缺血后再灌注前进行了3次30s的再灌注,发现冠状动脉的内皮功能较单纯长时间再灌注得到明显改善,而且心肌梗死范围也明显缩小,其保护程度与缺血预处理相似。
因而提出了缺血后处理的概念。
这两方面的发现为缺血心肌的保护开辟了新的研究领域。
1心肌的缺血-再灌注损伤1.1心肌的缺血—再灌注损伤的概念及损伤表现缺血-再灌注(ischemiareperfusion,IR)是指心肌缺血时,心肌的代谢出现障碍,从而出现一系列功能异常;缺血一定时间的心肌再重新恢复血液供应后,心肌不一定都会恢复其正常功能和结构,反而出现心肌细胞损伤加重的表现,即所谓缺血—再灌注损伤,IRI)。
这一损伤是心脏外科、冠脉搭桥术等手术期间心肌损伤的主要因素。
其损伤表现为心肌细胞的坏死、凋亡、线粒体功能障碍、脂质过氧化物增多、自由基大量生成,并导致恶性心率失常发生,左心室收缩力减弱、室内压下降等心肌功能的抑制。
1.2心肌的缺血再灌注损伤的机制尽管几十年来人们一直在进行研究,但至今其详细的机制未被阐明,根据近年来的研究其可能的机制有:1.2.1G蛋白、腺苷酸环化酶的功能异常心肌缺血时,对于G蛋白、腺苷酸环化酶活性的变化各家报道不一,有研究表明在体大鼠缺血区G蛋白含量明显降低3],有结果表明,离体大鼠缺血区G蛋白含量无明显变化4],也有结果表明,在体狗心肌缺血时,心肌G蛋白含量出现明显增加5]。
心肌缺血再灌注损伤的研究新进展心肌缺血再灌注损伤是指心肌在短暂缺血后重新获得血液供应时,反而加重心肌损伤的过程。
近年来,随着相关研究的深入,人们对心肌缺血再灌注损伤的认识不断加深,也为寻求有效的治疗方法提供了新的思路。
在以往的研究中,心肌缺血再灌注损伤的机制主要包括氧化应激、钙离子超载、炎症反应等。
其中,氧化应激是最为重要的一个环节,自由基的过度产生和清除失衡会导致心肌细胞的进一步损伤。
另一方面,钙离子超载也会导致心肌细胞死亡,而在再灌注过程中炎症反应的加剧也会加重心肌损伤。
针对这些机制,临床上已经开展了一系列治疗措施,如缺血预处理、远程缺血预处理、药物干预等。
其中,缺血预处理和远程缺血预处理可以有效地减少心肌细胞的死亡,而药物干预则可以通过调节炎症反应、清除自由基等方式减轻心肌损伤。
随着研究的不断推进,干细胞修复和新技术的应用为心肌缺血再灌注损伤的治疗提供了新的可能性。
干细胞修复是指利用干细胞的分化能力,将干细胞移植到受损的心肌组织中,以替代受损的心肌细胞。
新技术的应用则包括基因治疗、细胞治疗、纳米技术等,这些技术可以更加精准地调控细胞的生长和分化,为心肌损伤的治疗提供了新的途径。
尽管已经取得了一定的研究成果,但是心肌缺血再灌注损伤的治疗仍然面临许多挑战。
如何确保干细胞在心肌组织中的生长和分化是一个亟待解决的问题。
新技术的应用尚处于初步阶段,其长期效果和安全性需要进一步验证。
如何在临床实践中将这些治疗方法与传统的冠心病治疗方法相结合,以提高患者的生存率和生活质量,也是未来研究的重要方向。
心肌缺血再灌注损伤的研究新进展为冠心病的治疗提供了新的思路和方法。
然而,仍需要更多的研究来明确其机制和治疗方法。
通过深入探讨心肌缺血再灌注损伤的机制,我们可以更精准地制定出有效的治疗方案。
同时,随着新技术的不断发展,相信未来会有更多创新的治疗方法问世,为心肌缺血再灌注损伤患者带来希望。
在未来的研究中,我们还需要以下几个方面:深入探讨干细胞修复和新技术治疗心肌缺血再灌注损伤的机制,以期发现更为有效的治疗方法。
心肌缺血再灌注损伤采用缺血预处理和后处理的相关作用和机制研
究
目的探究缺血预处理和后处理在心肌缺血再灌注损伤时的作用及其机制。
方法选取100只雄性大鼠,将其平均分为对照组、缺血再灌注组、缺血再灌注预处理组、缺血再灌注后处理组、缺血再灌注预处理和后处理组,测定血清中乳酸脱氢酶、肌酸激酶含量,估算心肌梗死的面积大小,同时检测丙二醛含量和组织髓过氧化物酶的活性。
结果血清乳酸脱氢酶和肌酸激酶含量在缺血再灌注组中明显升高;丙二醛在缺血再灌注组明显升高而在缺血预处理和后处理组中含量较低;组织髓过氧化物酶在缺血再灌注组明显降低而在缺血预处理和后处理组中含量显著升高。
结论缺血再灌注预处理和后处理对心肌均有保护作用,但预处理和后处理并不能协同保护,这说明预处理和后处理组之间的信号传导机制可能相同。
标签:心肌缺血再灌注;缺血预处理;缺血后处理;含量
心肌缺血损伤是由于心肌缺氧及营养成分导致心肌细胞的暂时性功能缺损或坏死[1],而缺血再灌注造成的损伤则是由于氧和受损心肌细胞或者坏死心肌细胞的反应导致氧自由基对心肌存在损伤作用[2]。
主要表现心律失常、心室收缩力下降等不良后果,给人们的生命安全带来巨大威胁。
曾有报道显示,缺血预处理可以使冠状动脉在多次短暂缺血后增加心肌对之后一段时间内缺血的耐受性,它是一种内源性的保护机制[3]。
而缺血后处理是指当心肌再灌注发生时,出现多次短暂的停灌、复灌,同样具有对心脏的保护作用[4]。
为探究缺血预处理和后处理在心肌缺血再灌注损伤时的作用及其机制,笔者采用回顾性分析的方法,选取100只雄性大鼠,将其平均分为对照组、缺血再灌注组、缺血再灌注预处理组、缺血再灌注后处理组、缺血再灌注预处理和后处理组,现总结报道如下。
1 资料与方法
1.1 一般资料选择雄性大鼠100只(Wister大鼠),体重为(275±25)g,将其平均分成5组,分别为对照组、缺血再灌注组、缺血再灌注预处理组、缺血再灌注后处理组、缺血再灌注预处理和后处理组,编号为1~5。
每组鼠的体重、年龄、身体情况均无显著差异。
1.2 药品及器材20%乌拉坦、注射器、气管插管装置、动物呼吸机、心电监护仪、手术刀、止血钳、手术剪、缝合线、弯针、1%TTC磷酸缓冲液。
1.3方法用20%的乌拉坦对大鼠进行腹腔麻醉(6mL/Kg),将麻醉好的大鼠背部固定,对大鼠进行气管插管并连接于动物呼吸机上,之后连接心电监护仪,密切监视心电图变化[5]。
用手术剪剪开大鼠胸腔暴露心脏,之后小心剪开心脏包膜,在做信儿和肺动脉圆锥的中间,用穿有缝合线的弯针结扎左冠状动脉前降支,將一带有凹槽的乳胶管放置于结扎线和左冠状动脉前降支之间,使之心肌缺
血。
组1:结扎30min后灌注180min;组2:结扎30min灌注2h;组3:缺血5min后灌注时间5min,反复结扎3次;组4:结扎30min后灌注30s立即停止灌注30s,反复3次,之后继续灌注到180min;组5:灌注前结扎左冠状动脉前降支2次5min之后同组4。
用1%TTC磷酸缓冲溶液染色,梗死区未被染色,正常组织染成红棕色,测量梗死区面积。
之后检测乳酸脱氢酶、肌酸激酶含量,同时检测组织髓过氧化物酶的活性。
1.4 统计学分析对所有资料使用标准差x±s表示,采用SPSS13.0软件处理实验数据,用方差表示。
P<0.05为差异具有统计学意义。
2 结果
2.1 乳酸脱氢酶含量比较5组乳酸脱氢酶含量如表1所示(P<0.05)。
2.2 肌酸激酶含量比较5组肌酸激酶含量如表2所示(P<0.05)。
2.3 5组丙二醛含量比较5组丙二醛含量如表3所示(P<0.05)。
2.4 组织髓过氧化物酶含量比较组织髓过氧化物酶在缺血再灌注组明显降低而在缺血预处理和后处理组中含量显著升高(P<0.05)。
3 结论
近年来,冠心病发病率越来越高,而这种疾病最终会导致急性心肌梗死,导致严重的心肌缺血再灌注损伤。
1为探究缺血预处理和后处理在心肌缺血再灌注损伤时的作用及其机制,笔者用100只大鼠进行心肌缺血再灌注处理,用人为干预法进行缺血预处理及缺血后处理,得出结论,血清乳酸脱氢酶和肌酸激酶含量在缺血再灌注组中明显升高;丙二醛在缺血再灌注组明显升高而在缺血预处理和后处理组中含量较低;组织髓过氧化物酶在缺血再灌注组明显降低而在缺血预处理和后处理组中含量显著升高。
综上所述,缺血再灌注预处理和后处理对心肌均有保护作用,值得临床中进一步研究。
参考文献:
[1]杨新红,李艳,王晓红,等.缺血预处理和后处理联合应用在心肌缺血再灌注损伤中的保护作用[J].中国心脏起搏与心电生理杂志,2009,,2(3):277-278.
[2]陈德,滕爱兰,周荣.氧化还原信号在心肌缺血再灌注损伤中保护作用机制的研究进展[J].中国循环杂志,2013,28(7):545-547.
[3]李清,王国林.ATP敏感性钾通道在心肌缺血/再灌注损伤中的作用[J].医学综述,2012,18(24):4144-4147.
[4]徐菁蔓,田炜,徐哲龙.心肌缺血/再灌注损伤保护药物共同作用靶点Akt 的研究进展[J].山东医药,2011,51(1):110-111.
[5]陈秋红,李钦,杨伟俊,等.黄酮类化合物抗心肌缺血再灌注损伤的相关机制研究进展[J].中国临床药理学杂志,2013,29(12):958-960.编辑/苏小梅。