动点问题的函数图像
- 格式:doc
- 大小:346.00 KB
- 文档页数:6
动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A.B.C.D.【思路点拨】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.根据题意,分三段(0<x<1,1≤x<3,3≤x<4)分别求解y与x的解析式,从而求解.【解题过程】解:当0<x<1时,M、N分别在线段AB、AD上,此时AM=x cm,AN=2x cm,y=S△AMN=12×AM×AN=x2,为二次函数,图象为开口向上的抛物线;当1≤x<3时,M、N分别在线段、CD上,此时AM=x cm,△AMN底边AM上的高为AD=2cm,y=S△AMN=12×AM×AD=x,为一次函数,图象为直线;当3≤x<4时,M、N分别在线段AB、BC上,此时AM=x cm,△AMN底边AM上的高为BN=(8―2x)cm,y=S△AMN=12×AM×BN=12x(8―2x)=―x2+4x,为二次函数,图象为开口向下的抛物线;结合选项,只有A选项符合题意,故选:A.2.(22-23九年级上·安徽合肥·期中)如图,在△ABC中,∠C=135°,AC=BC=P为BC边上一动点,PQ∥AB交AC于点Q,连接BQ,设PB=x,S△BPQ=y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【思路点拨】过点Q作QE⊥BC交BC延长线于点E,根据S△BPQ=y=12QE⋅BP列出解析式再判断即可.【解题过程】解:如图,过点Q作QE⊥BC交BC延长线于点E,∵AC =BC =∴∠A =∠ABC∵PQ∥AB ,∴∠CQP =∠A,∠CPQ =∠ABC∴∠CQP =∠CPQ∴CQ =CP =―x .∵∠ACB =135°∴∠ECQ =45°在Rt △CEQ 中,∠ECQ =45°,∴QE ==―x )=2―,∴y =12QE ⋅BP =12x 2x =―2+x =――2+∴当x =y 最大值=故选:C.3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A .B .C .D .【思路点拨】如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,证明四边形ACFD 为平行四边形,可得AD =CF =x ,BF =4―x ,求解CT =FT =12x ,TH ==,同理可得:GK =―x ),再利用面积公式建立函数关系式即可判断.【解题过程】解:如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,由题意可得:AD∥CF ,DF∥AC ,∴四边形ACFD 为平行四边形,∴AD =CF =x ,∴BF =4―x ,∵△ABC 和△DEF 均为边长为4的等边三角形,AD∥CF ,∴∠D =∠DFB =60°,而∠B =60°,∴△BGF 为等边三角形,同理:△CFH 为等边三角形,∵HT ⊥BC ,∴CT =FT =12x ,TH ==,同理可得:GK =―x ),∴y =12x +12(4―x )⋅―x )=2―+故选B4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B→C→D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .【思路点拨】本题考查了动点问题函数图象.根据矩形的性质求出点O 到BC 的距离等于4,到CD 的距离等于6,求出点Q 到达点C 的时间为6s ,点P 到达点C 的时间为12s ,点Q 到达点D 的时间为14s ,然后分①0≤t ≤6时,点P 、Q 都在BC 上,表示出PQ ,然后根据三角形的面积公式列式计算即可;②6<t ≤12时,点P 在BC 上,点Q 在CD 上,表示出CP 、CQ ,然后根据S ΔOPQ =S ΔCOP +S ΔCOQ ―S ΔPCQ 列式整理即可得解;③12<t ≤14时,表示出PQ ,然后根据三角形的面积公式列式计算即可得解.【解题过程】解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12AB =4,到CD 的距离=12AD =6,∵点M 是BC 的中点,∴CM =12BC =6,∴点Q到达点C的时间为6÷1=6s,点P到达点C的时间为12÷1=12s,点Q到达点D的时间为(6+8)÷1=14s,①0≤t≤6时,点P、Q都在BC上,PQ=6,△OPQ的面积=12×6×4=12;②6<t≤12时,点P在BC上,点Q在CD上,CP=12―t,CQ=t―6,SΔOPQ=SΔCOP+SΔCOQ―SΔPCQ,=12×(12―t)×4+12×(t―6)×6―12×(12―t)×(t―6),=12t2―8t+42,=12(t―8)2+10,③12<t≤14时,PQ=6,△OPQ的面积=12×6×6=18;纵观各选项,只有B选项图形符合.故选:B.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.【思路点拨】先求出点P在BC上运动是时间为6秒,点Q在CD上运动是时间为4秒,再根据中点的定义可得AE =BE =12AB ,然后分①点Q 在CD 上时,表示出BP 、CP 、CQ ,再根据△EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,列式整理即可得解;②点Q 在AD 上时,表示出BP 、AQ ,再根据△EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,列式整理即可得解,再根据函数解析式确定出函数图象即可.【解题过程】解:∵点P 、Q 的速度均为每秒1个单位,∴点P 在BC 上运动的时间为6÷1=6(秒),点Q 在CD 上运动的时间为4÷1=4(秒),∵E 为AB 中点,∴AE =BE =12AB =12×4=2,①如图1,点Q 在CD 上时,0≤x ≤4,则BP =x,CP =6―x,CQ =x ,∴ △EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,=12(2+x )×6―12×2x ―12(6―x )⋅x =12x 2―x +6=12(x ―1)2+112②如图2,点Q 在AD 上时,4<x ≤6,则BP =x,AQ =6+4―x =10―x ,∴ △EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,=12(x +10―x )×4―12×2x ―12(10―x )⋅2=10,综上所述,y =2―x +6(0≤x ≤4)10(4<x ≤6),函数图象为对称轴为直线x =1的抛物线的一部分加一条线段,只有A 选项符合.故选:A .6.(2024·河南开封·一模)如图1,在△ABC 中,∠B =60°,点D 从点B 出发,沿BC 运动,速度为1cm/s .点P 在折线BAC 上,且PD ⊥BC 于点D .点D 运动2s 时,点P 与点A 重合.△PBD 的面积S (cm 2)与运动时间t (s)的函数关系图象如图2所示,E 是函数图象的最高点.当S (cm 2)取最大值时,PD 的长为( )A .B .(1+cm C .(1+cm D .(2+cm【思路点拨】本题考查动点函数图象,二次函数图象性质,三角形面积.本题属二次函数与几何综合题目.先根据点D 运动2s 时,点P 与点A 重合.从而求得PD ==,再由函数图象求得BC =(2+×1=(2+cm ,从而求得DC =BC ―BD =2+2=,得出PD =DC ,然后根据由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.所以当2≤t ≤2+点P 在AC边上,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,根据三角形面积公式求得S △PBD =―12t ―(13)2+2+【解题过程】解:由题意知,点D 运动2s 时,点P ,D 的位置如图1所示.此时,在Rt △PBD 中,BD =2cm ,∠B =60°,PD ⊥BC ,∴PB =2BD =4(cm),∴PD ==.由函数图象得BC =(2+×1=(2+cm ,∴DC =BC ―BD =2+2=,∴PD =DC .由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.当2≤t ≤2+P 在AC 边上,如图2,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,∴S △PBD =12×BD ×PD =12×t ×(2+t )=―12t 2+(1+t .∵S △PBD =――(1+3)2+2+又∵―12<0,∴当t =1+S △PBD 的值最大,此时PD =CD =2+―(1+=(1+cm .故选:B .7.(2024·安徽·一模)如图,在四边形ABCD 中,∠A =60°,CD ⊥AD ,∠BCD =90°, AB =BC =4,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A ―B ―C 向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,△APQ 的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A .B .C .D .【思路点拨】分当0≤x <2时,点Q 在AB 上和当2≤x ≤4时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【解题过程】解:过Q 作QN ⊥AD 于N ,当0≤x <2时,点Q 在AB 上,∵∠A =60°,∴∠AQN =90°―60°=30°,∴AN = 12AQ =12×2x =x ,∴QN ==,∴y =12×AP ×NQ =12×x ×=2,当2≤x ≤4时,点Q 在BC 上,过点B 作BM ⊥AD 于点M ,∵BM ⊥AD ,∠A =60°,∴∠ABM =30°,∴AM = 12AB =12×4=2,∴BM ==∵CD ⊥AD ,QN ⊥AD ,∴QN ∥CD ,∴∠BQN =∠BCD =90°,∵BM ⊥AD, CD ⊥AD ,∴四边形BMNQ 是矩形,∴QN =BM = ,y =12AP ⋅QN =12x ×=,综上所述,当0≤x <2时的函数图象是开口向上的抛物线的一部分,当2≤x ≤4时,函数图象是直线的一部分,故选:D .8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,CD =,D 为AC 上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C→B→A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF ,设点P 的运动时间为t s ,正方形DPEF 的面积为S ,当点P 由点C 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象,若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等,当t 3=5t 1时,则正方形DPEF 的面积为( )A .3B .349C .4D .5【思路点拨】由题意可得:CD =CP =t ,当点P 在BC 上运动时S =t 2+2,由图可得,当点P 与点B 重合时,S =6,求出t=2,即BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,求出抛物线解析式为S=(t―2)2+2,从两个函数表达式看,两个函数a相同,都为1,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,t1+t2=4①,t2+t3=8②,结合t3=5t1③,求出t的值即可得出答案.【解题过程】解:由题意可得:CD=CP=t,当点P在BC上运动时,S=DP2=CP2+CD2=t2+2,由图可得,当点P与点B重合时,S=6,∴t2+2=6,∴t=2或t=―2(不符合题意,舍去),∴BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,则抛物线的表达式为S=a(t―4)2+2,将2,6代入得:a(2―4)2+2=6,∴a=1,∴抛物线的表达式为:S=(t―4)2+2,从两个函数表达式看,两个函数a相同,都为1,若存在3个时刻t1,t2,t3(t1<t2t3)对应的正方形DPEF的面积均相等,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,∴t1+t2=4①,t2+t3=8②,∵t3=5t1③,由①③③解得t1=1,∴S=t2+2=1+2=3,故选:A.9.(22-23九年级上·浙江嘉兴·期中)如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC=6,点O为AC 中点,点D为线段AB上的动点,连接OD,设BD=x,OD2=y,则y与x之间的函数关系图像大致为( )A .B .C .D .【思路点拨】如图:过O 作OE ⊥AB ,垂足为E ,先根据直角三角形的性质求得AB =12,AC =OA =12AC =AE ==92可得DE =152―x ,然后再根据勾股定理求得函数解析式,最后确定函数图像即可.【解题过程】解:如图:过O 作OE ⊥AB ,垂足为E∵∠C =90°,∠ABC =60°∴∠A =30°∵BC =6∴AB =2BC =12∴AC ===∵点O 为AC 中点∴OA =12AC =∵∠A =30°∴OE =12AO =∴AE ===92∴DE =|152―x |∴OD 2=OE 2+DE 2,即y =+―x 2=x +274当x =0时,y =0―+274=63当x =152时,y =―+274=274当x =12时,y =12+274=27则函数图像为.故选C .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C .D .【思路点拨】本题主要考查动点问题,依托三角形面积考查二次函数的图象和分类讨论思想,取BC 的中点F,连接DF 根据题意得到DF 和DE ,分三种情况讨论三角形的面积:(1)当0<t ≤6时,得MN =AE =6,结合三角形面积公式求解即可;(2)当6<t ≤12时,得AM ,MC ,CN 和BN ,结合S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN ;(3)当12<t ≤14时,点M 、N 都在BC 上,结合DF 和MN 求面积即可.【解题过程】解:如图,取BC 的中点F ,连接DF ,∴DF ∥AC ,DF =12AC =6∵点D 、E 是中点,∴DE =12BC =4,DF ∥CB ,∵∠C =90°,∴四边形DECF 为矩形,当0<t ≤6时,点M 在AE 上,点N 在EC 上,MN =AE =6,∴S =12MN ⋅DE =12×6×4=12;如图,当6<t ≤12时,点M 在EC 上,点N 在BC 上,∵AM =t ,∴MC =12―t ,CN =t ―6,BN =14―t ,∴S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN=12×8×12―12×4t ―12×6(14―t)―12(12―t)(t ―6)=12t 2―8t +42;如图,当12<t ≤14时,点M 、N 都在BC 上,∴S =12MN ⋅DF =12×6×6=18,综上判断选项A 的图象符合题意.故选:A .11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A 、B 、C 、D 分别是菱形的四个顶点,∠A =60°.现有两个机器人(看成点)分别从A ,C 两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C 和C→D→A .若移动时间为t ,两个机器人之间距离为d .则 d²与t 之间的函数关系用图象表示大致为( )A .B .C .D .【思路点拨】设菱形的边长为2,根据菱形的性质求出关于两个机器人之间的距离d2的解析式,再利用二次函数的性质即可解答.【解题过程】解:①设AD=2,如图所示,∵移动时间为t,∠A=60°,∴CK=1,FT=KB=∴AE=t,CF=2―t,∴FK=2―t―1=1+t,∴ET=2―t―(1+t)=1+2t,∴在Rt△EFT中,EF2=ET2+FT2=(1+2t)2+2=4t2+4t+4;②设AD=2,如图所示,∵移动时间为t,∠A=60°,∴BM=t―2,CM=2―(t―2)=4―t,CP=1,PD=LQ=∴MQ=CM―CQ=(4―t)―1=―t,∴在Rt△LMQ中,ML2=MQ2+LQ2=(3―t)2+2=t2―6t+12,∴函数图像为两个二次函数图象;③当从A出发的机器人在B点,从C出发的机器人在D点,此时距离是BD;从A出发的机器人在A点,从C出发的机器人在C点,此时距离是AC;∵设AD=2,∠A=60°,∴BD=2,AE=∴AC=2AE=∴BD<AC,∴函数图象的起点和终点高于中间点;综上所述:A项符合题意;故选A.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.【思路点拨】本题主要考查了动点问题的函数图象,二次函数的图象,等腰三角形的性质等知识,如图,作AQ⊥BC于点Q,可知AQ=0<x≤1或1<x≤2或2<x≤3三种情形,分别求出重叠部分的面积,即可得出图象.【解题过程】解:如图①,设AC与DE交于点H,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC=2,BC=1,过点A作AQ⊥BC于点Q,则BQ=CQ=12∴AQ===∵四边形DEFG 是矩形,∴∠DEF =90°,DE =AQ ==OF ―OE =5―2=3,当0<x ≤1时,在Rt △HCE 中,∠ACE =60°,EC =x,∴∠CHE =30°,∴HC =2x ,∴HE ===∴S =12EC ×HE =12x ×=2,所以,S 关于x 的函数图象是顶点为原点,开口向上且在0<x ≤1内的一段;当1<x ≤2时,如图,设AB 与DE 交于点P ,∵EC =x,BC =2,∴BE =BC ―EC =2―x,同理可得,PE =x ―2),∴S =S △ABC ―S △PBE =12×2―12(2―x )⋅―x )=―x ―2)2+所以,图象为1<x ≤2时开口向下的一段抛物线索;当2<x ≤3时,如图,S =12×2×=此时的函数图象是在2<x≤3范围内的一条线段,即S=<x≤3),故选:C13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.【思路点拨】本题考查了二次函数与几何图形的综合,涉及等腰直角三角形,平移的性质,二次函数的性质等知识,解题的关键是灵活运用这些性质,学会分类讨论.过点D作DM⊥AB于M,由△ABC为等腰直角三角形,∠ABC=90°,可设AB=BC=2,可得AD=CD=BD=DM=AM=BM=1,然后分情况讨论:当0<x≤1时,当1<x≤2时,分别求出关于S、x的函数,再数形结合即可求解.【解题过程】解:过点D作DM⊥AB于M,∵△ABC为等腰直角三角形,∠ABC=90°,∴ AB =BC ,设AB =BC =2,∴ AD =CD =BD =DM =AM =BM =1,当0<x ≤1时,设B 1D 1交AC 于点G ,B 1C 1交BD 于N ,∴ AB 1=AB ―BB 1=2―x ,由平移知B 1G ∥BD ,∠AB 1G =∠ABD ,∴ △AB 1G 是等腰直角三角形,∴ S △AB 1G =12AB 1·12AB 1=14(2―x )2,又∵ S △ABD =12×12×2×2=1,S △BB 1N =12x 2∴ S =S △ABD ―S △AB 1G ―S △BB 1N =1―14(2―x )2―12x 2=―34x 2+x ,当x =―=23时取得最大值,故排除A 、B 选项当1<x ≤2时,B 1D 1交AC 于点G ,B 1C 1交AC 于点H ,∵ B 1H ∥BC ,∴ ∠B 1HG =∠ACB =45°,又∵ ∠D 1B 1C 1=45°,∴ △B 1GH 为等腰三角形,∵ ∠AB 1D 1=∠ABD =45°=∠A ,∴ AB 1G 为等腰三角形,∴ B 1G =1=―x ),∴ S =S △B 1GH =12·―x )―x )=14(2―x )2,即当1<x ≤2时,函数图像为开口向上的抛物线,故排除C 选项故选:D .14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.【思路点拨】根据题意可知分情况讨论,分别列出当点P在BC上时,点P在CD上时,点P在AD上时表达式,再画图得到函数解析式,即可得到本题答案.【解题过程】解:设点P的运动时间为x(s),△BPQ的面积为y(cm2),①当0≤x≤1时,点P在BC上时,过点P作PE⊥BA,,∵根据题知:∠B =60°,PB =3x,BQ =x ,∴BE =32x ,PE =,∴y =12BQ·PE =12x·=2;②当1<x ≤2时,点P 在CD 上时,过点P 作PH ⊥BA ,,∵根据题知:∠B =60°,BC =3,BQ =x ,∴PH =∴y =12BQ·PH =12x·=;③当2<x ≤3时,点P 在AD 上时,过点P 作PF ⊥BA 交DA 延长线于F ,,∵根据题知:∠B =60°,即∠FAD =60°,∵BC +CD +AD =3+3+3=9cm ,BC +CD +DP =3x ,∴AP =(9―3x)cm ,∴PF =9―3x 2·∴y =12BQ·PF =12x·9―3x 2·=―2;∴结合三种情况,图像如下所示:,故选:D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.【思路点拨】先根据菱形的性质求出各点坐标,分M的横坐标x在0∼1,1∼2,2∼3之间三个阶段,用含x的代数式表示出△PMN的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.【解题过程】解:∵菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半轴上,∴ AB =AD =2,OA=∴ OB===1,∴ OC =OB +BC =1+2=3,∴ A ,B (1,0),C (3,0),设直线AB 的解析式为y =kx +b ,将A ,B (1,0)代入,得:k +b = ,解得k =b =∴直线AB 的解析式为y =―+∵ MN∥y 轴,∴N 的横坐标为x ,(1)当M 的横坐标x 在0∼1之间时,点N 在线段AB 上,△PMN 中MN 上的高为1+x ,∴ N (x,―+,∴ MN=(―+=,∴ S △PMN =12MN ⋅(1+x )=⋅(1+x)=2+,∴该段图象为开口向上的抛物线;(2)当M 的横坐标x 在1∼2之间时,点N 在线段BC 上,△PMN 中MN =MN 上的高为1+x ,∴ S △PMN =12MN ⋅(1+x)=(1+x)=∴该段图象为直线;(3)当M 的横坐标x 在2∼3之间时,点N 在线段BC 上,△PMN 中MN 上的高为1+x ,由D ,C (3,0)可得直线CD 的解析式为y =―+∴ M (x,―+,N (x,0),∴ MN =―+∴ S △PMN =12MN ⋅(1+x )=12(+⋅(1+x )=―2∴该段图象为开口向下的抛物线;观察四个选项可知,只有选项A 满足条件,故选A .16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A (2,0),点B,点C (―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t 的关系图象是()A.B.C.D.【思路点拨】先分析各个线段的长,在Rt△OAB中,可知,OA=2,OB AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,易得△OBC是等边三角形,OC=BC=OB P在OA上运动用时2s,在AB上运动用时4s,点Q在OC上运动用时2s,在OC上运动用时2s,则点P和点Q共用时4s,可排除D选项;再算出点P在OA上时,y的函数表达式,结合选项可得结论.【解题过程】解:如图,∵点A(2,0),点B(0,∴OA=2,OB∴AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,则OM =BM CM =3,∴OC =BC ∴△OBC 是等边三角形,∠BOC =60°,∴点P 在OA 上运动用时2s ,在AB 上运动用时4s ,点Q 在OC 上运动用时2s ,在OC 上运动用时2s ,即点P 和点Q 共运动4s 后停止;由此可排除D 选项.当点P 在线段OA 上运动时,点Q 在线段OC 上运动,过点Q 作QN ⊥x 轴于点N ,由点P ,点Q 的运动可知,OP =t ,OQ ,∴QN =12OQ ==32t,∴PN =52t,∴y =PQ 2=(52t)2+2=7t 2.即当0<t <2时,函数图象为抛物线,结合选项可排除A ,C .故选:B .17.(2022·辽宁·中考真题)如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A.B.C.D.【思路点拨】分三种情形∶①当0<x≤2时,△CDG,②当2<x≤4时,重叠部分为四边形AGDC,③当4<x≤8时,重叠部分为△BEG,分别计算即可.【解题过程】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,BC=2,AM=∴BM=CM=12BC•AM=∴S△ABC=12①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DGCD•DG2;∴S=12②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG4﹣x),×(4﹣x)4﹣x),∴S=S△ABC﹣S△BDG=﹣12∴S=2﹣x﹣4)2③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD =x ,则CE =x ﹣4,DB =x ﹣4,∴BE =x ﹣(x ﹣4)﹣(x ﹣4)=8﹣x ,∴BM =4﹣12x在Rt △BGM 中,GM 4﹣12x ),∴S =12BE •GM =12(8﹣x )4﹣12x ),∴S x ﹣8)2,综上,选项A 的图像符合题意,故选:A .18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒【思路点拨】先由图2中的函数图像得到当t =5时,点Q 到达点C ,即BC =5cm ,然后由5<t <7时,y =10可知△BPQ的面积是定值10cm 2、BE =5cm,ED=2cm ,当t =7时点P 到达点D ,AE ==4cm ,可以判定A ;当0<t ≤5时,根据y =25t 2得到y =2.5cm 2,过点P 作PH ⊥BC 于点H ,根据y =12BQ·PH =12×2.5cm ×PH =2.5cm 2求得PH =2,设QH =x cm ,根勾股定理计算QH =1cm ,可计算PQ =根据AB =CD =4cm ,得到再运动4秒到达C 点即H (11,0),N (7,10),确定直线HN 或475秒;当t =294>284=7时,故点Q 在DC 上,把t =294代入直线HN 的解析式计算BQ PQ =43.【解题过程】解:设抛物线的解析式为y =at 2,当t =5时,y =10,∴10=25a ,解得a =25,∴y =25t 2,由图2中的函数图像得当t =5时,点Q 到达点C ,即BC =BE =5cm ,∵5<t <7时,y =10,∴△BPQ 的面积是定值10cm 2且BE =5cm,ED=2cm ,当t =7时点P 到达点D ,∴AE =5―2==4cm,AD=BC =5cm ,∴AB:AD =4:5,故A 正确,不符合题意;当0<t ≤5时,∵y =25t 2,t =2.5,∴BP =BQ =2.5cm ,y =2.5cm 2,过点P 作PH ⊥BC 于点H ,∴y =12BQ·PH =12×2.5cm ×PH =2.5cm 2解得PH =2,设QH =x cm ,则BH =BQ ―QH =(2.5―x )cm ,∴2.52=22+(2.5―x )2,解得x =1,x =4(舍去),∴QH =1cm ,∴PQ==故B 正确,不符合题意;根据AB =CD =4cm ,∴再运动4秒到达C 点即H (11,0),N (7,10),设直线HN 的解析式为y =kt +b ,根据题意,得11k +b =07k +b =10 ,解得k =―52b =552 ,∴直线HN 的解析式为y =―52t +552,∵△BPQ 的面积为4cm 2,故4=25t 2或4=―52t +552解得t==―t =475,故D 正确,不符合题意;∵t =294>284=7时,故点Q 在DC 上,当t =294时,y =―52×294+552=758,12PQ·BC =758解得PQ=154∴BQ PQ =5154=43.故C错误,符合题意.故选:C.19.(2023·辽宁·中考真题)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【思路点拨】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.【解题过程】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFGH全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠MAD=∠AGE=30°,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,∠EAF=60°,∴EF==,∴S=2;②如图3时,当AE+AF=GE+AF=AF+CF=AC,x=6,解得x=4,则x+12由图2到图3,此时3<x≤4,如图4,记BC,EG的交点为Q,则△EQB是正三角形,∴EQ=EB=BQ=6―x,∴GQ=x―(6―x)=2x―6,而∠PQG=60°,∴PG==2x―6),∴S=S矩形EFHG―S△PQG=2x 2―12×(2x ―6)×2x ―6)=―2― ③如图6时,x =6,由图3到图6,此时4<x ≤6,如图5,同理△EKB 是正三角形,∴EK =KB =EB =6―x ,FC =AC ―AF =6―12x ,EF =, ∴S =S 梯形EKCF=―x +6―12x 2=―2, 因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线, 故选:A .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,现将菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,设平移时间为t (秒),菱形ABCD 位于y 轴右侧部分的面积为S ,则S 关于t 的函数图像大致为( )A .B .C .D .【思路点拨】过点B 作x 轴的垂线,垂足为点E ,如图所示,由菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,分①当0≤t ≤2时;②当2<t <4时;③当4≤t ≤6时;④当t >6时;四种情况,作图求解S 关于t 的函数解析式,作出图像即可得到答案.【解题过程】解:过点B 作x 轴的垂线,垂足为点E ,如图所示:∵菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,∴OE =2,OB =4,∴∠OBE =30°,∴∠BOE =60°,BE =①当0≤t ≤2时,如图(1)所示:S =12OA ⋅OF =12×t ×=2;②当2<t <4时,如图(2)所示:S =S △ABE +S 矩形OEBG =12AE ⋅BE +BE ⋅OE =12×2×t ―2)=―③当4≤t ≤6时,如图(3)所示:∵∠C =60°,OD =OA ―AD =t ―4,∴∠KDO =60°,OK=t ―4),∵HO =BE =∴HK =HO ―OK =―t ―4)=―+∵HB =OE =OA ―AE =t ―2,∴CH =BC ―HB =4―(t ―2)=―t +6,S =S 菱形ABCD ―S △CHK =AD ⋅BE ―12CH ⋅HK =4×―12(―t +6)(―+=―2―+=―2―当t >6时,S =S 菱形ABCD =AD ⋅BE=综上所述S =20≤t ≤2―2<t <4t2+―4≤t ≤6t >6 ,∴第一段二次函数部分,开口向上;第二段一次函数部分;第三段二次函数部分,开后向下;第四段平行于x轴的射线,故选:A.。
xxxxyy yyDCBA63636363OOOO图5OCD ABP 动点问题的函数图象1.(2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s 与t 的大致图象应为 ( )2.(2013•北京 )如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是 ( )3.(2013•葫芦岛)如图5矩形ABCD 的对角线交于点O ,∠BOC=60°,AD=3.动点P 从点A 出发,沿折线AD-DO 以每秒1个单位的速度运动到点O 停止,设运动时间为x 秒,y=S △POC ,则y 与x 的函数关系式为( )4.(2013•兰州)如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B . C.D C B A s t o s t o s t o o t sD .5.(2013•铁岭)如图,点G 、E 、A 、B 在一条直线上,Rt △EFG 从如图所示是位置出发,沿直线AB 向右匀速运动,当点G 与B 重合时停止运动.设△EFG 与矩形ABCD 重合部分的面积为S ,运动时间为t ,则S 与t 的图象大致是( ) A .B .C .D .6.(2012•铁岭)如图, ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与 ABCD 的各边分别平行,且与 ABCD 相似.若小平行四边形的一边长为 ,且0< ≤8,阴影部分的面积的和为 ,则与 之间的函数关系的大致图象是 ( )A. B. C. D.7.(2011•安徽)如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是 ( )8.(2011•葫芦岛)如图,在矩形中截取两个相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 和x ,则y 与x 函数的图象大致是( ).OOOOx x x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . x x y y x ABCDMN P9.(2012•营口)如图,菱形ABCD 的边长为2,∠B=30°.动点P 从点B 出发,沿B ﹣C ﹣D 的路线向点D 运动.设△ABP 的面积为y (B 、P 两点重合时,△ABP 的面积可以看做0),点P 运动的路程为x ,则y 与x 之间函数关系的图象大致为( )10.(2011•辽阳)如图,等边△ABC 的边长为4,M 为BC 上一动点(M 不与B 、C 重合),若EB =1,∠EMF =60°,点E 在AB 边上,点F 在AC 边上.设BM =x ,CF =y ,则当点M 从点B 运动到点C 时,y 关于x 的函数图象是( ).11.(2011•营口)如图,半径为1的圆和边长为3的正方形在同一水平线上,圆沿水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( ).12.(2013•营口)如图1,在矩形ABCD 中,动点E 从点B 出发,沿B A DA .B .C .D .A DEyC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当7 x 时,点E 应运动到( )A .点C 处B .点D 处C .点B 处D .点A 处13.(2012•鞍山)如图,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=BC=4,DE ⊥BC 于点E ,且E 是BC 中点;动点P 从点E 出发沿路径ED→DA→AB 以每秒1个单位长度的速度向终点B 运动;设点P 的运动时间为t 秒,△PBC 的面积为S ,则下列能反映S 与t 的函数关系的图象是( ) 14.15.(2013•自贡)如图,已知A 、B 是反比例函数上的两点,BC ∥x轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )A .B .C .D .A .B .C .D .16.(2012•烟台)如图,矩形ABCD 中,P 为CD 中点,点Q 为AB 上的动点(不与A ,B 重合).过Q 作QM ⊥PA 于M ,QN ⊥PB 于N .设AQ 的长度为x ,QM 与QN 的长度和为y .则能表示y 与x 之间的函数关系的图象大致是( ) A . B . C . D .17.(2012•岳阳)如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是( ) 18.(2012•攀枝花)如图,直角梯形AOCD 的边OC 在x 轴上,O为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )A .B .C .D .19.(2012•桂林)如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位A .B .C .D .长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当P 运动到B 点时,P 、Q 两点同时停止运动.设P 点运动的时间为t ,△APQ 的面积为S ,则S 与t 的函数关系的图象是( )20.(2010•烟台)如图,AB 为半圆的直径,点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 于PB 为直径做半圆,则图中阴影部分的面积S 与时间t 之间的函数图像大致为A B CD。
题型一 动点问题的函数图像类型一 判断函数图像(2014.8)1. 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA →AB ︵→BO 的路径运动一周,设点P 到点O的距离为s ,运动时间为t ,则下列图象能大致地反映s 与t 之间的关系的是( )第1题图2. 如图,在Rt △ABC 中,AC =BC =4 cm ,点D 是AB 的中点,点F 是BC 的中点,动点E 从点C 出发,沿CD →DA 以1 cm/s 的速度运动至点A ,设点E 运动的时间为x s ,△EFC 的面积为y cm 2(当E ,F ,C 三点共线时,设y =0),则y 与x 之间的函数关系的大致图象是( )第2题图3.如图,A 、B 是反比例函数y =k x(k >0)在第一象限图象上的两点,动点P 从坐标原点O 出发,沿图中 箭头所指方向匀速运动,即点P 先在线段OA 上运动,然后在双曲线上由A 到B 运动,最后在线段BO 上运动,最终回到点O .过点P 作PM ⊥x 轴,垂足为点M ,设△POM 的面积为S ,点P 运动时间为t ,则S 关于t 的函数图象大致为( )第3题图4.如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()第4题图5.如图,在矩形ABCD中,对角线AC与BD交于点O,点M为线段AC上一个动点,过点M作EF∥BD 交AD(或DC)于点E,交AB(或BC)于点F,已知AC=5,设AM=x,EF=y,则y关于x的函数图象大致为()第5题图6. (2019衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C,设点P经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()第6题图类型二分析函数图像1.如图①,点P从矩形ABCD的顶点B出发,沿射线BC的方向以每秒1个单位长度的速度运动,过点P作PG⊥AP交射线DC于点G.如图②是点P运动时CG的长度y随时间t变化的图象,其中点Q是第一段曲线(抛物线的一部分)的最高点,则AB的长度是()第1题图A. 2B. 3C. 4D. 232.(2019郑州模拟)如图①,四边形ABCD中,AB∥CD,∠B=90°,AC=A D.动点P从点B出发,沿折线B-A-D-C方向以 1 cm/s的速度匀速运动,在整个运动过程中,△BCP的面积S(cm2)与运动时间t(s)的函数图象如图②所示,则AD等于()第2题图A. 5 cmB. 34 cmC. 8 cmD. 2 3 cm3.如图①,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B出发沿折线B-C-D运动到点D.图②是点P、Q运动时,△BPQ的面积S随时间t变化关系图象,则a的值是()第3题图A. 2B. 2.5C. 3D. 234.如图①,在正方形ABCD中,动点E从点A出发,沿A-B-C运动,当点E到达点C时停止运动,过点E作EF⊥AE,交CD于点F,设点E运动的路程为x,FC=y(当点A,E重合时,点D,F重合;当点C,E重合时,不妨设y=0),y与x的函数关系的大致图象如图②,当点E在BC上运动时,FC的最大长度是1,则正方形ABCD的面积是()第4题图A. 8B. 12C. 16D. 4.85.如图①,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设P A=x,点D到直线P A的距离为y,且y关于x的函数图象如图②所示,则当△PCD和△P AB的面积相等时,y的值为.第5题图6.如图①,已知点E,F,G,H是矩形ABCD各边的中点,动点M从点E出发,沿E→F→G匀速运动,设点M运动的路程为x,点M到矩形顶点B的距离为y,如果表示y关于x函数关系的图象如图②所示,那么四边形EFGH的面积是.第6题图参考答案类型一 判断函数图象1. C 【解析】点P 在OA 上从点O 向点A 运动的过程中,s 随着t 的增大而增大,点P 在AB ︵上运动时,s =OP =12AB (定值),点P 在OB 上从点B 向点O 运动的过程中,s 随着t 的增大而减小. 2. A 【解析】∵在Rt △ABC 中,AC =BC =4,∴AB =42,AD =CD =22,CF =2,当点E 在CD 上时,CE =x ,点E 到BC 的距离h 1=22x ,∴y =12×2×22x =22x (0≤x ≤22);当点E 在AD 上时,BE =BD +DE =CD +DE =x ,∴点E 到FC 的距离h 2=22BE =22x ,∴y =12×2×22x =22x (22≤x ≤42). 3. D 【解析】设∠AOM =α,点P 运动的速度为a ,当点P 从点O 运动到点A 的过程中,S =12OM ·PM =12at ·cos α·at ·sin α=12a 2·cos α·sin α·t 2,由于α及a 均为常量,从而可知图象本段应为抛物线,且S 随着t 的增大而增大;当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为12k ,保持不变,本段图象应为与x 轴平行的线段;同理可得,当点P 从B 运动到O 过程中,S 也是t 的二次函数,且S 随着t 的增大而减小.4. B 【解析】∵四边形ABCD 为菱形,且∠B =60°,AB =2,∴当0<t <2时,△APQ 的面积y =12t ·(2-t )·sin60°=-34t 2+32t ,函数图象为开口向下的一段抛物线,且当t =1时,y 最大值为34;当2<t <4时,△APQ 的面积y =12(t -2)·(t -2)·sin60°=34(t -2)2,函数图象为开口向上的一段抛物线,且当t =4时,y 最大值为3,故选B .5. B 【解析】当0≤x ≤2.5时,如解图①,∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∴∠OAD =∠ODA ,∵EF ∥BD ,∴∠ODA =∠MEA ,∴∠OAD =∠MEA ,∴ME =MA ,同理可得AM =MF ,∴EM =AM =MF ,∴EF =2AM ,即y =2x ;当2.5<x ≤5时,如解图②,由题意知CM =AC -AM =5-x ,∵ME=MC =MF ,∴EF =2MC ,即y =2(5-x )=10-2x .综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤2.5)10-2x (2.5<x ≤5).图① 图②第5题解图6. C 【解析】∵AB =4,点E 是AB 的中点,∴AE =BE =2,当0≤x ≤2时,如解图①,y =S △CPE =12PE·BC=2x,∴此段函数图象是正比例函数的一部分;当2<x≤6时,如解图②,y=S△CPE=S正方形ABCD-S△BCE -S△APE-S△PCD=42-12×4×2-12×2×(x-2)-12×4×[4-(x-2)]=x+2,∴此段函数图象是一次函数的一部分;当6<x≤10时,如解图③,y=S△CPE=12PC·BC=12(10-x)×4=-2x+20,∴此段函数图象是一次函数的一部分,综上所述,根据各段图象及x的取值范围,可得函数图象如选项C所示.图①图②图③第6题解图类型二 分析函数图象1. B 【解析】结合图形分析函数图象可得:当点P 运动到点C 的位置时,CG =0,∴BC =4.当点P运动到线段BC 的中点时,CG =43.∵∠B =90°,∴∠BAP +∠APB =90°,∵PG ⊥AP ,∴∠APG =90°,∴∠APB +∠CPG =90°,∴∠BAP =∠CPG ,又∵∠ABP =∠PCG =90°,∴△ABP ∽△PCG ,∴AB PC =BP CG,当点P 为BC 的中点时,BP =PC =2,∴AB 2=243,解得AB =3. 2. B 【解析】结合图形分析函数图象可得,当t =3时,点P 到达A 处,即AB =3;如解图,过点A作AE ⊥CD 于点E ,则四边形ABCE 为矩形,∵AC =AD ,∴DE =CE =12CD .当S =15时,点P 到达点D 处,则S =12CD ·BC =12·2AB ·BC =3×BC =15,则BC =5,在Rt △ABC 中,由勾股定理得,AD =AC =AB 2+BC 2=34.第2题解图3. D 【解析】由题图②得,t =4时两点停止运动,∴点P 以每秒1个单位的速度从点A 运动到点B 用了4秒,∴AB =4,∵点Q 运动到点C 之前和之后,△BPQ 面积算法不同,即t =2时,S 的解析式发生变化,∴题图②中点M 对应的横坐标为2,此时P 为AB 中点,点C 与点Q 重合,如解图,连接AC ,∵菱形ABCD 中,AB =BC =4,∠B =60°,∴△ABC 是等边三角形,∴CP ⊥AB ,BP =12AB =2,∴CP =BC 2-BP 2=42-22=23,∴a =12BP ·CP =12×2×23=2 3.第3题解图4. C 【解析】如解图,设AB =a ,当点E 在BC 上运动时(不与点B 、C 重合),∵AE ⊥EF ,∴△EFC∽△AEB ,∴EC AB =FC EB ,即2a -x a =y x -a ,∴y =-1a x 2+3x -2a ,-1a <0,当x =-32×(-1a )=32a 时,y 取得最大值,此时点E 为BC 的中点,y =1,把(32a ,1)代入y =-1ax 2+3x -2a ,解得a =4,即AB =4,故正方形ABCD 的面积为4×4=16.第4题解图5. 121313【解析】当P 点在AB 上运动时,D 点到AP 的距离不变,始终是AD 长,从图象可以看出AD =4,当P 点到达B 点时,从图象看出x =3,即AB =3.当△PCD 和△P AB 的面积相等时,P 点在BC 中点处,此时△ADP 面积为12×4×3=6,在Rt △ABP 中,AP =AB 2+BP 2=13,则12AP ·y =6,解得y =121313. 6. 24 【解析】如解图,连接BD ,EG ,FH ,∵点E ,F ,G ,H 是矩形ABCD 各边的中点,∴EF ∥BD ∥GH ,EF =GH =12BD ,∴四边形EFGH 是平行四边形,又∵EF =EH ,∴平行四边形EFGH 是菱形,由题图②得BE =3,点M 运动到点G 时,运动路程为10,又∵EF =FG ,则可知菱形的边长为5,即EF =FG =GH =HE =5,∴AF =4,AD =8,∴S 菱形EFGH =12EG ·FH =24.第6题解图。
中考数学复习----《动点问题的函数图像》压轴真题练习(含答案解析)1.(2021•益阳)如图,已知▱ABCD的面积为4,点P在AB边上从左向右运动(不含端点),设△APD的面积为x,△BPC的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】B【解答】解:∵▱ABCD的面积为4,x+y是平行四边形面积的一半,∴x+y=2,∴y=2﹣x,∴y是x的一次函数,且当x=0时,y=2;x=2时,y=0;故只有选项B符合题意.2.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4B.5C.6D.7【答案】C【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用三角形两边之差小于第三边,得到PA﹣PE≤AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴BC=2BE=2t=2×3=6.故选:C.3.(2022•鞍山)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】B【解答】解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.4.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE =2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【解答】解:如图,作CH⊥AB于点H,∵AB=2,△ABC是等腰直角三角形,∴CH=1,当0≤x≤1时,y=×2x•x=x2,当1<x≤3时,y==1,当3<x≤4时,y=1﹣=﹣(x﹣3)2+1,故选:B.5.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N 是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为()A.B.2C.D.【答案】 A【解答】解:如图,连接AC交BD于点O,连接NC,连接MC交BD于点N′.∵四边形ABCD是正方形,∴O是BD的中点,∵点M是AB的中点,∴N′是△ABC的重心,∴N′O=BO,∴N′D=BD,∵A、C关于BD对称,∴NA=NC,∴AN+MN=NC+MN,∵当M、N、C共线时,y的值最小,∴y的值最小就是MC的长,∴MC=2,设正方形的边长为m,则BM=m,在Rt△BCM中,由勾股定理得:MC2=BC2+MB2,∴20=m2+(m)2,∴m=4,∴BD=4,∴a=N′D=BD=×4=,故选:A.6.(2021•鞍山)如图,△ABC是等边三角形,AB=6cm,点M从点C出发沿CB方向以1cm/s的速度匀速运动到点B,同时点N从点C出发沿射线CA 方向以2cm/s的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作MP∥CA交AB于点P,连接MN,NP,作△MNP关于直线MP对称的△MN′P,设运动时间为ts,△MN′P与△BMP重叠部分的面积为Scm2,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【解答】解:如图1中,当点N′落在AB上时,取CN的中点T,连接MT.∵CM=t(cm),CN=2t(cm),CT=TN,∴CT=TN=t(cm),∵△ABC是等边三角形,∴∠C=∠A=60°,∴△MCT是等边三角形,∴TM=TC=TN,∴∠CMN=90°,∵MP∥AC,∴∠BPM=∠A=∠MPN=60°,∠BMP=∠C=60°,∠C+∠CMP=180°,∴∠CMP=120°,△BMP是等边三角形,∴BM=MP,∵∠CMP+∠MPN=180°,∴CM∥PN,∵MP∥CN,∴四边形CMPN是平行四边形,∴PM=CN=BM=2t,∴3t=6,∴t=2,如图2中,当0<t≤2时,过点M作MK⊥AC于K,则MK=CM•sin60°=t,∴S=•(6﹣t)•t=﹣t2+t.如图3中,当2<t≤6时,S=•MQ•PQ=×(6﹣t)×(6﹣t)=×(6﹣t)2,观察图象可知,选项A符合题意,故选:A.7.(2021•威海)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s 的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】A【解答】解:∵四边形ABCD为菱形,∴AB=BC=CD=DA=2cm,∠B=∠D=60°.∴△ABC、△ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1所示,当0≤x≤1时,AQ=2xcm,AP=xcm,作PE⊥AB于E,∴PE=sin∠PAE×AP=(cm),∴y=AQ•PE=×2x×=,故D选项不正确;如图2,当1<x≤2时,AP=xcm,CQ=(4﹣2x)cm,作QF⊥AC于点F,∴QF=sin∠ACB•CQ=(cm),∴y===,故B选项不正确;如图3,当2<x≤3时,CQ=(2x﹣4)cm,CP=(x﹣2)cm,∴PQ=CQ﹣CP=2x﹣4﹣x+2=(x﹣2)cm,作AG⊥DC于点G,∴AG=sin∠ACD•AC=×2=(cm),∴y===.故C选项不正确,故选:A.8.(2021•日照)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是()A.B.C.D.【答案】D【解答】解:当Q在AD上时,即点P在AO上时,有0<x≤1,此时阴影部分为等腰直角三角形,∴y=,该函数是二次函数,且开口向上,排除B,C选项;当点Q在弧BD上时,补全图形如图所示,阴影部分的面积等于等腰直角△AOD的面积加上扇形BOD的面积,再减去平面图形PBQ的面积即减去弓形QBF的面积,设∠QOB=θ,则∠QOF=2θ,∴,S弓形QBF=﹣S△QOF,当θ=45°时,AP=x=1+≈1.7,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.14,当θ=30°时,AP=x≈1.87,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.24,当θ=60°时,AP=x≈1.5,y≈0.98,在A,D选项中分别找到这两个特殊值,对比发现,选项D符合题意.故选:D.法二、当1<x<2时,即P在OB之间时,设∠QOD=θ,则θ∈(0,),则PQ=cosθ,OP=sinθ,则弧QD的长为θπ,此时S阴影=+θπ+sinθcosθ=+θ+sin2θ,∴y随x的增大而增大,而且增加的速度越来越慢,分析四个选项中的图象,只有选项D符合.故选:D.9.(2021•辽宁)如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN 的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【答案】B【解答】解:如图,∵E是CD的中点,∴CE=DE,∵四边形ABCD是矩形,∴∠D=∠DCF=90°,AD=BC=4,在△ADE与△FCE中,,∴△ADE≌△FCE(SAS),∴CF=AD=4,∴BF=CF+BC=8,∴AF=,当点M在AB上时,在Rt△AMN和Rt△AFB中,tan∠NAM=,∴NM=x=x,∴△AMN的面积S=×x×x=x2,∴当点M在AB上时,函数图象是开口向上、经过原点的抛物线的一部分;当点M在BF上时,如图,AN=x,NF=10﹣x,在Rt△FMN和Rt△FBA中,tan∠F=,∴=﹣,∴△AMN的面积S==﹣,∴当点M在BF上时,函数图象是开口向下的抛物线的一部分;故选:B.10.(2021•苏州)如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵AB=10,AC=BD=1,∴CD=10﹣1﹣1=8,∵PC=t,∴AP=t+1,PB=8﹣t+1=9﹣t,设围成的两个圆锥底面圆半径分别为r和R则:2πr=;.解得:r=,R=,∴两个圆锥的底面面积之和为S===,根据函数关系式可以发现该函数图象是一个开口向上的二次函数.故选:D.11.(2021•甘肃)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为()A.3B.6C.8D.9【答案】B【解答】解:由图2知,AB+BC=2,∵AB=BC,∴AB=,∵AB=BC,BD⊥AC,∴AC=2AD,∠ADB=90°,在Rt△ABD中,AD²+BD²=AB²=13①,设点M到AC的距离为h,∴S△ADM=AD•h,∵动点M从A点出发,沿折线AB→BC方向运动,∴当点M运动到点B时,△ADM的面积最大,即h=BD,由图2知,△ADM的面积最大为3,∴AD•BD=3,∴AD•BD=6②,①+2×②得,AD²+BD²+2AD•BD=13+2×6=25,∴(AD+BD)²=25,∴AD+BD=5(负值舍去),∴BD=5﹣AD③,将③代入②得,AD(5﹣AD)=6,∴AD=3或AD=2,∵AD>BD,∴AD=3,∴AC=2AD=6,故选:B.12.(2021•百色)如图,矩形ABCD各边中点分别是E、F、G、H,AB=2,BC=2,M为AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A.B.C.D.【答案】D【解答】解:①当M点运动在AE段,此时S=S△HAE+S△GHD﹣S△EOM﹣S△GPS,∵四边形ABCD是矩形,直线l⊥AB,H、E、F、G为AD、AB、BC、CD的中点,∴AH=AD==1,AE=AB=,S△HAE=S△GHD,S△EOM=S△GPS,∴S=2S△HAE﹣2S△EOM,∴S△HAE=AE•AH=;∵直线l⊥AB,∴∠OME=∠A=90°,∠HEA=∠OEM,∴△HAE∽△OME,∴,∴OM=,又∵ME=AE﹣AM=﹣x,∴OM=ME=,∴S△EOM=,∴S=2S△HAE﹣2S△EOM=,此时,对应抛物线开口向下;②当M点运动到在BE段,此时,S=S△HAE+S△GHD+S△EO1M1+S△GP1S1,即S=2S△HAE+2S△EO1M1,与①同理,O1M1=,又∵M1E=AM1﹣AE=x﹣,∴O1M1=M1E=,∴S△EO1M1=,∴S=2S△HAE+2S△EO1M1=,此时,对应抛物线开口向上,故选:D.13.(2021•鄂尔多斯)如图①,在矩形ABCD中,H为CD边上的一点,点M 从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB 运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是()①当0<t≤6时,△AMN是等边三角形.②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.③当0<t≤6时,S=.④当t=9+时,△ADH∽△ABM.⑤当9<t<9+3时,S=﹣3t+9+3.A.①③④B.①③⑤C.①②④D.③④⑤【答案】A【解答】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,①∵点M、N两点的运动速度为1cm/s,∴AH=AB=6cm,∵四边形ABCD是矩形,∴CD=AB=6 cm.∵当t=6s时,S=9cm2,∴×AB×BC=9.∴BC=3cm.∵当6≤t≤9时,S=且保持不变,∴点N在B处不动,点M在线段HC上运动,运动时间为(9﹣6)秒,∴HC=3 cm,即点H为CD的中点.∴BH=cm.∴AB=AH=BH=6cm,∴△ABM为等边三角形.∴∠HAB=60°.∵点M、N同时开始运动,速度均为1cm/s,∴AM=AN,∴当0<t≤6时,△AMN为等边三角形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三角形,如图:当DA=DM时,△ADM为等腰三角形,如图:综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM=AN=t,由①知:∠HAB=60°.在Rt△AME中,∵sin∠MAE=,∴ME=AM•sin60°=tcm,∴S=AN×ME=cm2.∴③正确;④当t=9+时,CM=cm,如图,由①知:BC=3cm,∴MB=BC﹣CM=2cm.∵AB=6cm,∴tan∠MAB=,∴∠MAB=30°.∵∠HAB=60°,∴∠DAH=90°﹣60°=30°.∴∠DAH=∠BAM.∵∠D=∠B=90°,∴△ADH∽△ABM.∴④正确;⑤当9<t<9+3时,此时点M在边BC上,如图,此时MB=9+3﹣t,∴S=×AB×MB=×6×(9+3﹣t)=27+9﹣3t.∴⑤不正确;综上,结论正确的有:①③④.故选:A.14.(2021•通辽)如图,在矩形ABCD中,AB=4,BC=3,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接PQ.设点P的运动路程为x,PQ2为y,则y关于x的函数图象大致是()A.B.C.D.【答案】C【解答】解:当0≤x≤3时,在Rt△APQ中,∠QAP=90°,AP=AQ=x,∴PQ2=2x2.∴y=PQ2=2x2;当3≤x≤4时,DQ=x﹣3,AP=x,∴y=PQ2=32+32=18;当4≤x≤7时,CP=7﹣x,CQ=7﹣x,∴y=PQ2=CP2+CQ2=2x2﹣28x+98.故选:C.15.(2021•湖北)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵BC∥AD,∴∠ACB=∠DAC,∵∠PEC=∠D=90°,∴△PCE∽△CAD,∴==,∵AD=3,CD=4,∴AC==5,∴当P在CA上时,即当0<x≤5时,PE==x,CE==x,∴y=PE•CE==x2,当P在AD上运动时,即当5<x≤8时,PE=CD=4,CE=8﹣x,∴y=PE•CE=×4×(8﹣x)=16﹣2x,综上,当0<x≤5时,函数图象为二次函数图象,且y随x增大而增大,当5<x≤8时,函数图象为一次函数图象,且y随x增大而减小,故选:D.16.(2021•衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q 两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O﹣A﹣D﹣O,点Q的运动路线为O﹣C﹣B﹣O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案】(2+3)【解答】解:由图分析易知:当点P从O→A运动时,点Q从O→C运动时,y不断增大,当点P运动到A点,点Q运动到C点时,由图象知此时y=PQ=2cm,∴AC=2cm,∵四边形ABCD为菱形,∴AC⊥BD,OA=OC==cm,当点P运动到D点,Q运动到B点,结合图象,易知此时,y=BD=2cm,∴OD=OB=BD=1cm,在Rt△ADO中,AD===2(cm),∴AD=AB=BC=DC=2cm,如图,当点P在A﹣D段上运动,点P运动到点E处,点Q在C﹣B段上运动,点Q运动到点F处时,P、Q两点的距离最短,此时,OE=OF==,AE=CF===,∴当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为:(cm),故答案为:(2+3).17.(2021•武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y 关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是.【答案】﹣1【解答】解:∵图象过点(0,2),即当x=AD=BE=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=2,∵△ABC为等腰直角三角形,∴AB=AC=1,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=1,∴AF=AC•sin45°=,\又∵∠BEN=∠FEA,∠=∠AFE∴△NBE∽△AFE∴,即,解得:x=,∴图象最低点的横坐标为:﹣1.故答案为:.18.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.【答案】【解答】解:过点D作DE⊥AB,垂足为E,在Rt△ADE中,∵∠AED=90°,∠EAD=45°,∴,∵点P的速度为cm/s,点Q的速度为2cm/s,∴AP=x,AQ=2x,∴,在△APQ和△AED中,=,∠A=45°,∴△AED∽△APQ,∴点Q在AD上运动时,△APQ为等腰直角三角形,∴AP=PQ=x,∴当点Q在AD上运动时,y=AP•AQ=×x×x=x2,由图像可知,当y=9此时面积最大,x=3或﹣3(负值舍去),∴AD=2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,如图:此时S△APQ=S△APF+S四边形PQDF﹣S△ADQ,在Rt△APF中,AP=x,∠PAF=45°,∴AF=PF=x,FD=6﹣x,QD=2x﹣6,∴S△APQ=x2+(x+2x﹣6)•(6﹣x)﹣×6×(2x﹣6),即y=﹣x2+6x,当x=时,y=﹣()2+6×=,故答案为:.。
xxxxyy yyDCBA63636363OOOO图5OCD ABP 动点问题的函数图象1.(2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s 与t 的大致图象应为 ( )2.(2013•北京 )如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是 ( )3.(2013•葫芦岛)如图5矩形ABCD 的对角线交于点O ,∠BOC=60°,AD=3.动点P 从点A 出发,沿折线AD-DO 以每秒1个单位的速度运动到点O 停止,设运动时间为x 秒,y=S △POC ,则y 与x 的函数关系式为( )4.(2013•兰州)如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B . C.D C B A s t o s t o s t o o t sD .5.(2013•铁岭)如图,点G 、E 、A 、B 在一条直线上,Rt △EFG 从如图所示是位置出发,沿直线AB 向右匀速运动,当点G 与B 重合时停止运动.设△EFG 与矩形ABCD 重合部分的面积为S ,运动时间为t ,则S 与t 的图象大致是( ) A .B .C .D .6.(2012•铁岭)如图, ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与 ABCD 的各边分别平行,且与 ABCD 相似.若小平行四边形的一边长为 ,且0< ≤8,阴影部分的面积的和为 ,则与 之间的函数关系的大致图象是 ( )A. B. C. D.7.(2011•安徽)如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是 ( )8.(2011•葫芦岛)如图,在矩形中截取两个相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 和x ,则y 与x 函数的图象大致是( ).OOOOx x x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . x x y y x ABCDMN P9.(2012•营口)如图,菱形ABCD 的边长为2,∠B=30°.动点P 从点B 出发,沿B ﹣C ﹣D 的路线向点D 运动.设△ABP 的面积为y (B 、P 两点重合时,△ABP 的面积可以看做0),点P 运动的路程为x ,则y 与x 之间函数关系的图象大致为( )10.(2011•辽阳)如图,等边△ABC 的边长为4,M 为BC 上一动点(M 不与B 、C 重合),若EB =1,∠EMF =60°,点E 在AB 边上,点F 在AC 边上.设BM =x ,CF =y ,则当点M 从点B 运动到点C 时,y 关于x 的函数图象是( ).11.(2011•营口)如图,半径为1的圆和边长为3的正方形在同一水平线上,圆沿水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( ).12.(2013•营口)如图1,在矩形ABCD 中,动点E 从点B 出发,沿B A DA .B .C .D .A DEyC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当7 x 时,点E 应运动到( )A .点C 处B .点D 处C .点B 处D .点A 处13.(2012•鞍山)如图,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=BC=4,DE ⊥BC 于点E ,且E 是BC 中点;动点P 从点E 出发沿路径ED→DA→AB 以每秒1个单位长度的速度向终点B 运动;设点P 的运动时间为t 秒,△PBC 的面积为S ,则下列能反映S 与t 的函数关系的图象是( ) 14.15.(2013•自贡)如图,已知A 、B 是反比例函数上的两点,BC ∥x轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )A .B .C .D .A .B .C .D .16.(2012•烟台)如图,矩形ABCD 中,P 为CD 中点,点Q 为AB 上的动点(不与A ,B 重合).过Q 作QM ⊥PA 于M ,QN ⊥PB 于N .设AQ 的长度为x ,QM 与QN 的长度和为y .则能表示y 与x 之间的函数关系的图象大致是( ) A . B . C . D .17.(2012•岳阳)如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是( ) 18.(2012•攀枝花)如图,直角梯形AOCD 的边OC 在x 轴上,O为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )A .B .C .D .19.(2012•桂林)如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位A .B .C .D .长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当P 运动到B 点时,P 、Q 两点同时停止运动.设P 点运动的时间为t ,△APQ 的面积为S ,则S 与t 的函数关系的图象是( )20.(2010•烟台)如图,AB 为半圆的直径,点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 于PB 为直径做半圆,则图中阴影部分的面积S 与时间t 之间的函数图像大致为A B CD。
函数中的动点问题考点分析1.点在线段上运动:2.根据线段长或图形面积求函数关系.如:如图所示,点P在线段BC,CD,DA上运动,△ABP 的面积变化情况的图象是什么样的?解析:看清横轴和纵轴表示的量.答案:2. 双动点变化:两动点同时运动,分析图形面积变化图象.如图1,在矩形ABCD中,点E是对角线AC 的三等分点(靠近点A),动点F从点C出发沿C→A→B运动,当点F与点B重合时停止运动.设点F运动的路程为x,△BEF的面积为y,那么图2能表示y与x函数关系的大致图象吗?图1 图2解析:动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量,然后根据动点的行程判断y的变化情况.答案:能.3. 图形运动变化所形成的函数问题:图形整体运动时,形成的函数问题;如图,边长为1和2的两个正方形,其一边在同一水平线上,小正方形自左向右匀速穿过大正方形,设穿过的时间为t,阴影部分面积为S,那么S与t的函数图象大致是什么?解析:图形运动变化所形成的函数问题.关键是理解图形运动过程中的几个分界点.答案:4. 实际问题中的运动变化图象如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()解析:解决实际问题中的运动变化图象,要根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义选出正确的图象.答案:总结:研究在不同位置时点的运动变化所产生的线段、面积的变化关系是重点.解题技巧例题 如图,M 是边长为4的正方形AD 边的中点,动点P 自A 点起,由A ⇒B ⇒C ⇒D 匀速运动,直线MP 扫过正方形所形成面积为y ,点P 运动的路程为x ,则表示y 与x 的函数关系的图象为( )A .B .C .D .解析:分别求出P 在AB 段、BC 段、CD 段的函数解析式或判断函数的类型,即可判断.答案:解:点P 在AB 段时,函数解析式是:y =21AP •AM =21×2x =x ,是正比例函数y x =;点P 在BC 段时,函数解析式是:1()242y AM BP AB x =+⋅=-,是一次函数24y x =-;则2,1BC AB k k ==,BC AB k k ∴>.在单位时间内点P 在BC 段上的面积增长要大于点P 在AB 上的面积增长,因此函数图象会更靠近y 轴,也就是图象会比较“陡”,故A 、B 选项错误.点P 在CD 段时,面积是△ABC 的面积加上△ACP 的面积,△ABC 的面积不变,而△ACP 中CP 边上的高一定,因而面积是CP 长的一次函数,因而此段的面积是x 的一次函数,应是线段.故C 错误,正确的是D .故选D .点拨:主要考查了函数的性质,注意分段讨论是解决本题的关键.总结提升利用动点形成的函数图象求解析式例题 (翔安模拟)如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x cm ,△ABP 的面积为 y cm 2,如果y 关于x 的函数图象如图2所示,则y 关于x 的函数关系式为 .解析:根据图2判断出矩形的AB 、BC 的长度,然后分点P 在BC 、CD 、AD 时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式.答案:解:由图2可知,x 从4到9的过程中,三角形的面积不变,所以,矩形的边AB =9-4=5 cm ,边BC =4 cm ,则点P 运动的总路程为9+4=13 cm ,分情况讨论:①点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x cm ,y =21AB •PB =21×5x =25x ;②点P 在CD 上时,4<x <9,点P 到AB 的距离为BC 的长度4 cm ,y =21AB •BC =21×5×4=10;③点P 在AD 上时,9≤x ≤13时,点P 到AB 的距离为P A 的长度(13-x ) cm ,y =21AB •P A =21×5(13-x )=25(13-x );综上,y 关于x 的函数关系式为504210495139132x x y x x x ⎧≤≤⎪⎪=<<⎨⎪⎪≤≤⎩()()(-)(). 故答案为:504210495139132x x y x x x ⎧≤≤⎪⎪=<<⎨⎪⎪≤≤⎩()()(-)().动点综合型问题例题 (苏州中考)如图①,在平行四边形ABCD 中,AD =9 cm ,动点P 从A 点出发,以1 cm/s 的速度沿着A →B →C →A 的方向移动,直到点P 到达点A 后才停止.已知△P AD 的面积y (单位:cm 2)与点P 移动的时间x (单位:s )之间的函数关系如图②所示,试解答下列问题:(1)求出平行四边形ABCD 的周长;(2)请你利用图①解释一下图②中线段M N 表示的实际意义; (3)求出图②中a 和b 的值.解析:(1)由图②知点P 在AB 上运动的时间为10 s ,根据路程=速度×时间列式,求出AB =10 cm ,又AD =9 cm ,根据平行四边形的周长公式即可求解;(2)由线段M N ∥x 轴,可知此时点P 虽然在运动,但是△P AD 的面积y 不变,结合图①,可知此时点P 在BC 边上运动;(3)由AD =9可知点P 在边BC 上的运动时间为9 s ,a 为点P 由A →B →C 的时间;分别过B 点、C 点作BE ⊥AD ,CF ⊥AD ,易证△BAE ≌△CDF ,由此得到AE =DF =6 cm ,AF =15 cm ,从而可求得CA =17 cm ,则点P 在CA 边上从C 点运动到A 点的时间为17 s ,所以b =19+17=36.答案:解:(1)由图②可知点P 从A 点运动到B 点的时间为10 s ,又因为P 点运动的速度为1 cm/s ,所以AB =10×1=10(cm ),而AD =9 cm ,则平行四边形ABCD 的周长为:2·(AB +AD )=2×(10+9)=38(cm );(2)线段M N 表示的实际意义是:点P 在BC 边上从B 点运动到C 点;(3)由AD =9可知点P 在边BC 上的运动时间为9 s ,所以a =10+9=19;分别过B ,C 两点作BE ⊥AD 于E ,CF ⊥AD 于F .由图②知S △ABD =36 cm 2,则21×9×BE =36 cm 2,解得BE =8 cm ,在Rt △ABE 中,由勾股定理,得AE =22BE AB -=6 cm.易证△BAE ≌△CDF ,则BE =CF =8 cm ,AE =DF =6 cm ,AF =AD +DF =9+6=15 cm.在Rt △ACF 中,由勾股定理,得CA 22AF CF +17 cm ,则点P 在CA 边上从C 点运动到A 点的时间为17 s ,所以b =19+17=36.巩固训练(答题时间:45分钟)一、选择题1. (静海中考)如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是()A. B.C. D.2. (营口中考)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到()A. 点C处B. 点D处C. 点B处D. 点A处3. (绥化中考)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S之间的函数关系用图象表示大致是()A. B.C. D.*4. (荆门中考)如下图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()A. B.C. D.**5.(河池中考)如图,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中点,点P在直角梯形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x 之间的函数关系用图象表示是()A. B.C. D.二、填空题:*6. 如图,是一辆汽车的速度随时间变化的图象,请你根据图象提供的信息填空:(1)汽车在整个行驶过程中,最高速度是km/h(2)汽车第二次减速行驶的“时间段”是;(3)汽车出发后,8 min到10 min之间的运动情况如何?.*7. 如图,在正方形ABCD中,边长为2,某一点E从B-C-D-A-B运动,且速度是1,试求:(1)△BEC的面积S和时间t的关系.**8. (随州中考)在四边形ABCD中,AB边的长为4,设动点P沿折线B⇒C⇒D⇒A由点B向点A运动,设点P运动的距离为x,△P AB的面积为y,y与x的函数图象如图所示.给出下列四个结论:①四边形ABCD的周长为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△P AB面积为4时,点P移动的距离是 2.你认为其中正确的结论是.(只填所有正确结论的序号例如①)**9. 已知动点P以每秒2 cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙,若AB=6 cm,试回答下列问题:(1)图甲中BC的长度是.(2)图乙中a所表示的数是.(3)图甲中的图形面积是.(4)图乙中b所表示的数是.图甲图乙三、解答题:10. (潜江)如图,有一边长为5的正方形ABCD与等腰三角形CEF,其中底边CF=8,腰长EF=5,若等腰△CEF以每秒1个单位沿CB方向平移,B,C,F在直线L上,请画出0<t<6时,两图形重叠部分的不同状态图(重叠部分用阴影标示),并写出对应t的范围.**11. 如图①,在矩形ABCD中,AB=30 cm,BC=60 cm.点P从点A出发,沿A→B→C→D 路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿D→C→B→A路线向点A 匀速运动,到达点A后停止.若点P,Q同时出发,在运动过程中,Q点停留了1 s,图②是P,Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.(1)请解释图中点H的实际意义;(2)求P,Q两点的运动速度;(3)将图②补充完整;(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.参考答案1. B 解析:①当P 在AB 上运动时,所求三角形底为AP ,高为M 到AB 的距离也就是AD 长度因此S △APM =21AD •AP =x ,函数关系为:y =x (0<x ≤1);②当P 在BC 上运动时,S △APM =S 梯形ABCM -S △ABP -S △PCM ,S △ABP =21AB •BP ,BP =x -1,则S △ABP =21x -21,S △PCM =21PC •CM ,CM =12AB =21,PC =3-x ,S △PCM =43x -,S 梯形ABCM =21(AB +CM )•BC =23,因此S △APM =23-21-x -43x -=-4x +45(1<x ≤3);③当P 在CM 上运动时,S △APM =21CM •AD ,CM =27-x ,S △APM =21(27-x )×2=-x +27(3<x <7/2).故该图象分三段.故选B.2. B 解析:当E 在AB 上运动时,△BCE 的面积不断增大;当E 在AD 上运动时,BC 一定,高为AB 不变,此时面积不变;当E 在DC 上运动时,△BCE 的面积不断减小.∴当x =7时,点E 应运动到高不再变化时,即点D 处.故选B .3. D 解析:∵长、宽分别为2和1的矩形ABCD 的边上有一动点P ,沿A →B →C →D →A 运动一周,则点P 的纵坐标y 随点P 走过的路程s 之间的函数关系图象可以分为4部分,∴P 点在AB 上,此时纵坐标越来越小,最小值是1,P 点在BC 上,此时纵坐标为定值1.当P 点在CD 上,此时纵坐标越来越大,最大值是2,P 点在AD 上,此时纵坐标为定值2.故选D.4. A 解析:①当直线l 经过BA 段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l 经过AD 段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l 经过DC 段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A 选项的图象符合.故选A.5. D 解析:连接AC ,过点C 作CE ⊥AD 于点E ,过点M 作MF ⊥AB 于点F ,易得CE =2,MF =5,当点P 与点B 重合,即x =2时,y =21AP ·MF =21×2×5=5;当点P 与点C 重合,即x =6时,y =1122AD CE ⨯⋅=21×21×6×2=3;结合函数图象可判断选项D 正确.故选D.6. 100 km ,22 min -24 min ,8 min 到10 min 之间停止 解析:(1)依题意得:最高速度是100 km/h ;(2)汽车第二次减速行驶的“时间段”是22 min -24v ;(3)汽车出发后,8v 到10 min 之间是停止的.7. 0(02)2(24)2(46)8(68)t t t S t t t ≤≤⎧⎪-<≤⎪=⎨<≤⎪⎪-<≤⎩ 解析:(1)∵在正方形ABCD 中,边长为2,某一点E 从B -C -D -A -B 运动,且速度是1,∴当E 在BC 上时,B ,E ,C 无法构成三角形,此时0≤t ≤2,∴S =0,(0≤t ≤2);当E 在CD 上时,△BEC 的面积为:S =21BC ×CE =21×2×(t -2)=t -2,(2<t ≤4);当E 在AD 上时,△BEC 的面积为:S =21BC ×CD =21×2×2=2,(4<t ≤6);当E 在AB 上时,△BEC 的面积为:S =21BC ×BE =21×2×[2-(t -6)]=8-t ,(6<t ≤8). 8. ①③ 解析:∵AB 边的长为4,设动点P 沿折线B ⇒C ⇒D ⇒A 由点B 向点A 运动,点P 运动的距离为10,∴四边形ABCD 的周长为10+4=14,①成立.当点P 在BC 上运动时,面积在不断增加,当移动的距离是3,面积为6时,面积不再变化,说明CD ∥AB ,此时BC =3,△ABP 面积=21×4×高=6,那么高=3,说明BC ⊥AB .当点P 运动7时,面积停止变化,此时CD =7-3=4,那么CD =AB .根据一组对边平行且相等的四边形是平行四边形得到四边形ABCD 是平行四边形.根据有一个角是直角的平行四边形是矩形得到四边形ABCD 是矩形,③对.由图中可以看出,面积为4的点可在图中找到两处,那么就有相应的两个距离值,④不对.故答案选①③.9. 8 cm ;24;60 cm 2;17 解析:(1)动点P 在BC 上运动时,对应的时间为0到4 s ,易得:BC =2 cm/s×4s =8 cm.故题图甲中BC 的长度是8 cm ;(2)由(1)可得,BC =8 cm ,则:题图乙中a 所表示的数是:21×BC ×AB =21×8×6=24(cm 2).故题图乙中a 所表示的数是24;(3)由题图可得:CD =2×2=4 cm ,DE =2×3=6 cm ,则AF =BC +DE =14 cm ,又由AB =6 cm ,则甲中的梯形面积为AB ×AF -CD ×DE =6×14-4×6=60(cm 2).故题图甲中的图形面积为60 cm 2;(4)根据题意,动点P 共运动了BC +CD +DE +EF +F A =(BC +DE )+(CD +EF )+F A =14+6+14=34(cm ),其速度是2 cm/s ,34÷2=17(s ).故题图乙中b 所表示的数是17.故答案为8 cm ;24;60 cm 2;17.10. 解:∵等腰三角形CEF ,其中底边CF =8,腰长EF =5,∴等腰三角形底边上的高线平分底边,即分为两部分都是4,当0<t ≤4时,如图1所示;当4<t ≤5时,如图2所示;当5<t <6时,如图3所示.11. 解答:(1)图中点H 的实际意义:P 、Q 两点相遇;(2)由函数图象得出,当两点在F 点到G 点两点路程随时间变化减慢得出此时Q 点停留1秒,只有P 点运动,此时纵坐标的值由75下降到45,故P 点运动速度为:30cm/s ,再根据E 点到F 点S 的值由120变为75,根据P 点速度,得出Q 点速度为120-75-30=15(cm/s ),即P 点速度为30cm/s ,Q 点速度为15cm/s ;(3)如图所示:根据4秒后,P 点到达D 点,只有Q 点运动,根据运动速度为15cm/s ,还需要运动120-45=75(cm ),则运动时间为:75÷15=5(s ),画出图象即可;(4)如图1所示,当Q P =PC ,此时21Q C =BP ,即30-30t =21(30-15t ),解得:t =32,故当时间t =32s 时,△PC Q 为等腰三角形,如图2所示,当D 、P 重合,Q D =Q C 时,Q 为AB 中点,则运动时间为:(15+60+30)÷15+1=8(s ),故当时间t =8s 时,△PC Q 为等腰三角形.若PC =C Q 故90-30t =30-15t 解得:t =4则4+1=5(S )综上所述:t =32或t =5或t =8秒时,△PC Q 为等腰三角形.。
【考点精讲】动点问题是中考的常考点,对于解决动点问题中,点动会牵扯到线动、面动,解决这类题目要“以静制动”,即把动态的问题转化为静态问题来解决,一般方法是抓住变化中的“不变量”,以不变应万变。
而对于动点问题的图象问题的解决,要抓住图形中的关键点,例如与x 轴、y 轴的交点,图象上的转折点、图象中与x 轴、y 轴平行的线等图象。
【典例精析】例题1 (贵州贵阳中考)如图,在直径为AB 的半圆O 上有一动点P 从A 点出发,按顺时针方向绕半圆匀速运动到B 点,然后再以相同的速度沿着直径回到A 点停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是( )(A . B. C . D .思路导航:情境分三段,点P 在圆周上、在OB 上,在AO 上,因此图象分三段,根据在每一段上线段OP 的长度d 随运动时间t 的变化来确定。
答案:点P 在圆周上时,d 不随t 的变化而变化,故第一段图象平行x 轴,点P 在OB 上,d 随t 的增加而减小,直到0,故此段图象呈下降趋势,点P 在AO 上,d 随t 的增加而增大,直到增加到半径的长度,即与第一段图象齐平,故选A 。
点评:先根据运动过程理解函数与自变量的变化规律以及分段情况,然后对照所给图象找到满足问题情境变化的规律。
注意弄清函数图象中横轴和纵轴意义,以及每段图象的起始点。
例题2 矩形ABCD 中,AB =20cm ,BC =10cm ,有一点P 沿着矩形从A 向B 再向C 以2cm/s 的速度移动。
(1)求△APC 的面积S 与时间t 的函数解析式,并指出自变量的取值范围。
(2)当面积为20cm2时,求点P的位置。
思路导航:△APC的面积为12AP BC⋅或12AP AB⋅,只要利用含t的代数式表示AP和PC即可。
答案:解:(1)1210(010)21(302)20(1015) 2t tSt t⎧⨯⨯<≤⎪⎪=⎨⎪⨯-⨯<<⎪⎩,化简得:10(010)30020(1015)t tSt t<≤⎧=⎨-<<⎩。
一次函数动点问题1、如图,正方形ABCD 的边长为6cm,动点P 从A 点出发,在正方形的边上由A→B→C→D 运动,设运动的时间为t(s),△ APD的面积为S(cm2),S与t 的函数图象如图所示,请回答下列问题:(1)点P 在AB 上运动时间为s,在CD 上运动的速度为cm/s,△APD 的面积S 的最大值为cm2;(2)求出点P 在CD 上运动时S 与t 的函数解析式;(3)当t 为s 时,△APD 的面积为10cm2.2、如图1,等边△ ABC 中,BC=6cm,现有两个动点P、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ,设动点运动时间为x 秒.(图2、图3 备用)(1)填空:B Q= ,P B= (用含x 的代数式表示);(2)当x 为何值时,PQ∥AC?(3)当x 为何值时,△ PBQ 为直角三角形?3、如图,矩形ABCD 中,AB=6,BC=8,点P 从A 出发沿A→B→C→D 的路线移动,设点P 移动的路线为x,△ PAD 的面积为y.(1)写出y 与x 之间的函数关系式,并在坐标系中画出这个函数的图象.(2)求当x=4 和x=18 时的函数值.(3)当x 取何值时,y=20,并说明此时点P 在矩形的哪条边上.4、如图1,在矩形ABCD 中,点P 从B 点出发沿着四边按B→C→D→A 方向运动,开始以每秒m 个单位匀速运动,a秒后变为每秒2 个单位匀速运动,b秒后又恢复为每秒m 个单位匀速运动.在运动过程中,△ ABP 的面积S 与运动时间t 的函数关系如图2 所示.(1)求矩形ABCD 的长和宽;(2)求m、a、b 的值5、如图1 所示,在直角梯形ABCD 中,AB∥DC,∠B=90°.动点P 从点B 出发,沿梯形的边由B→C→D→A 运动.设点P 运动的路程为x,△ ABP 的面积为y.把y 看作x 的函数,函数的图象如图2 所示,试求当0≤x≤9 时y 与x 的函数关系式.6、如图1,在矩形ABCD 中,AB=12cm,BC=6cm,点P 从A 点出发,沿A→ B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P、点Q 同时出发,点P 的速度为每秒1cm,点Q 的速度为每秒2cm,a 秒时点P、点Q 同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2 是点P出发x秒后△ APD 的面积S1(cm2)与x(秒)的函数关系图象;图3 是点Q 出发x 秒后△ AQD 的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c 的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2 与出发后的运动时间x(秒)的函数关系式,并求出P 与Q 相遇时x 的值.动点答案1、解:(1)点P在AB上运动的速度为6÷6=1cm/s,在CD上运动的速度为6÷3=2cm/s,当点P 运动到点B 时,△APD 的面积S 最大,最大值是×6×6=18cm2;(2)PD=6﹣2(t﹣12)=30﹣2t,S= AD•PD= ×6×(30﹣2t)=90﹣6t;(3)当0≤t≤6 时,S=3t,12≤t≤15 时,90﹣6t=10,t=,所以当t 为(s)、(s)时,△APD的面积为10c△ APD 的面积为10cm2,即S=10 时,3t=10,t= ,当m2.2、解:(1)根据题意,B Q=x,P B=6﹣2x;(2)若PQ∥AC,有,即,解之得:x=2;(3)当∠BPQ=90°时,根据三角函数关系,可知BQ=2BP,∴x=2(6﹣2x),解之得:x= ,当∠BQP=90°时,2BQ=BP,即6﹣2x=x,解之得:x= .3、解:(1)当点P在线段AB上时,此时AP=x,AD=8,根据三角形的面积公式可得:y= •AD•AP= ×8×x=4x,当点P 在线段BC 上运动时,面积不变;当点P 在线段CD 上,运动时,DP=6+8+6﹣x=20﹣x,AD=8根据三角形的面积公式可得:y= •AD•DP=×8×(20﹣x)=80﹣4x,∴y 与x 之间的函数关系式为y=(2)当x=4 时,y=4x=4×4=16,当x=18 时,y=80﹣4×18=8;(3)当y=4x=20,解得x=5,此时点P 在线段AB 上,当y=80﹣4x=20,解得x=15,此时点P 在线段CD 上.4、解:(1)从图象可知,当6≤t≤8 时,△ A B P面积不变即6≤t≤8 时,点P 从点C 运动到点D,且这时速度为每秒2 个单位∴CD=2(8﹣6)=4∴AB=CD=4(2 分)当t=6 时(点P运动到点C),S△ABP=16∴AB•BC=16∴×4×BC=16∴BC=8(4 分)∴长方形的长为8,宽为4.(2)当t=a 时,S△ABP=8=×16即点P 此时在BC 的中点处∴PC= BC= ×8=4∴2(6﹣a)=4∴a=4(6 分)∵BP=PC=4∴m=BP÷a=4÷4=1,当t=b 时,S△ABP=AB•AP=4∴ ×4×AP=4,AP=2∴b=13﹣2=11(9 分);5、解:由题意知:BC=4,DC=9﹣4=5,AD=5…(3 分)…(5 分)当0≤x≤4 时,…(8 分)当4<x≤9 时,…(9 分)6、解:(1)观察图象得,S△APQ=PA•AD=×(1×a)×6=24,解得a=8(秒)b= =2(厘米/秒)(22﹣8)c=(12×2+6)﹣2×8解得c=1(厘米/秒)(2)依题意得:y1=1×8+2(x﹣8),即:y1=2x﹣8(x>8),y2=(30﹣2×8)﹣1×(x﹣8)=22﹣x(x>8)又据题意,当y1=y2 时,P 与Q 相遇,即2x﹣8=22﹣x,解得x=10(秒)∴出发10 秒时,P 与Q 相遇.。
第十一讲动点问题例1.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的例2.如图,在Rt△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,D 是AB 上的一动点(不与点A、B 重合),过点D 作CD 的垂线交射线CA 于点E。
设AD=x ,CE=y ,则下列图像中,能表示y 与x 的函数关系的图像大致是例3.如图,在△ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是A .222+B .52C 62D .6巩固练习1.如图,在Rt ABC △中,∠C =90°,AB =5cm ,BC =3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设2y PC =,运动时间为t 秒,则能反映y 与t 之间函数关系的大致图象是2.小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的A .点MB .点NC .点PD .点Q3.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是CABD。
专题02动点问题的函数图象【考点1】随时间变化的函数关系【例1】(2018•东城区二模)有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃Oe 的直径,且AB CD⊥.入口K位于¶AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A O D→→→→→D.O D B C→→→C.D O C→→B.C A O B【分析】采用排除法解题,注意由圆的对称性,D O A-路线呈现对称性,图象应用对称特征.--、B C【解析】解:按选项A中路线,图象应呈现对称性,故A错误;按选项C,距离K最近点应靠近D,故C错误;选项D中路线,B到C段图象应呈现对称性,故D排除.故选:B.【点拨】本题是动点函数图象问题,解答时注意动点到达临界点前后图象的变化趋势.【变式1-1】(2017•顺义区二模)如图,木杆AB斜靠在墙壁上,30∠=︒,4OABAB=米.当木杆的上端A 沿墙壁NO下滑时,木杆的底端B也随之沿着地面上的射线OM方向滑动.设木杆的顶端A匀速下滑到点O停止,则木杆的中点P到射线OM的距离y(米)与下滑的时间x(秒)之间的函数图象大致是( )A.B.C.D.【分析】作PQ OB⊥,根据三角函数求得OA的长,从而得出其中位线PQ的最大值,再由OA长度与下滑时间满足一次函数关系即可得出答案.【解析】解:如图,过点P作PQ OB⊥于点Q,//∴,PQ OAQ为AB中点,PPQ ∴为AOB ∆的中位线,即12PQ OA =, 30OAB ∠=︒Q ,4AB =,cos 4OA AB OAB ∴=∠==则OP =,当点A 匀速向下滑动时,OA 的长度随时间x 的变化满足一次函数关系, 由于12PQ OA =,PQ ∴的长度与下滑时间满足一次函数关系,且PQ B 选项,故选:B .【点拨】本题主要考查动点问题的函数图象,解题的关键是根据点A 下滑是匀速得出一次函数关系及由中位线得出PQ 长度的最大值是解题的关键.【考点2】线段间的变量关系【例2】(2019•顺义区一模)如图,点A 、C 、E 、F 在直线l 上,且2AC =,1EF =,四边形ABCD ,EFGH ,EFNM 均为正方形,将正方形ABCD 沿直线l 向右平移,若起始位置为点C 与点E 重合,终止位置为点A 与点F 重合.设点C 平移的距离为x ,正方形ABCD 的边位于矩形MNGH 内部的长度为y ,则y 与x 的函数图象大致为( )A .B .C .D .【分析】根据题意可以分析出各段的函数图象,从而可以解答本题.【解析】解:由题意可得,点C 从点E 运动到点F 的过程中,y 随x 的增大而增大,函数解析式为2sin 45x y =⨯=︒,函数图象是一条线段,当点D 从点H 运动到点G 的过程中,y 随x 的增大不会发生变化,此过程函数图象是一条线段, 当点A 从点E 运动到点F 的过程中,y 随x 的增大而减小,函数图象是一条线段,故选:A .【点拨】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2-1】(2017•朝阳区一模)如图1,在ABC ∆中,AB BC =,AC m =,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE .设AP x =,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是( )A .PDB .PBC .PED .PC【分析】观察图2,确定x 为何值取得最小值即可一一判断.【解析】解:A 错误,观察图2可知PD 在4m x =取得最小值. B 、错误.观察图2可知PB 在2m x =取得最小值. C 、正确.观察图2可知PE 在34m x =取得最小值. D 、错误.观察图2可知PC 在x m =取得最小值为0.故选:C .【点拨】本题主要考查了动点问题的函数图象,灵活应用所学知识是解题的关键,学会利用函数的最值解决问题,属于中考常考题型.【考点3】周长的变化【例3】(2017•东城区二模)如图,点E为菱形ABCD的BC边的中点,动点F在对角线AC上运动,连接BF、EF,设AF x=,BEF∆的周长为y,那么能表示y与x的函数关系的大致图象是()A.B.C.D.【分析】先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小>可判断正确的图形.AM MC()【解析】解:如图,连接DE与AC交于点M.则当点F运动到点M处时,三角形BEF∆的周长y最小,且AM MC>.通过分析动点F的运动轨迹可知,y是x的二次函数且有最低点,利用排除法可知图象大致为:故选:B.【点拨】本题考查了动点问题的函数图象.解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.【变式3-1】(2017•平谷区二模)如图,正方形ABCD中,动点P的运动路线为AB BC,动点Q的运动路线为对角线BD,点P,Q以同样的速度分别从A,B两点同时出发匀速前进,当一个点到达终点停止运动时,另一个点也随之停止.设点P的运动路程为x,PQ的长为y,则下列能大致表示y与x的函数关系的图象为()A.B.C.D.【分析】分两种情况:P点在AB上运动时,点P在BC上运动时;分别判定即可.【解析】解:P点在AB上运动时,y先变小再增大;点P在BC上运动时,y逐渐增大;故选:B.【变式3-2】(2017•石景山区二模)如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y 与x的函数图象如图2所示,则矩形ABCD的面积是()A .20B .24C .48D .60【分析】根据点P 的移动规律,当OP BC ⊥时取最小值3,根据矩形的性质求得矩形的长与宽,易得该矩形的面积.【解析】解:如图2所示,当OP BC ⊥时,4BP CP ==,3OP =,所以26AB OP ==,28BC BP ==,所以矩形ABCD 的面积6848=⨯=.故选:C .【点拨】本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出4BP CP ==,3OP =.【考点4】面积的变化【例4】(2019•东城区二模)如图1,动点P 从菱形ABCD 的顶点A 出发,沿A C D →→以1/cm s 的速度运动到点D .设点P 的运动时间为()s ,PAB ∆的面积为2()y cm .表示y 与x 的函数关系的图象如图2所示,则a 的值为( )A B .52 C .2 D .【分析】由图2知,菱形的边长为a ,对角线AC ,则对角线BD 为P在线段AC 上运动时,111222y AP BD =⨯=,即可求解.【解析】解:由图2知,菱形的边长为a ,对角线AC =,则对角线BD 为= 当点P 在线段AC 上运动时,111222y AP BD =⨯=,由图2知,当x =y a =,即12a = 解得:52a =, 故选:B .【点拨】本题考查的是动点图象问题,涉及到二次函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.【变式4-1】(2018•大兴区一模)如图,在矩形ABCD 中,2AB =,3BC =,点P 在矩形的边上沿B C D A →→→运动.设点P 运动的路程为x ,ABP ∆的面积为y ,则y 关于x 的函数图象大致是( )A .B .C .D .【分析】要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.【解析】解:根据题意和图形可知:点P 按B C D A →→→的顺序在边长为1的正方形边上运动,APB ∆的面积分为3段;当点P 在BC 上移动时,底边不变高逐渐变大,故面积逐渐变大;当点P 在CD 上移动时,底边不变,高不变,故面积不变;当点P 在AD 上时,高不变,底边变小,故面积越来越小直到0为止.故选:B .【点拨】考查点的运动变化后根据几何图形的面积确定函数的图象,图象需分段讨论.1.(2018•顺义区二模)已知正方形ABCD 的边长为4cm ,动点P 从A 出发,沿AD 边以1/cm s 的速度运动,动点Q 从B 出发,沿BC ,CD 边以2/cm s 的速度运动,点P ,Q 同时出发,运动到点D 均停止运动,设运动时间为x (秒),BPQ 的面积为2()y cm ,则y 与x 之间的函数图象大致是( )A .B .C .D .【分析】根据题意,Q 点分别在BC 、CD 上运动时,形成不同的三角形,分别用x 表示即 可.【解析】解:(1)当02x 剟时,2BQ x =14242y x x =⨯⨯=当24x 剟时,如下图2111(44)4(4)(82)4(24)28222y x x x x x x =-+⨯-⨯---⨯⨯-=-++由上可知故选:B .2.(2018•朝阳一模)如图,ABC ∆是等腰直角三角形,90A ∠=︒,6AB =,点P 是AB 边上一动点(点P 与点A 不重合),以AP 为边作正方形APDE ,设AP x =,正方形APDE 与ABC ∆重合部分(阴影部分)的面积为y ,则下列能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【分析】如图1,当点D 落在BC 上,利用BPD ∆为等腰直角三角形得到3x =,所以当03x <…时,2y x =,当36x <…时,如图2,正方形APDE 与BC 相交于F 、G ,表示出26DF x =-,所以221(26)2DFG APDE y S S x x ∆=-=-⋅-正方形,然后利用所得的解析式对各选项进行判断.【解析】解:如图1,当点D 落在BC 上,ABC ∆Q 为等腰直角三角形,四边形APDE 为正方形, BPD ∴∆为等腰直角三角形,PB PD x ∴==, 26x ∴=,解得3x =,当03x <…时,2APDE y S x ==正方形,当36x <…时,如图2,正方形APDE 与BC 相交于F 、G , 易得BPF ∆和DGF ∆都是等腰直角三角形,6PF PB x ∴==-,(6)26DF x x x ∴=--=-,22221(26)1218(6)182DFG APDE y S S x x x x x ∆∴=-=-⋅-=-+-=--+正方形,综上所述,22(03)(6)18(36)x x y x x ⎧<=⎨--+<⎩……. 故选:C .3.(2018•东城一模)如图1是一座立交桥的示意图(道路宽度忽略不计),A 为入口,F ,G 为出口,其中直行道为AB ,CG ,EF ,且AB CG EF ==;弯道为以点O 为圆心的一段弧,且¶BC,¶CD ,¶DE 所对的圆心角均为90︒.甲、乙两车由A 口同时驶入立交桥,均以10/m s 的速度行驶,从不同出口驶出,其间两车到点O 的距离()y m 与时间()x s 的对应关系如图2所示.结合题目信息,下列说法错误的是( )A .甲车在立交桥上共行驶8sB .从F 口出比从G 口出多行驶40mC .甲车从F 口出,乙车从G 口出D .立交桥总长为150m【分析】根据题意、结合图象问题可得.【解析】解:由图象可知,两车通过¶BC,¶CD ,¶DE 弧时每段所用时间均为2s ,通过直行道AB ,CG ,EF 时,每段用时为3s .因此,甲车所用时间为3238s ++=,故A 正确;根据两车运行路线,从F 口驶出比从G 口多走¶CD,¶DE 弧长之和,用时为4s ,则走40m ,故B 正确; 根据两车运行时间,可知甲先驶出,应从G 口驶出,故C 错误; 根据题意立交桥总长为(3233)10150m ⨯+⨯⨯=,过D 正确; 故选:C .4.(2018•海淀一模)如图1,矩形的一条边长为x ,周长的一半为y .定义(,)x y 为这个矩形的坐标.如图2,在平面直角坐标系中,直线1x =,3y =将第一象限划分成4个区域.已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是( )A .点A 的横坐标有可能大于3B .矩形1是正方形时,点A 位于区域②C .当点A 沿双曲线向上移动时,矩形1的面积减小D .当点A 位于区域①时,矩形1可能和矩形2全等【分析】A 、根据反比例函数k 一定,并根据图形得:当1x =时,3y <,得3k xy =<,因为y 是矩形周长的一半,即y x >,可判断点A 的横坐标不可能大于3;B 、根据正方形边长相等得:2y x =,得点A 是直线2y x =与双曲线的交点,画图,如图2,交点A 在区域③,可作判断;C 、先表示矩形面积22()S x y x xy x k x =-=-=-,当点A 沿双曲线向上移动时,x 的值会越来越小,矩形1的面积会越来越大,可作判断;D 、当点A 位于区域①,得1x <,另一边为:2y x ->,矩形2的坐标的对应点落在区域④中得:1x >,3y >,即另一边0y x ->,可作判断.【解析】解:设点(,)A x y , A 、设反比例函数解析式为:(0)ky k x=≠, 由图形可知:当1x =时,3y <, 3k xy ∴=<, y x >Q ,3x ∴<,即点A 的横坐标不可能大于3,故选项A 不正确;B 、当矩形1为正方形时,边长为x ,2y x =,则点A 是直线2y x =与双曲线的交点,如图2,交点A 在区域③, 故选项B 不正确;C 、当一边为x ,则另一边为y x -,22()S x y x xy x k x =-=-=-, Q 当点A 沿双曲线向上移动时,x 的值会越来越小,∴矩形1的面积会越来越大,故选项C 不正确;D 、当点A 位于区域①时,Q 点(,)A x y ,1x ∴<,3y >,即另一边为:2y x ->,矩形2落在区域④中,1x >,3y >,即另一边0y x ->,∴当点A 位于区域①时,矩形1可能和矩形2全等;故选项④正确; 故选:D .5.(2018•延庆县一模)某游泳池长25米,小林和小明两个人分别在游泳池的A ,B 两边,同时朝着另一边游泳,他们游泳的时间为(秒),其中0180t 剟,到A 边距离为y (米),图中的实线和虚线分别表示小林和小明在游泳过程中y 与t 的对应关系.下面有四个推断:①小明游泳的平均速度小于小林游泳的平均速度; ②小明游泳的距离大于小林游泳的距离; ③小明游75米时小林游了90米游泳; ④小明与小林共相遇5次; 其中正确的是( ) A .①②B .①③C .③④D .②④【分析】利用图象信息,一一判断即可;【解析】解:①错误.小明游泳的平均速度大于小林游泳的平均速度; ②正确.小明游泳的距离大于小林游泳的距离; ③错误,小明游75米时小林游了50米; ④正确.小明与小林共相遇5次; 故选:D .6.(2018•通州一模)如图1,点O 为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t 秒,机器人到点A 的距离设为y ,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当3t 时,机器人一定位于点O ;③机器人一定经过点D ;④机器人一定经过点E ;其中正确的有( )A .①④B .①③C .①②③D .②③④【分析】根据图象起始位置猜想点B 或F 为起点,则可以判断①正确,④错误.结合图象判断34t 剟图象的对称性可以判断②正确.结合图象易得③正确.【解答】解:由图象可知,机器人距离点1A 个单位长度,可能在F 或B 点,则正六边形边长为1.故①正确;观察图象t 在34-之间时,图象具有对称性则可知,机器人在OB 或OF 上,则当3t =时,机器人距离点A 距离为1个单位长度,机器人一定位于点O ,故②正确; 所有点中,只有点D 到A 距离为2个单位,故③正确;因为机器人可能在F 点或B 点出发,当从B 出发时,不经过点E ,故④错误. 故选:C .7.(2017•东城一模)图1是某娱乐节目中一个游戏环节的录制现场,场地由等边ADE ∆和正方形ABCD 组成,正方形ABCD 两条对角线交于点O ,在AD 的中点P 处放置了一台主摄像机.游戏参与者行进的时间为x ,与主摄像机的距离为y ,若游戏参与者匀速行进,且表示y 与x 的函数关系式大致如图2所示,则游戏参与者的行进路线可能是( )A .A O D →→B .E AC →→C .A ED →→D .E A B →→【分析】根据各个选项中的路线进行分析,看哪条路线符号图2的函数图象即可解答本题.【解析】解:由题意可得,当经过的路线是A O D →→时,从A O →,y 随x 的增大先减小后增大且图象对称,从O D →,y 随x 的增大先减小后增大且函数图象对称,故选项A 符号要求;当经过的路线是E A C →→时,从E A →,y 随x 的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项B 不符号要求;当经过的路线是A E D →→时,从A E →,y 随x 的增大先减小后增大,但后来增大的最大值大于于刚开始的值,故选项C 不符号要求;当经过的路线是E A B →→时,从E A →,y 随x 的增大先减小后增大,但后来增大的最大值小于刚开始的值,故选项D 不符号要求; 故选:A .8.(2017•房山区一模)如图1,已知点E ,F ,G ,H 是矩形ABCD 各边的中点,6AB =,8BC =,动点M 从点E 出发,沿E F G H E →→→→匀速运动,设点M 运动的路程x ,点M 到矩形的某一个顶点的距离为y ,如果表示y 关于x 函数关系的图象如图2所示,那么这个顶点是矩形的( )A .点AB .点BC .点CD .点D【分析】由图2得出始点E 到顶点的距离为3,只有顶点A ,B 满足,又由开始时先增大,得出只有顶点B 满足.【解析】解:由图2得出始点E 到顶点的距离为3, 6AB =Q ,∴只有顶点A ,B 满足,又Q 沿E F G H E →→→→匀速运动开始时先增大,∴只有顶点B 满足,故选:B .9.(2018秋•朝阳期末)如图,在ABC∆中,AB AC=,MN是边BC上一条运动的线段(点M不与点B重合,点N不与点C重合),且12MN BC=,MD BC⊥交AB于点D,NE BC⊥交AC于点E,在MN从左至右的运动过程中,设BM x=,BMD∆的面积减去CNE∆的面积为y,则下列图象中,能表示y与x 的函数关系的图象大致是()A.B.C.D.【分析】设:12a BC=,B Cα∠=∠=,求出MN、CN、DM、AH、EN的长度,利用BMD CNES S S∆∆=-,即可求解.【解析】解:过点A作AH BC⊥,交BC于点H,则12BH HC BC==,设12a BC=,B Cα∠=∠=,则MN a=,2CN BC MN x a a x a x=--=--=-,tan tan DM BM B x α==g ,tan tan AH BH B a α==g ,tan ()tan EN CN C a x α==-g ,21tan tan ()(2)tan 222BMD CNEa a S S S BM DM CN EN x a a x ααα∆∆=-=-=-=-g g g g , 其中,tan a αg 、2tan 2a α均为常数,故上述函数为一次函数, 故选:A .10.(2017秋•海淀区期末)两个少年在绿茵场上游戏.小红从点A 出发沿线段AB 运动到点 B ,小兰从点C 出发,以相同的速度沿O e 逆时针运动一周回到点C ,两人的运动路线如图1所示,其中AC DB =.两人同时开始运动,直到都停止运动时游戏结束,其间他们与 点C 的距离y 与时间x (单位:秒)的对应关系如图2所示.则下列说法正确的是( )A .小红的运动路程比小兰的长B .两人分别在1.09秒和7.49秒的时刻相遇C .当小红运动到点D 的时候,小兰已经经过了点DD .在4.84秒时,两人的距离正好等于O e 的半径 【分析】利用图象信息一一判断即可解决问题.【解析】解:A 、小红的运动路程比小兰的短,故本选项不符合题意;B 、两人分别在1.09秒和7.49秒的时刻与点C 距离相等,故本选项不符合题意;C 、当小红运动到点D 的时候,小兰还没有经过了点D ,故本选项不符合题意; D 、当小红运动到点O 的时候,两人的距离正好等于O e 的半径,此时9.684.842t ==,故本选项正确;故选:D.。
动点问题的函数图像复习指要
【典例分析】
例1(2014•贵阳,第9题,3分)如图,三棱柱的体积为10,其侧棱AB上有一个点P从点A开始运动到点B停止,过P点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为x、y,则下列能表示y与x之间函数关系的大致图象是()
A.B.)
D.
C.
考点:动点问题的函数图象.
分析:根据截成的两个部分的体积之和等于三棱柱的体积列式表示出y与x的函数关系式,再根据一次函数的图象解答.
解答:?
解:∵过P点作与底面平行的平面将这个三棱柱截成两个部分的体积分别为x、y,∴x+y=10,
∴y=﹣x+10(0≤x≤10),
纵观各选项,只有A选项图象符合.
故选A.
点评:本题考查了动点问题的函数图象,比较简单,理解分成两个部分的体积的和等于三棱柱的体积是解题的关键.
例2 (2014年•河南省,第8题,3分)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()】
A.B.
C.D.
考点:动点问题的函数图象.
分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;
②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;
③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.解答:解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分.故C错误;
②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,
则其函数图象是y随x的增大而增大,且不是线段.故B、D错误;
③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.'
综上所述,A选项符合题意.
故选:A.
点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.
例3(2014•广西桂林,第12题,3分)如图1,
在等腰梯形ABCD中,∠B=60°,PQ同时从B出
发,以每秒1单位长度分别沿BADC和BCD方向
运动至相遇时停止,设运动时间为t(秒),△BPQ
的面积为S(平房单位),S与t的函数图象如图2
所示,则下列结论错误的是()
A.当t=4秒时,S=43
B.AD=4
C.当4≤t≤8时,S=23t
D.当t=9秒时,BP平分梯形ABCD的面积
考点:动点问题的函数图象.
}
分析:根据等腰梯形的性质及动点函数图象的性质,综合判断可得答案.
解答:解:由答图2所示,动点运动过程分为三个阶段:
(1)OE段,函数图象为抛物线,运动图形如答图1﹣1所示.
此时点P在线段AB上、点Q在线段BC上运动.
△BPQ为等边三角形,其边长BP=BQ=t,高h=t,
∴S=BQ•h=t•t=t2.
由函数图象可知,当t=4秒时,S=4,故选项A正确.
(2)EF段,函数图象为直线,运动图形如答图1﹣2所示.
此时点P在线段AD上、点Q在线段BC上运动.
由函数图象可知,此阶段运动时间为4s,
—
∴AD=1×4=4,故选项B正确.
设直线EF的解析式为:S=kt+b,将E(4,4)、F(8,8)代入得:,
解得,
∴S=t,故选项C错误.
(3)FG段,函数图象为直线,运动图形如答图1﹣3所示.
此时点P、Q均在线段CD上运动.
设梯形高为h,则S梯形ABCD=(AD+BC)•h=(4+8)•h=6h;
当t=9s时,DP=1,则CP=3,
∴S△BCP=S△BCD=××8×h=3h,
·
∴S△BCP=S梯形ABCD,即BP平分梯形ABCD的面积,故选项D正确.
综上所述,错误的结论是C.
故选:C.
点评:本题考查了动点问题的函数图象分析,有一定的难度,解题关键是结合函数图象与几何图形的性质求解.
例4(2014•黄冈,第8题,3分)已知:在△ABC 中,BC=10,BC 边上的高h=5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F .点D 为BC 上一点,连接DE 、DF .设点E 到BC 的距离为x ,则△DEF 的面积S 关于x 的函数图象大致为( )
A . 》
B .
C .
D .
考点: 动点问题的函数图象.
$ 分析: 判断出△AEF 和△ABC 相似,根据相似三角形对应边成比例列式求出EF ,再根据三角形的面积列式表示出S 与x 的关系式,然后得到大致图象选择即可.
解答: 解:∵EF ∥BC ,
∴△AEF ∽△ABC , ∴=,
∴EF=•10=10﹣2x ,
∴S=(10﹣2x )•x=﹣x 2+5x=﹣(x ﹣)2+
, ∴S 与x 的关系式为S=﹣(x ﹣)2+
(0<x <10),
纵观各选项,只有D 选项图象符合.
~ 故选D .
点评: 本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S 与x 的函数关系式是
解题的关键,也是本题的难点.
例5(2014•山东菏泽,第8题,3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是
考点:动点问题的函数图象.
分析:分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减
去等腰直角三角形MNE的面积得到y=x2-2(x-1)2,配方得到y=-(x-2)2+2,然后根据二次函数的性质对各选项进行判断.
解答:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,¥
CD=x,则AD=2-x,∵Rt△ABC中,AC=BC=2,
∴△ADM为等腰直角三角形,∴DM=2-x,∴EM=x-(2-x)=2x-2,
∴S△ENM=,(2x-2)2=2(x-1)2,
∴y=x2-2(x-1)2=-x2+4x-2=-(x-2)2+2,
故选A.
点评:本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.
例6(2014年•福建漳州,第10题,4分)世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也
匀速走到点B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是()
A.B.C.
D.
考点:动点问题的函数图象.
分析:从A→O的过程中,s随t的增大而减小;直至s=0;从O→B的过程中,s随t的增大而增大;从B沿回到A,s不变.
解答:解:如图所示,当小王从A到古井点O的过程中,s是t的一次函数,s随t的增大而减小;
当停留拍照时,t增大但s=0;
当小王从古井点O到点B的过程中,s是t的一次函数,s随t的增大而增大.
当小王回到南门A的过程中,s等于半径,保持不变.
综上所述,只有C符合题意.
故选:C.
点评:主要考查了动点问题的函数图象.此题首先正确理解题意,然后根据题意把握好函数图象的特点,并且善于分析各图象的变化趋势.。