钢化玻璃鉴别仪及厚度测量仪
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
测厚仪分类及用途测厚仪是一种用于测量物体厚度的仪器。
根据其原理和用途的不同,可以将测厚仪分为以下几类。
1.超声波测厚仪:超声波测厚仪是一种利用超声波传播速度和回声信号的原理来测量物体厚度的仪器。
超声波通过物体传播时会遇到不同介质的界面,因为不同介质的声速不同,所以超声波在不同介质之间会发生反射和折射,通过测量超声波信号的传播时间和强度,可以计算出物体的厚度。
超声波测厚仪广泛应用于金属、塑料、玻璃等各种材料的厚度测量,特别适合对非常薄的物体进行测量。
2.光学测厚仪:光学测厚仪是一种利用光学原理测量物体厚度的仪器。
它使用光源照射在被测物体上,经过反射和折射,形成干涉条纹或斑点,并通过观察干涉条纹或斑点的形态变化来测量物体的厚度。
光学测厚仪适用于测量透明材料(如玻璃、塑料)的厚度,精度较高。
3.射线测厚仪:射线测厚仪是一种利用射线穿透物体,通过测量射线在物体中的衰减程度来确定物体厚度的仪器。
常见的射线测厚仪有X射线测厚仪和γ射线测厚仪。
射线测厚仪主要应用于金属材料的厚度测量,如钢板、铝板等。
4.声速测厚仪:声速测厚仪是一种利用声速测量物体厚度的仪器。
它通过测量声波传播时间来计算物体的厚度。
声速测厚仪适用于不同介质材料的厚度测量,如水、油菜等。
5.电磁感应测厚仪:电磁感应测厚仪是一种利用电磁感应原理测量物体厚度的仪器。
它通过测量电磁感应信号的变化来确定物体的厚度。
电磁感应测厚仪主要应用于各种导电材料(如金属)的厚度测量。
这些测厚仪在工业、科研、建筑等领域起到了重要的作用。
例如,在金属加工行业中,测厚仪可以用于测量金属板、管的厚度,以确保产品的质量;在航空航天领域,测厚仪可以用于测量飞机结构的厚度,以检测结构的健康状况;在建筑和桥梁维护领域,测厚仪可以用于测量混凝土结构的厚度,以评估结构的耐久性。
总之,测厚仪是一种常用的工具,用于测量不同材料的厚度。
不同类型的测厚仪具有不同的原理和应用范围,可以满足不同领域的需求,为生产、检测等工作提供准确的厚度数据。
膜厚测试仪测试介绍
膜厚测试仪是一种用于测量涂覆在物体表面的膜层的厚度的仪器。
它
可以快速、准确地测量各种材料的膜层厚度,包括涂料、涂层、陶瓷、塑
料和金属等。
膜厚测试仪的主要原理是通过测量膜层与基底的界面之间的
干涉信号来确定膜层的厚度。
膜厚测试仪通常包括一个光源、一个反射镜和一个检测器。
光源产生
一束光线,经过反射镜后照射到待测样品的表面上。
一部分光线会被样品
的表面反射,形成反射光;另一部分光线会穿过膜层并与基底的界面发生
干涉,形成透射光。
透射光和反射光会重新汇集到检测器上,检测器会将
光信号转化为电信号进行处理。
为了获得准确的测量结果,膜厚测试仪通常需要进行一些校准和调整。
首先,需要校准仪器的零点,即在没有任何膜层的基准样品上进行零点校准。
然后,需要调整光源和检测器以确保光入射和光检测的准确性。
最后,进行测量时需要选择适当的参数,如光源强度、角度和测量时间等。
总之,膜厚测试仪是一种用于测量涂覆在物体表面的膜层厚度的仪器。
它基于光学干涉原理,通过测量干涉条纹的特征来确定膜层的厚度。
膜厚
测试仪具有快速、准确、非破坏性的优点,广泛应用于材料研究、质量控
制和品质检验等领域。
4mm厚钢化玻璃ik10等级测试标准钢化玻璃是一种经过特殊处理的玻璃,具有较高的强度和耐冲击性。
在建筑、汽车、家电等领域得到广泛应用。
而IK10等级则是对钢化玻璃的耐冲击性能进行评估的标准。
本文将介绍4mm厚钢化玻璃IK10等级测试标准及其重要性。
首先,我们需要了解什么是IK等级。
IK等级是根据EN 62262标准制定的,用于评估电气设备外壳的抗冲击能力。
IK等级共分为10个等级,从IK01到IK10,等级越高,抗冲击能力越强。
IK10等级是最高等级,表示能够承受20焦耳的冲击能量,相当于一个5千克的物体从1米高度自由落下所产生的冲击力。
对于4mm厚钢化玻璃来说,达到IK10等级的要求并不容易。
因为钢化玻璃的厚度较薄,相对来说强度较低,容易受到外力的影响而破裂。
因此,测试4mm厚钢化玻璃的IK10等级是非常重要的。
测试4mm厚钢化玻璃的IK10等级需要进行冲击试验。
试验时,使用一个标准的冲击器,将20焦耳的冲击能量施加在玻璃表面上。
如果玻璃能够承受住冲击而不破裂,那么它就符合IK10等级的要求。
否则,就需要重新设计或选择更厚的玻璃。
冲击试验只是测试4mm厚钢化玻璃IK10等级的一种方法,还有其他的测试方法可以评估玻璃的耐冲击性能。
例如,可以使用球冲击试验仪,将不同直径和重量的钢球从不同高度自由落下,观察玻璃的破裂情况。
还可以进行冲击振动试验,模拟真实环境中的冲击力,评估玻璃的耐久性。
为什么测试4mm厚钢化玻璃的IK10等级如此重要呢?首先,钢化玻璃在建筑领域广泛应用,如幕墙、阳台栏杆等。
这些玻璃制品需要具备较高的安全性能,能够承受外力的冲击,保护人身安全。
如果使用的玻璃不符合IK10等级的要求,可能会导致玻璃破裂,造成人员伤亡。
其次,汽车领域也需要测试4mm厚钢化玻璃的IK10等级。
汽车玻璃需要具备较高的耐冲击性能,能够承受高速行驶中的风压和碰撞力。
如果汽车玻璃不符合IK10等级的要求,可能会在事故中破裂,增加乘客的伤害风险。
钢化玻璃表面应力和钢化层深度计算方法1).调整测试仪,直到能够看到清晰的干涉条纹,并且视野内的上半部和下半部均有清晰条纹出现。
2).从显微镜镜头,分别读取干涉线A1、B1、C1和A2、B2、C2的位置,其中C1、C2位于明亮和黑暗区域的交界,如下图所示;在比例尺上的每个刻度代表0.1mm,在刻度盘上的每个刻度代表0.01mm,在视野内,A1、A2距离较远,B1、B2则在相邻位置,C1、C2则大概在同一位置,注意干涉带有可能叠加在C1、C2干涉线上3).Y1、Y2线为于A1、A2线的左边,它们距离A1、A2的距离分别等于A1和B1之间,A2、和B2之间距离的90%。
※表面应力值P(MPa)=K2×(Y1-Y2)其中K1:0.00078 (仪器灵敏度常数)C:材料光弹性常熟(nm/cm)/(MPa)K2:K1/C(MPa)/(mm)钢化层厚度计算:※表面应力层厚度(um)=0.26×N/√(no-ns)其中N:显微镜视野的下半部,A1和C1之间的干涉条纹数。
no:玻璃表面折射率ns:玻璃内部折射率no-ns=K1×(Y1-C1)一般浮法玻璃光弹性系数 C为:26.5计算举例:A1读数为:5.18㎜A2读数为:4.37㎜ B1读数为:4.26㎜ B2读数为:3.95㎜C1读数为:2.56㎜C2读数为:2.56㎜ N=8.5条Y1位置:(A1-B1)×0.9+A1=Y1→(5.18-4.26) ×0.9+5.18=6.01Y2位置:(A2-B2)×0.9+A2=Y2→(4.37-3.95) ×0.9+4.37=4.75C:试样光弹性常数=26.5(nm/cm)/(MPa)K2=0.00078÷26.5=294 (MPa) /(mm)※表面应力(MPa)=K2 × Y1Y2 (mm) =294 × (6.01-4.75)=294 × 1.26 =370.44(MPa)N O-N S=0.00078 × (Y1-C1)=0.00078 × (6.01-2.56) =0.00269(mm)※应力层厚度(μm)=0.265 × N÷√(N O-N S)=0.265 × 8.5 ÷√0.00269=0.265 × 8.5 ÷0.0519=43.4 (μm)。
膜厚仪膜厚仪又名膜厚测试仪,分为手持式和台式二种,手持式又有磁感应镀层测厚仪,电涡流镀层测厚仪,荧光X射线仪镀层测厚仪。
手持式的磁感应原理是,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。
也可以测定与之对应的磁阻的大小,来表示其覆层厚度。
目录使用步骤电涡流测量原理磁感应测量原理使用步骤测定准备(1)确保电池正负极方向正确无误后设定。
(2)探头的选择和设定:在探头上有电磁式和涡电流式2种类型。
对准测定对象,在本体上进行设定。
测定方法(1)探头的选择和安装方法:确认电源处于OFF状态,与测定对象的质地材质接触,安装LEP—J或LHP—J。
(2)调整:确认测定对象已经被调整。
未调整时要进行调整。
(3)测定:在探头的末端加肯定的负荷,即使用[一点接触定压式]。
捉住与测定部接近的部分,快速在与测定面成垂直的角度按下。
下述的测定,每次都要从探头的前端测定面开始离开10mm以上。
使用管状的东西连续测定平面时,假如采纳探头适配器,可以更加稳定地进行测定。
电涡流测量原理高频交流信号在测头线圈中产生电磁场,测头靠近导体时,就在其中形成涡流。
测头离导电基体愈近,则涡流愈大,反射阻抗也愈大。
这个反馈作用量表征了测头与导电基体之间距离的大小,也就是导电基体上非导电覆层厚度的大小。
由于这类测头专门测量非铁磁金属基材上的覆层厚度,所以通常称之为非磁性测头。
非磁性测头采纳高频材料做线圈铁芯,例如铂镍合金或其它新材料。
与磁感应原理比较,重要区分是测头不同,信号的频率不同,信号的大小、标度关系不同。
与磁感应测厚仪一样,涡流测厚仪也达到了辨别率0.1um,允许误差1%,量程10mm的高水平。
采纳电涡流原理的测厚仪,原则上对全部导电体上的非导电体覆层均可测量,如航天航空器表面、车辆、家电、铝合金门窗及其它铝制品表面的漆,塑料涂层及阳极氧化膜。
覆层材料有肯定的导电性,通过校准同样也可测量,但要求两者的导电率之比至少相差3—5倍(如铜上镀铬)。
金属膜厚度检测仪原理引言:金属膜厚度检测仪是一种用于测量金属薄膜厚度的仪器,广泛应用于电子、光学、材料科学等领域。
它通过非接触式的方式精确测量金属膜的厚度,为研究和生产提供了重要的数据支持。
本文将介绍金属膜厚度检测仪的原理及其工作过程。
一、基本原理金属膜厚度检测仪的基本原理是利用了光学干涉现象。
当光束从一种介质进入另一种介质时,由于介质的折射率不同,光束会发生相位差。
当两束相位差为整数倍的波长时,它们会发生干涉,形成明暗条纹。
根据条纹的特征,可以计算出金属膜的厚度。
二、工作过程金属膜厚度检测仪的工作过程主要包括光源、探测器、信号处理和显示等步骤。
1. 光源:金属膜厚度检测仪通常使用激光光源。
激光光源具有高亮度、单色性好等特点,能够提供稳定的光束。
2. 探测器:金属膜厚度检测仪使用光电二极管作为探测器。
光电二极管能够将光信号转换为电信号,实现光强的测量。
3. 信号处理:金属膜厚度检测仪通过将光电二极管输出的电信号进行放大、滤波和数字化处理,得到金属膜的厚度数据。
4. 显示:金属膜厚度检测仪将处理后的厚度数据通过显示器进行显示,供用户查看和分析。
三、优势与应用金属膜厚度检测仪具有以下优势:1. 高精度:金属膜厚度检测仪能够实现纳米级别的膜厚测量,具有非常高的精度。
2. 非接触式:金属膜厚度检测仪采用非接触式的测量方式,不会对被测物体造成损伤。
3. 快速测量:金属膜厚度检测仪能够在短时间内完成测量,提高工作效率。
金属膜厚度检测仪在电子、光学、材料科学等领域有着广泛的应用。
1. 半导体制造:金属膜厚度检测仪可以用于半导体器件中金属层的测量,确保产品质量。
2. 光学薄膜:金属膜厚度检测仪可以用于光学薄膜的制备过程中,控制金属膜的厚度。
3. 功能性涂层:金属膜厚度检测仪可以用于功能性涂层的制备中,确保涂层的厚度达到设计要求。
四、总结金属膜厚度检测仪利用光学干涉现象,通过测量干涉条纹的特征,计算出金属膜的厚度。
五种常见镀层测厚仪类型及测厚方法镀层测厚仪是一种常用的工具,用于测量各种物体表面的镀层厚度。
常见的镀层测厚仪类型有磁性涂层测厚仪、涡流涂层测厚仪、超声波涂层测厚仪、光学涂层测厚仪和放射性测厚仪。
下面将逐一介绍这些类型的测厚仪及其测厚方法。
1.磁性涂层测厚仪磁性涂层测厚仪主要用于测量金属表面的非磁性涂层厚度,如油漆、漆膜等。
它通过测量在测量位置上的磁场强度来确定涂层的厚度。
测厚仪工作时,将磁性涂层测厚仪放置在被测物体表面,仪器会产生一定强度的磁场,当磁场通过被测涂层时,由于涂层的存在,磁场会发生变化,通过测量磁场变化的大小,就可以确定涂层的厚度。
2.涡流涂层测厚仪涡流涂层测厚仪是用于测量金属表面涂层的工具。
它通过感应涡流的大小来确定涂层的厚度。
在测量过程中,测厚仪与被测物体表面接触,仪器会生成一定频率的交流电磁场,通过测量交流电磁场感应出来的涡流大小,就可以确定涂层的厚度。
3.超声波涂层测厚仪超声波涂层测厚仪是通过超声波的传播速度来确定涂层厚度的。
仪器会发射超声波,当超声波通过涂层时,会反射回来,通过测量超声波的传播时间和速度,就可以计算出涂层的厚度。
4.光学涂层测厚仪光学涂层测厚仪是用于测量透明涂层(例如玻璃、塑料等材料)的厚度。
测厚仪会发射一束可见光,当光线穿过透明涂层时,会发生反射和折射,通过测量反射和折射光的强度和角度,就可以计算出涂层的厚度。
5.放射性测厚仪放射性测厚仪是一种使用放射性同位素进行测量的测厚仪。
测厚仪内部放置有一个放射性同位素源,放射性同位素通过射线照射被测物体表面,当射线穿过涂层时,会发生衰减,通过测量射线衰减的程度,就可以确定涂层的厚度。
综上所述,常见的镀层测厚仪类型有磁性涂层测厚仪、涡流涂层测厚仪、超声波涂层测厚仪、光学涂层测厚仪和放射性测厚仪。
每种测厚仪都有其适用于不同材料和涂层类型的测厚方法,选择合适的测厚仪和测厚方法可以提高测量的准确性和精度。
钢化玻璃测试方法一、初步观察。
1.1外观查看。
咱拿到一块钢化玻璃啊,首先就得好好瞅瞅它的外观。
就像挑水果似的,得看它表面有没有啥明显的瑕疵,像划痕啊、气泡之类的。
这钢化玻璃表面要是有划痕,那可就像美人脸上有道疤,看着就不舒服。
要是有气泡呢,就好比米饭里混进了沙子,让人心里膈应。
这外观要是不过关,后面的测试都不用做了,直接就可以判定这玻璃不咋地。
1.2尺寸测量。
尺寸也很重要啊,这就好比盖房子,砖头的大小得合适才行。
咱得拿尺子量一量这钢化玻璃的长、宽、厚。
尺寸要是偏差太大,那在实际使用的时候就可能会出问题。
比如说要安装在窗户上的玻璃,尺寸不对,要么装不进去,要么就是装进去了也晃晃悠悠的,不牢固,就像穿了不合脚的鞋子,走路都不稳当。
二、物理性能测试。
2.1硬度测试。
这硬度测试就像考验一个人的抗击打能力一样。
咱们可以用硬度比较高的东西,像金刚石之类的,在玻璃表面划一下。
要是这钢化玻璃质量好,就像硬汉一样,能经受得住考验,表面不会有很深的划痕。
要是质量差呢,那就像纸糊的一样,一划就破,这种玻璃肯定是不能用在重要的地方的。
2.2抗冲击测试。
这个测试可有意思了。
咱们可以拿个小钢球,从一定的高度让它自由落体砸到玻璃上。
这就好比是给玻璃来个突然袭击。
质量好的钢化玻璃啊,就像个坚强的战士,能挡住这一击,最多也就是表面有点小坑洼,不会碎成一地残渣。
要是那种质量不过关的玻璃呢,就像个胆小鬼,一下子就被砸得粉碎,那可就完全没有安全性可言了。
2.3弯曲强度测试。
这就像是考验玻璃的柔韧性。
咱们给玻璃施加一定的压力,看看它能弯曲到什么程度而不破裂。
好的钢化玻璃啊,就像个有韧性的竹子,能承受一定的弯曲而不会轻易断裂。
要是那种一弯就断的玻璃,就像脆生生的麻花,一掰就折,那肯定不符合要求。
三、安全性能测试。
3.1破碎状态观察。
当咱们故意把钢化玻璃弄碎的时候,这时候就能看出它的真本事了。
质量好的钢化玻璃啊,碎了之后是那种小颗粒状的,就像一颗颗小珠子,不会有那种特别尖锐的大碎片。
钢化玻璃检测方法钢化玻璃检测方法引言钢化玻璃作为一种常见的建筑材料,具有高强度和耐冲击的特性。
然而,由于该材料的特殊制备方式,使得钢化玻璃存在一些隐藏的缺陷。
为了确保钢化玻璃的质量,需要通过有效的检测方法来发现并修复这些缺陷。
本文将介绍几种常用的钢化玻璃检测方法。
1. 目视检查目视检查是最常见和简单的一种方法,通过人眼观察玻璃表面以及透过玻璃观察是否存在明显的缺陷。
这种方法适用于一些明显可见的缺陷,如表面划痕、气泡、色差等。
然而,目视检查对于一些微小或内部缺陷的发现并不敏感。
2. 手持式检测器手持式检测器是一种便携式的检测设备,通常包括超声波探测器和红外线探测器。
超声波探测器通过发送超声波信号到玻璃表面,根据反射信号来判断是否存在缺陷。
红外线探测器则通过测量玻璃表面的温度差异来检测缺陷。
这两种方法都可以检测出一些小型的内部缺陷,但对于一些表面缺陷并不是很敏感。
射线检测X射线检测是一种非常常用的钢化玻璃检测方法。
通过向玻璃发射X射线,并测量射线经过玻璃后的吸收情况来判断是否存在缺陷。
这种方法可以检测出细小的缺陷,如裂纹、缺角等,且对玻璃厚度也有一定的测量能力。
然而,由于X射线辐射对人体有一定的伤害,因此在使用时需要采取相应的防护措施。
4.光学检测光学检测是一种通过光学原理来判断玻璃是否存在缺陷的方法。
其中包括偏光法、干涉法、显微镜检查等。
这些方法都是通过光线的反射、折射或干涉来观察和分析玻璃表面的特征,从而判断是否存在缺陷。
光学检测方法通常对于表面缺陷非常敏感,但对于内部缺陷的检测能力相对较弱。
5.声发射检测声发射检测是一种通过监测材料在受力时产生的声波信号来判断是否存在缺陷的方法。
在进行钢化玻璃检测时,通过加压或敲击玻璃表面,监测其发出的声波信号并进行分析,从而判断是否存在缺陷。
这种方法对于一些微小的内部缺陷非常敏感,但对于表面缺陷的检测能力相对较弱。
结论钢化玻璃的质量检测是确保建筑材料安全可靠的重要环节。
钢化玻璃鉴别仪及厚度测量仪
钢化玻璃鉴别仪及厚度测量仪该测量仪增加了新的功能,能够测量玻璃的厚度,既可以测量单板玻璃也可以测量双层玻璃。
测量时将仪器放于玻璃表面,读数时用一只眼睛。
热钢化玻璃,表面压缩度在3500 到7500psi 之间;钢化玻璃,表面压缩度10,000psi;安全玻璃,表面压缩度在15,000 到22,000psi 之间;此鉴别仪不能判断出钢化玻璃的具体类型,它只是简单的判断待测样片是否钢化过。
基本操作:
1.测量时,将玻璃放在平稳的桌面上,测量仪放在玻璃的一面,打开测量仪通过观察窗口看玻璃表面的反射情况,观察时要正对反射影像,而不能从旁侧观察。
单板钢化玻璃会出现两条反射圆柱,而双层玻璃会出现四条反射圆柱(每个玻璃面都会产生一个反射)。
离开关按钮最近的反射光束来自玻璃的di一面(即测量仪的接触面)。
滑动测量仪观察反射光束颜色的变化,每次跨过一条硬力线,第二条光束的颜色会随着di一条的改变而发生变化。
为了进一步说明颜色的变化发生在硬力线上,在硬力线的上方旋转测量仪,这样颜色的变化更明显,并能够证实硬力线确实存在。
测量过程中不能把测量仪固定不动,而应在玻璃表面滑动,才能得出正确的结论。
2.单板玻璃检测:测量单板玻璃时,会检测到两条反射光束,比较两条光束,如果反射光束2的颜色发生变化,而光束1不变化,表示玻璃的di一面是钢化面。
如果两条光束均发生变化,不能表明di一面被钢化,同时注意玻璃也是不存在硬力线的。
此时需要仔细检测玻璃表面的某一部分,来进一步判断是否钢化过,如果能检测到至少一条硬力线,也认为此玻璃被钢过。
3.双层玻璃检测:对于双层玻璃,检测过程中会出现四条放射光束柱,如果光束4颜色发生变化,而光束3不发生变化,说明玻璃的第二层被钢化;如果光束3和光束4的颜色同时发生变化,或者光束3 发生变化而光束4不变化,都不能说明玻璃第二面被钢化过。
4.玻璃厚度测量:该测量仪增加了新的功能,能够测量玻璃的厚度,既可以测量单板玻璃也可以测量双层玻璃。
测量时将仪器放于玻璃表面,读数时用一只眼睛,观察时大概成45度角,使光束1 对准测量仪的零刻度,然后看光束2 在刻度的哪个位置,读出其值。
建议测两组或两组以上的值,以保证其准确性。
注意事项:
测量时的观察角度很重要,一定使反射光束的颜色尽可能明亮,有较强的对比度,旋转移动仪器通常能增加色差对比度。
测窗玻璃时,如果阳光过于强烈,可将手放于玻璃后面,阻止一部分阳光,这样测量时更容易观察。
测量过程中,当找不到硬力线时,可将测量仪移至一角处,硬力线通常出现在边角处,而不出现在玻璃的中央。
每块玻璃有不同数目的硬力线,有的有很多条,而有的仅仅几条,测量时一定要全面,方能得出正确的结论。
9伏干电池驱动,当电量不足时,指示灯会亮起,此时应更换电池。