心肌缺血再灌注损伤介绍和实验设计
- 格式:docx
- 大小:21.49 KB
- 文档页数:5
心肌缺血再灌注损伤介绍和实验设计Ⅰ.心肌缺血再灌注损伤:它是指缺血心肌组织恢复血流灌注时,导致再灌注区心肌细胞及局部血管网显著的病理生理变化,这些变化共同作用可促使进一步的组织损伤。
那这里的关键词就是缺血心肌组织。
那为什么会产生缺血的心肌组织呢?这就与临床上的疾病有关了。
一些心脏疾病,比如急性心肌梗死、冠心病等他们会使心脏发生缺血的症状,其基本的生理过程就是心肌缺血。
Ⅱ.心肌缺血的危害:心肌缺血:指单位时间内的冠脉血流量减少,供给组织的氧量也减少,缺血必定存在缺氧表明缺血缺氧。
心肌缺血比单纯性心肌缺氧无血流障碍要严重,因为前者除了缺氧的影响之外,缺血组织也不能获得足够的营养物质又不能及时清除各种代谢产物带来的有害影响。
一、心肌缺血的原因主要分为两种情况:1是冠脉血流量的绝对不足。
这种情况是由自身疾病产生的,主要包括冠状动脉阻塞,冠状动脉痉挛。
2是冠脉血流量的相对不足:包括供氧降低或耗氧增加,比如高原高空或通风不良的矿井吸入氧减少;肺通气或换气功能障碍,可致血氧含量降低红细胞数量和血红蛋白含量减少等。
二、缺血对心肌的危害主要包括以下几个方面:1是心肌收缩能力降低。
2是导致心肌舒张功能降低。
3是心肌组织的血流动力学发生改变,比如说血流的阻力增加等。
4是心肌电生理的变化,比如说静息点位降低,传导速度减慢;室颤阈降低等。
5是导致心肌形态学的改变。
当然还有其他的危害,在这里就不一一列举了。
由于心肌缺血存在这么多的危害,临床上针对这一疾病采取了再灌注治疗方法,但随之而来的又是另外一个临床问题:缺血再灌注损伤。
下面具体介绍一下心肌缺血再灌注损伤。
心肌缺血再灌注损伤英文缩写为MIRI,最早由詹宁斯等于1960年提出,发现其临床表现为再灌注心律失常、心肌顿抑、心肌能量代谢障碍等现象。
随后又有学者在临床手术中也证实了这一观点,发现在冠脉搭桥术完成后,心肌坏死进一步加重的现象。
接着布朗沃尔德教授在1985年提出了这样一个观点:心肌再灌注是一把双刃剑,既可以损伤心肌也能保护心肌。
关于缺血再灌注损伤的防治的设计性实验关于"缺血再灌注损伤的防治"的设计性实验关于"缺血再灌注损伤的防治"的设计性实验第五组设计性实验报告专业:xx班级:xx组数:xx成员:xx实验内容:发炎—再灌入受损的预防实验目的:探究清除自由基对缺血再灌注损伤的防治作用即不同浓度gsh对缺血再灌注损伤的防治作用及给药时机的选择实验原理:心肌缺血再灌入受损(mri)就是指心肌细胞因发炎出现对称的、可以存活的受损,在发炎制止时,这种受损反而减轻,继而引发细胞死亡或进一步功能障碍。
所有器官都能够耐热一定时间的发炎,少于一定时间后,则可以出现再灌入受损。
自由基的促进作用就是发炎再灌入受损的关键发作学环节。
发炎再灌入时,自由基分解成激增,将并使膜脂质过氧化进一步增强、蛋白质功能遏制、核酸及染色体毁坏,因此去除过多的自由基,可减轻发炎再灌入受损。
还原型谷胱甘肽(gsh)能够提供更多电子并使自由基还原成,从而去除自由基。
实验对象:5只健康成年家兔,2.0~3.0kg实验药品和器材:1.药品:生理盐水、3%的戊巴比妥钠、1g/kggsh的生理盐水、0.5g/kggsh的生理盐水、0.1g/kggsh的生理盐水2.器材:bl—420e生物功能实验系统、二道生理记录仪、压力换能器、多用电源插座、缝线、注射器、手术器械一套实验方法:1.将5只家兔分别记为a、b、c、d、e2.耳缘静脉注射3%戊巴比妥钠1ml/kg全身麻醉,仰卧位紧固于兔台上3.进行气管插管,从左侧颈总动脉逆行插管至左心室,经压力换能器与生物功能实验系统相连,以观察记录心功能变化。
在左股动脉插管经压力换能器与二道生理记录仪相连,以观察血压。
左股静脉连输液装置,输注生理盐水(10ml/(kg·h))和给药4.沿胸骨左缘阻断第2、3、4肋软骨,小心抠高兴包膜,在不能受损胸膜情况下曝露心脏,辨识左冠脉左室两支,用医用并无创出包扎针线在左室支中点下穿线水泵切断。
血管再灌注实验报告1. 引言血管再灌注(Ischemia-reperfusion, I/R) 是指血液供应阻断后再恢复供应。
血管再灌注实验常被用于研究心脏、肝脏、肾脏等器官缺血再灌注损伤的机制和治疗方法。
本实验旨在通过建立小鼠心肌缺血再灌注模型,观察心肌组织的损伤程度,探讨可能的保护措施。
2. 材料与方法2.1 实验动物雄性C57BL/6小鼠,体重22-26g,年龄8-10周。
2.2 实验组织心脏组织。
2.3 实验设计将实验动物随机分为以下组别:- 对照组(Sham):动物接受手术操作,但没有缺血再灌注处理。
- 缺血再灌注组(I/R):动物在缺血30分钟后再进行1小时的再灌注。
- 预处理组(PreC):在缺血前15分钟,给予预处理药物。
2.4 缺血再灌注模型建立1. 手术动物采用深度麻醉并固定在手术台上。
2. 通过胸骨处切口,暴露心脏。
3. 用缝线将冠状动脉结扎。
4. 结扎30分钟后,解开缝线并进行1小时的再灌注。
5. 收集心肌组织样本。
2.5 组织损伤评价方法1. 心脏组织样本定量化。
2. 彩色素沉淀法(TTC staining) 观察心脏梗死面积。
3. 光镜下观察组织结构。
2.6 统计分析采用统计学软件进行数据的描述性分析,并使用方差分析(ANOVA) 进行组间比较,p < 0.05认为差异有统计学意义。
3. 结果3.1 心脏梗死面积变化通过TTC染色观察心脏梗死面积的变化,在I/R组中心脏梗死面积显著增加(p < 0.05),而在预处理组中心脏梗死面积较小,差异有统计学意义。
3.2 组织结构观察使用光镜观察心肌组织结构变化,发现I/R组心肌细胞出现明显的坏死和水肿,而预处理组心肌细胞结构相对完整,坏死和水肿程度明显减轻。
4. 讨论本实验通过建立小鼠心肌缺血再灌注模型,观察心肌组织的损伤程度。
结果表明,缺血再灌注会导致心肌梗死面积增加和心肌组织结构损伤。
然而,在预处理组中给予药物处理后,心肌梗死面积减小,心肌组织结构保持较好。
心肌缺血再灌注损伤的研究新进展心肌缺血再灌注损伤是指心肌在短暂缺血后重新获得血液供应时,反而加重心肌损伤的过程。
近年来,随着相关研究的深入,人们对心肌缺血再灌注损伤的认识不断加深,也为寻求有效的治疗方法提供了新的思路。
在以往的研究中,心肌缺血再灌注损伤的机制主要包括氧化应激、钙离子超载、炎症反应等。
其中,氧化应激是最为重要的一个环节,自由基的过度产生和清除失衡会导致心肌细胞的进一步损伤。
另一方面,钙离子超载也会导致心肌细胞死亡,而在再灌注过程中炎症反应的加剧也会加重心肌损伤。
针对这些机制,临床上已经开展了一系列治疗措施,如缺血预处理、远程缺血预处理、药物干预等。
其中,缺血预处理和远程缺血预处理可以有效地减少心肌细胞的死亡,而药物干预则可以通过调节炎症反应、清除自由基等方式减轻心肌损伤。
随着研究的不断推进,干细胞修复和新技术的应用为心肌缺血再灌注损伤的治疗提供了新的可能性。
干细胞修复是指利用干细胞的分化能力,将干细胞移植到受损的心肌组织中,以替代受损的心肌细胞。
新技术的应用则包括基因治疗、细胞治疗、纳米技术等,这些技术可以更加精准地调控细胞的生长和分化,为心肌损伤的治疗提供了新的途径。
尽管已经取得了一定的研究成果,但是心肌缺血再灌注损伤的治疗仍然面临许多挑战。
如何确保干细胞在心肌组织中的生长和分化是一个亟待解决的问题。
新技术的应用尚处于初步阶段,其长期效果和安全性需要进一步验证。
如何在临床实践中将这些治疗方法与传统的冠心病治疗方法相结合,以提高患者的生存率和生活质量,也是未来研究的重要方向。
心肌缺血再灌注损伤的研究新进展为冠心病的治疗提供了新的思路和方法。
然而,仍需要更多的研究来明确其机制和治疗方法。
通过深入探讨心肌缺血再灌注损伤的机制,我们可以更精准地制定出有效的治疗方案。
同时,随着新技术的不断发展,相信未来会有更多创新的治疗方法问世,为心肌缺血再灌注损伤患者带来希望。
在未来的研究中,我们还需要以下几个方面:深入探讨干细胞修复和新技术治疗心肌缺血再灌注损伤的机制,以期发现更为有效的治疗方法。
冠心病的心肌缺血与再灌注损伤冠心病是一种常见的心血管疾病,通常由冠状动脉狭窄或堵塞引起。
当冠状动脉的血供减少或完全中断时,心肌就会发生缺血,这种情况被称为心肌缺血。
而当血流再次恢复时,心肌会经历再灌注,这时可能会出现再灌注损伤。
本文将探讨冠心病的心肌缺血与再灌注损伤,以及如何减轻相关风险。
1. 心肌缺血的机制心肌缺血发生的主要原因是冠状动脉的供血不足。
冠状动脉狭窄或堵塞可以由多种原因引起,包括动脉粥样硬化、血栓形成和血管痉挛等。
当冠状动脉的供血不足时,心肌细胞开始缺氧,并逐渐导致细胞坏死和损伤。
心肌缺血的严重程度会导致心肌缺血的不同类型。
渐进性的心肌缺血可能导致稳定性心绞痛,而急性的心肌缺血则可能引发心肌梗死。
2. 再灌注损伤的机制再灌注损伤是指在心肌缺血之后,当血流再次恢复时,心肌细胞受到额外的损伤。
虽然血流恢复对心肌细胞几乎是必需的,但过于迅速或过度的再灌注可能会引起细胞内氧化应激和自由基生成,从而导致细胞死亡和组织损伤。
再灌注损伤的机制非常复杂,包括细胞内钙离子超载、线粒体功能损伤、炎症反应的激活等。
这些损伤机制相互作用,形成一个恶性循环,导致心肌细胞的进一步死亡和损伤。
3. 预防和减轻虽然冠心病的心肌缺血和再灌注损伤是无法完全避免的,但有一些方法可以减轻相关的风险。
首先是积极控制冠心病的危险因素,如高血压、高血脂、糖尿病等。
通过合理的饮食控制、适量的运动和药物治疗,可以降低冠状动脉病变的发生和进展。
其次是进行有效的干预治疗,包括药物治疗和介入治疗。
药物治疗可以通过扩张血管、降低血压和控制血脂等方式来改善冠状动脉的血流供应。
介入治疗则通过冠状动脉血管成形术和支架植入等方式来恢复冠状动脉的通畅。
此外,心脏康复也是减轻再灌注损伤的重要手段。
通过规律的运动锻炼和心理支持,可以提高心肌的耐受性和心脏功能,减少心脏事件的发生。
4. 结论冠心病的心肌缺血和再灌注损伤是冠心病患者常见的并发症。
心肌缺血是由于冠状动脉供血不足引起的,而再灌注损伤则是血流恢复后导致的细胞和组织损伤。
心肌缺血再灌注损伤介绍和实验设计
Ⅰ.心肌缺血再灌注损伤:
它是指缺血心肌组织恢复血流灌注时,导致再灌注区心肌细胞及局部血管网显著的病理生理变化,这些变化共同作用可促使进一步的组织损伤。
那这里的关键词就是缺血心肌组织。
那为什么会产生缺血的心肌组织呢?这就与临床上的疾病有关了。
一些心脏疾病,比如急性心肌梗死、冠心病等他们会使心脏发生缺血的症状,其基本的生理过程就是心肌缺血。
Ⅱ.心肌缺血的危害:
心肌缺血:指单位时间内的冠脉血流量减少,供给组织的氧量也减少,缺血必定存在缺氧表明缺血缺氧。
心肌缺血比单纯性心肌缺氧无血流障碍要严重,因为前者除了缺氧的影响之外,缺血组织也不能获得足够的营养物质又不能及时清除各种代谢产物带来的有害影响。
一、心肌缺血的原因主要分为两种情况:1是冠脉血流量的绝对不足。
这种情况是由自身疾病产生的,主要包括冠状动脉阻塞,冠状动脉痉挛。
2是冠脉血流量的相对不足:包括供氧降低或耗氧增加,比如高原高空或通风不良的矿井吸入氧减少;肺通气或换气功能障碍,可致血氧含量降低红细胞数量和血红蛋白含量减少等。
二、缺血对心肌的危害主要包括以下几个方面:1是心肌收缩能力降低。
2是导致心肌舒张功能降低。
3是心肌组织的血流动力学发生改变,比如说血流的阻力增加等。
4是心肌电生理的变化,比如说静息点位降低,传导速度减慢;室颤阈降低等。
5是导致心肌形态学的改变。
当然还有其他的危害,在这里就不一一列举了。
由于心肌缺血存在这么多的危害,临床上针对这一疾病采取了再灌注治疗方法,但随之而来的又是另外一个临床问题:缺血再灌注损伤。
下面具体介绍一下心肌缺血再灌注损伤。
心肌缺血再灌注损伤英文缩写为MIRI,最早由詹宁斯等于1960年提出,发现其临床表现为再灌注心律失常、心肌顿抑、心肌能量代谢障碍等现象。
随后又有学者在临床手术中也证实了这一观点,发现在冠脉搭桥术完成后,心肌坏死进一步加重的现象。
接着布朗沃尔德教
授在1985年提出了这样一个观点:心肌再灌注是一把双刃剑,既可以损伤心肌也能保护心肌。
这就是早期的心肌缺血再灌注损伤的研究过程。
随着溶栓、PCI、CABG等广泛应用,如何减轻患者心肌缺血再灌注损伤,最大限度保护缺血心肌,自然成为心血管研究的热点之一。
经过了这么多年的研究发现,心肌缺血再灌注损伤的机制被一步步发现。
Ⅲ.心肌缺血再灌注损伤的机制:
心肌缺血再灌注损伤的机制主要有以下7个方面:
1是心肌能量代谢障碍:心脏正常生理功能需要大量的能量供应来维持。
有研究发现,心肌能量代谢障碍是MIRI的启动环节。
2是钙超载与线粒体功能障碍。
钙超载在心肌缺血再灌注损伤机制中起中心作用。
Ca离子能促进血小板粘附、聚集以及释放等反应,促进血栓的形成。
因而钙超载是多种原因导致的细胞损伤和死亡的共同通路。
3是氧自由基:当心肌缺血、缺氧时,由于活性氧生成过多、超过机体正常清除能力,可引起氧化应激反应,造成膜流动性与钙离子通透性增加,破坏膜结构完整性。
4是中性粒细胞激活与细胞粘附因子:中性粒细胞激活及其致炎细胞因子的释放导致了微血管损伤以及血液流变学改变,激活的中性粒细胞与内皮细胞发生固定粘附,并可释放大量的致炎因子导致局部炎症反应,致微血管机械性堵塞产生无复流现象。
5是血管内皮细胞功能与一氧化氮:受损内皮细胞失去了对血管舒缩功能的调节和选择性渗透屏障作用以及抗血小板聚集、抗血栓等方面的重要作用。
6是细胞凋亡:心肌缺血再灌注引起钙超载、氧自由基增多,使细胞内的DNA链断裂,诱导细胞凋亡。
7同时其他的一些研究表明肾素血管紧张素系统、血小板聚集与释放以及补体系统也可能参与了MIRI的过程。
Ⅳ.临床治疗:
既然我们已经了解到心肌缺血再灌注损伤的作用机制,那如何在临床上如何减轻冠心病等患者的缺血再灌注损伤,最大可能挽救心肌、保存心肌细胞功能呢?临床上已经有了相对成熟的预防措施了,主要包括控制性再灌注、缺血预处理、
再灌注缺血后处理、远隔预适应、药理性后处理等措施,其主要原则包括尽快消除缺血病因恢复血流;控制再灌注条件如控制冠脉灌注流量、给氧浓度等。
控制性再灌注是指通过改变一些条件参数,如物理参数(包括冠脉流量、灌注压力和温度)和化学参数(氧分压、CO2及某些盐浓度等),以减轻再灌注损伤。
缺血预处理是指冠状动脉多次短暂的缺血可以增强心肌对随后长时间缺血的耐受性,减轻缺血再灌注损伤。
缺血后处理是指在长时间的再灌注之后进行的数次短暂再灌注/缺血的循环,能提高心肌对之前发生的较长时间缺血的耐受性。
远隔预适应是在心脏以外远隔器官的缺血再灌注循环。
可以是双臂、肝脏、甚至是肾脏等。
药理性后处理即通过药物干预模拟缺血预/后处理的机制达到减轻MIRI的目的,这些药物包括葡萄糖-胰岛素-钾、尼可地尔、环孢素A、心房利钠肽、硝酸酯类药物、他汀类药物等等。
虽然以上这些策略能够在一定程度上减轻缺血再灌注损伤,但是由于人类心脏复杂的内在结构以及信号转导通路的复杂性,心肌缺血再灌注损伤依然是临床心脏病学的严峻挑战和重要课题,关于心肌缺血再灌注损伤的各种损伤性机制和保护性策略还需更进一步研究。
Ⅴ.心肌缺血再灌注实验设计:
在这里我列举了一篇相关文献,首先来看一下它的题目:LncRNA-XXX通过自噬从而抑制糖尿病大鼠心肌缺血再灌注损伤,所以这里可以提取到几个关键词:心肌缺血再灌注损伤;自噬;糖尿病大鼠;我们研究的分子LncRNA-XXX。
这篇文章的主要研究机制就是lncRNA-XXX通过自噬和凋亡减轻糖尿病大鼠心肌缺血再灌注损伤。
下面我们来具体看看这篇文章的研究内容,首先是结果一,采用Microarray芯片技术筛选野生型和糖尿病大鼠MIRI后心肌组织中差异性表达的lncRNAs,发现糖尿病小鼠心肌样本中有8个lncRNAs差异表达上调,然后通过qRT-PCR检测这些上调的lncRNA的具体的表达量,发现lncRNA-XXX 在心肌缺血再灌注损伤的糖尿病大鼠中上调倍数最大,所以选择XXX作为我们的研究对象。
随后针对XXX进行体外实验,当然首先是要构建体外模型,这里用体外的心肌细胞缺氧复氧损伤模型来模拟体内的心肌缺血再灌注损伤模型,提取乳鼠的心肌细胞并培养,然后实行缺氧和复氧的措施,构建缺氧复氧损伤模型。
除了氧复氧损伤模型外,因为研究的是糖尿病,所以这里还需要用高糖溶液培养心肌细胞来模拟糖尿病大鼠体内的心肌细胞。
在心肌细胞中分别转染XXX腺病
毒载体和特异性干扰的shRNA序列分别过表达和敲低XXX的表达,并检测转染效率。
随后检测细胞中乳酸脱氢酶(LDH)和超氧化物歧化酶(SOD)含量,LDH 和SOD含量可以反映心肌受损程度,发现敲低XXX能够是细胞中的LDH和SOD 含量正常水平,缓解缺氧复氧损伤。
接着CCK-8检测各组的细胞活力,得到相同的结果,敲低XXX能够提高心肌细胞的活力,缓解缺氧复氧损伤。
接下来,作者想知道XXX是不是通过自噬来作用于缺氧复氧损伤,于是通过WB实验检测心肌细胞中自噬相关蛋白的表达,包括Atg7,Atg5,LC3-II/LC3-I和p62等蛋白,发现XXX确实能够改变相关自噬蛋白的表达。
体外实验结束后要进行体内实验了,首先需要构建心肌缺血再灌注模型,构建心肌缺血再灌注模型的方法比较成熟了,在这里就不在啰嗦了。
同样这里通过在大鼠体内转染XXX腺病毒载体和特异性干扰的shRNA序列来过表达和敲低XXX的表达,随后检测血清中的乳酸脱氢酶(LDH)、磷酸激(CK)和CK-MB等血清心肌酶来反映心肌受损程度,发现心肌缺血再灌注模型对大鼠心脏产生明显损伤,但低表达XXX能够缓解心肌受损程度。
随后通过利用心脏B超及心导管的方法评估了心肌缺血再灌注损伤(MI/R)和XXX对糖尿病大鼠与正常血糖大鼠心功能的影响。
利用超声波分别检测左室舒张末直径(LVEDD)、左室收缩末直径(LVESD)、左室射血分数(EF)和左室短轴缩短率(FS)等指标,发现心肌缺血再灌注损伤对大鼠心脏产生明显损伤,糖尿病大鼠比正常大鼠的损伤更严重,XXX低表达能逆转心肌缺血再灌注损伤。
接着对糖尿病小鼠与正常血糖小鼠心肌缺血再灌注损伤(MI/R)后的血流动力学指标进行检测。
检测的指标有心率(HR)、左室收缩末压力(LVSP)、左室舒张末压力(LVEDP)、左室压最大升降速率等,然后取出大鼠心脏进行伊文思蓝-TTC双染,测定心肌梗死面积,直观的反映心肌细胞的受损程度。
接着用Tunel染色和WB实验检测心肌缺血再灌注损伤和XXX对糖尿病大鼠和正常大鼠凋亡和自噬的影响。
发现缺血再灌注损伤增加糖尿病大鼠和正常大鼠凋亡和自噬的水平,而XXX低表达能够减少凋亡和自噬,逆转心肌缺血再灌注损伤。
最后简单总结一下这篇文章的主要思路:首先通过芯片分析确定心肌缺血再灌注损伤下糖尿病大鼠中高表达的lncRNA-XXX,然后针对XXX展开研究,分别针对心肌细胞构建体外缺氧复氧模型和糖尿病大鼠的心肌缺血再灌注损伤模型,得到的主要结论有对比正常大鼠,糖尿病大鼠受到的心肌缺血再灌注损
伤更严重;低表达lncRNA-XXX通过自噬和凋亡从而缓解糖尿病心肌缺血再灌注损伤。
以上就是本次课堂的全部内容。