船用柴油机机体组合结构模态分析方法
- 格式:pdf
- 大小:940.06 KB
- 文档页数:5
&船舶柴油机(轮机)--模块二柴油机的结构和主要零部件--黄步松主讲福建交通职业技术学院船政学院模块二柴油机的结构和主要零部件重点:柴油机各主要部件的作用、工作条件、工作原理及结构特点,各部件的常见故障及原因,管理注意事项。
难点:燃烧室部件承受的机械负荷、热负荷及分析,缸套、活塞、连杆、十字头、曲轴、活塞杆填料涵及活塞冷却机构的结构,曲柄排列与发火顺序。
缸盖燃烧室部件缸套活塞组件主要零部件连杆曲柄连杆机构曲轴主轴承主要固定件:机架、机座、贯穿螺栓单元一燃烧室部件一、燃烧室部件承受的负荷1.机械负荷机械负荷指受力部件承受气体力、安装预紧力、惯性力等的强烈程度。
主要以气体力和惯性力为主。
柴油机的机械负荷有两个特点:一是周期交变;二是具有冲击性。
1)安装应力:安装应力与预紧力成正比。
因此,安装气缸盖时不应过分紧固,否则会使气缸套、气缸盖发生损伤。
另外,将缸套凸肩加高,可使缸套安装应力大大减小。
2)气体力:气体力是周期变化的,其最大值为最高爆炸压力,变化频率与转速有关,因而由气体力产生的机械应力也称高频应力。
由气体力产生的机械应力具有以下特点:气缸盖、活塞:触火面为压应力,冷却面为拉应力。
缸套:径向:触火面为压应力最大,冷却面为零。
切向:触火面为拉应力最大,冷却面为拉应力最小。
机械应力与部件壁厚成反比,即壁厚δ愈大,机械应力愈小。
3)惯性力:活塞组件在缸内作往复变速运动,产生往复惯性力;曲轴作回转运动产生离心惯性力。
其大小与部件质量和曲轴转速的平方成正比。
由惯性力产生机械应力也是一种高频应力。
2.热负荷1)热负荷是指柴油机的燃烧室部件承受温度、热流量及热应力的强烈程度。
2)热负荷的表示方法(1)热流密度(2)温度场(3)热应力3)热负荷过高对柴油机的危害:(1)使材料的机械性能降低,承载能力下降;(2)使受热部件膨胀、变形,改变了原来正常工作间隙;(3)使润滑表面的滑油迅速变质、结焦、蒸发乃至被烧掉;(4)使受热部件(如活塞顶)受热面被烧蚀;(5)使受热部件承受的热应力过大,产生疲劳破坏等。
柴油机机体分析方法现代产品的设计与制造日益朝着高效、高速、高精度、低成本、节约资源和高性能等方面发展,传统的试验、计算分析方法不能满足要求。
在柴油机的零部件中,机体的结构和受力是比较复杂的,因此柴油机的机体设计有较大难度。
机体的设计通常要经过设计、加工、分析、试验和再设计过程,存在工作效率低、生产周期长等问题。
综合利用各类分析方法、借助计算机技术可以缩短机体的分析、试验过程,为再试验提供可靠的参数支持,从而优化产品设计达到节约成本的目的。
各类分析方法探究该课题研究国内外机体的分析方法,探究最优的机体分析方法,以保证柴油机的机体在工作过程中的可靠性和耐久性,达到柴油机机体的优化设计。
下面对机体的各种分析方法进行归纳。
静力分析和构件承载能力分析在各种结构分析类型中,静力分析是最简单的形式。
静力分析主要从静力学(静力平衡条件)、几何学(位移协调条件)、物理学(胡克定理)三方面对结构进行分析,对应的力学知识主要为材料力学、结构力学、弹性力学等。
对于发动机各零部件来说,材料力学、结构力学、弹性力学的基本任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算分析方法。
静力分析和构件承载能力分析主要研究机体力系的简化以及机体在力系作用下平衡的普遍规律,机体受力作用后所发生的变形,以及介绍机体内力、应力和强度、刚度、稳定性计算的基本理论和方法。
静力分析很适合于求解机体惯性及阻尼的时间相关作用对结构响应的影响并不显著的问题。
静力分析能够分析机体稳定的惯性力(如机体重力)和能够被等效为静载荷的随时间变化的载荷作用下机体响应的问题。
动力学分析法动力学分析根据载荷形式的不同和所有求解的内容的不同我们可以将其分为:模态分析、谐响应分析、瞬态动力分析和谱分析。
1 模态分析20世纪60年代以快速傅里叶变换(FFT)为代表的数字信号处理技术、参数识别方法以及小型计算机发展的基础上,模态分析方法应运而生,并获得了广泛的应用。
船用柴油机燃烧室结构分析赵昌普;孙雅坤;王耀辉;张志刚;朱亚永【摘要】为探索不同燃烧室结构对大缸径船用柴油机燃烧和排放的影响,基于原机燃烧室,新设计了6种不同形状的燃烧室,采用AVL Fire软件建立燃烧室仿真模型,并结合涡流数和均匀系数来对缸内流动、混合和燃烧过程进行数值模拟分析.结果表明:燃烧室直径和凹坑深度等参数会对缸内流动产生很大影响,凹坑深度较大的缩口燃烧室能产生较强的涡流从而改善燃烧,而浅坑的开口燃烧室的缸内燃烧状况较差.同时发现,只有在缸内涡流和湍动能都较大的情况下才能使燃烧更充分.从发动机性能和排放结果来看,缩口燃烧室G1的功率输出增加4.6%,排放与原机基本持平;直口燃烧室G4在略低于原机的功率输出下,NOx排放降低43.3%;开口燃烧室的做功能力较差.%In order to investigate the effects of piston bowl geometry on the performances and e-missions for large-bore marine diesel engines,six novel combustion chambers were designed based on the combustion chamber of the prototype,and combustion chamber simulation modeling was estab-lished by using AVL five code to simulate the in-cylinder flows,air-fuel mixing and combustion processes with the flow dynamics metrics such as swirl number and uniformity index.Results show that chamber diameter and bowl depth have a great influence on in-cylinder flows.The deeper depth of the re-entrant bowl may result in enhancement of swirl motions and improve the combustions,while a deficient combustion occurs at the lower depth open chamber.Further,high turbulent kinetic energy with a large swirl is important to improve the quality of combustions.It is also found that power out-put of re-entrantchamber G1 is increased by 4.6% and emission is almost the same as the prototype's. NOx emission of straight chamber G4 is decreased by 43.3% at a slightly lower power output than that of the prototype.And open chamber is found to have lower engine-out power.【期刊名称】《中国机械工程》【年(卷),期】2017(028)018【总页数】7页(P2176-2182)【关键词】柴油机;燃烧室形状;涡流数;均匀因子;排放【作者】赵昌普;孙雅坤;王耀辉;张志刚;朱亚永【作者单位】天津大学内燃机燃烧学国家重点实验室,天津,300072;天津大学内燃机燃烧学国家重点实验室,天津,300072;天津大学内燃机燃烧学国家重点实验室,天津,300072;天津大学内燃机燃烧学国家重点实验室,天津,300072;天津大学内燃机燃烧学国家重点实验室,天津,300072【正文语种】中文【中图分类】TK421.2柴油机具有较好的经济性、耐久性和可靠性,被广泛应用于船舶动力系统中。
YC485Q柴油机缸盖参数化建模及模态与响应分析研究的开题报告一、选题背景及意义YC485Q型柴油机是我国一款常见的中速柴油机,广泛应用于工程机械、船舶、电站等领域。
其缸体和缸盖作为进、排气的主要通道,承受着极大的工作压力和热载荷。
为了确保柴油机的正常运行和生产安全,必须在一定范围内对其缸盖进行设计和分析。
目前,YC485Q柴油机的缸盖设计仍然存在一些瓶颈和不足之处。
例如,缸盖结构的复杂性、强度分析的不足以及振动和噪音等问题都亟待解决。
因此,本研究将利用参数化建模技术,对YC485Q柴油机的缸盖进行结构设计和模态分析,为优化缸盖设计提供理论和实践支持。
二、研究内容及方法(一)研究内容1. 利用CATIA软件对YC485Q柴油机缸体和缸盖进行几何建模;2. 基于有限元原理,建立YC485Q柴油机缸盖的强度模型和模态分析模型;3. 运用ANSYS软件对缸盖的强度和刚度等关键参数进行分析;4. 利用模态分析方法对缸盖的固有频率、振型、响应等特性进行分析。
(二)研究方法1. 构建YC485Q柴油机缸盖的参数化模型,实现形状和尺寸参数化;2. 对缸盖进行有限元离散化处理,建立强度模型和模态分析模型;3. 运用ANSYS软件进行缸盖的静态强度分析和动态模态分析,得出缸盖的最大应力、变形、位移、固有频率和振型等参数;4. 对缸盖的不同结构方案进行比较分析,寻求最优的设计方案。
三、预期研究成果1. YC485Q柴油机缸盖的参数化模型,实现了形状和尺寸参数化;2. 建立了YC485Q柴油机缸盖的有限元模型,并进行了强度和模态分析;3. 计算了YC485Q柴油机缸盖的最大应力、变形、位移、固有频率和振型等参数;4. 分析了不同的缸盖结构方案,选取了最优的设计方案;5. 为YC485Q柴油机缸盖的优化设计提供理论和实践支持。
第二章柴油机的结构及主要部件柴油机的主要部件是指燃烧室部件(活塞、气缸、气缸盖)、曲柄连杆机构(十字头、连杆、曲轴和轴承)、机架、机座和贯穿螺栓等部件。
这些部件构成柴油机的主体,它们工作得好坏不但直接影响柴油机的技术性能指标,而且还和安全航行密切相关。
统计表明,船用柴油机主要部件发生的故障占柴油机故障总数的90%左右,其中燃烧室部件故障约占故障总数的50%。
因此,轮机管理人员应该深入了解主要部件,这是降低柴油机故障发生率的重要一环。
第一节柴油机的总体结构一.柴油机的基本组成船舶柴油机的结构比较复杂,它是由许多机构和系统组成。
尽管各种柴油机的结构、型号各异,但从工作原理和总体结构上则有很多共同之处。
柴油机主要由以下机构和系统组成1.主要固定件柴油机的主要固定件由机座、机架、气缸和气缸盖等组成,对于中小型柴油机常将气缸体和机架做成一体称为机体,并省去机座代之以轻便的油底壳。
它们构成了柴油机的骨架,支撑运动件和辅助系统。
2.主要运动件柴油机的主要运动件由活塞、连杆组件及曲轴组成,对于大型低速柴油机还有十字头组件。
活塞与气缸及气缸盖构成燃烧室,保证柴油机工作过程的进行,同时通过连杆将活塞的往复运动变为曲轴的回转运动,使燃气推动活塞的动力通过曲轴以回转的方式向外输出。
3.配气机构及换气系统配气机构由进排气阀、气阀传动机构、凸轮轴及凸轮轴传动机构组成。
进排气系统由空气滤器、进排气管和消音器组成,对于增压柴油机还有增压器及空冷器。
它们的作用是按照工作循环的需要,定时地向气缸内供应充足、清洁的新鲜空气,并将燃烧后的废气排出气缸。
4.燃油系统燃油系统由燃油供给系统和燃油喷射系统组成。
燃油供给系统是把符合使用要求的燃油畅通无阻地输送到喷油泵入口端。
该系统通常由加装和测量、贮存、驳运、净化处理、供给五个基本环节组成。
燃油喷射系统由喷油泵、喷油器和高压油管组成,其作用是定时、定量地向燃烧室内喷入雾化良好燃油,保证燃烧过程的进行。