高二数学不等式与不等式组的解法整理
- 格式:docx
- 大小:20.07 KB
- 文档页数:6
不等式与不等式组的解法一、不等式的解法不等式是数学中一种重要的运算关系,用于表示两个数之间的大小关系。
不等式的解就是满足不等式条件的所有实数的取值范围。
1. 一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次方程。
解一元一次不等式的方法通常有以下三种:(1)图解法:将不等式所对应的直线或曲线绘制在坐标平面上,然后通过观察图形确定解集。
(2)试解法:假设一些可能的解,将这些解带入不等式进行验证,得到满足不等式的解集。
(3)代数法:通过一系列代数变换将不等式化简为形如x<a或x>a 的形式,根据大小关系确定解集。
2. 一元二次不等式的解法一元二次不等式是指含有一个未知数的二次不等式。
解一元二次不等式的方法通常有以下几种:(1)图解法:将不等式所对应的抛物线绘制在坐标平面上,然后通过观察图形确定解集。
(2)区间法:通过一系列代数变换将不等式转化为形如(x-a)(x-b)>0或(x-a)(x-b)<0的形式,根据关系确定解集。
(3)配方法:通过配方法将一元二次不等式化简为(x-p)^2<q或(x-p)^2>q的形式,然后通过解关于x的一元二次方程确定解集。
3. 绝对值不等式的解法绝对值不等式是指不等式中含有绝对值的形式。
解绝对值不等式的方法通常有以下两种:(1)条件法:根据绝对值的定义将不等式分为两个部分,即当|x-a|<b时和当|x-a|>b时,在两个条件下讨论解集。
(2)符号法:根据绝对值的符号,将不等式转化为带有绝对值的两个不等式,然后分别求解,并取并集得到最终的解集。
二、不等式组的解法不等式组是指多个不等式组成的一组方程。
解不等式组的方法通常有以下两种:1. 图解法:将不等式组所对应的多个直线或曲线绘制在坐标平面上,通过观察图形得到交集或并集,确定解集的范围。
2. 代数法:通过一系列代数变换将不等式组转化为一元不等式或二元不等式,然后根据不等式的解法确定解集。
不等式或不等式组的解法笔记《不等式或不等式组的解法笔记》1.引言在数学中,不等式是我们经常遇到的一类问题。
与等式不同的是,不等式中的符号可以是大于、小于、大于等于或小于等于,在求解过程中会涉及到一些特殊的方法和技巧。
本文将从基本概念出发,逐步介绍不等式的解法,帮助读者更好地理解并掌握不等式的解题技巧。
2.基本概念不等式是一个数学表达式,用不等号连接两个表达式,表示这两个表达式的大小关系。
a>b、a<b、a≥b、a≤b都是不等式。
不等式的解即是找到一组满足不等式条件的变量取值范围。
在解不等式时,我们通常需要用到一些基本的不等式性质,比如两边同时加减相同的数不等式的大小关系不变,两边同时乘除正数不等式的大小关系不变,而乘除负数时需要改变不等式的方向等。
3.一元一次不等式的解法对于一元一次不等式ax+b>0或ax+b<0,我们可以通过移项和分析系数的正负来解题。
具体来说,当a>0时,不等式的解集为(-∞,-b/a)或(-b/a, +∞);当a<0时,解集为(-∞, -b/a)或(-b/a, +∞)。
4.一元二次不等式的解法对于一元二次不等式ax^2+bx+c>0或ax^2+bx+c<0,我们通常可以通过判别式Δ=b^2-4ac来确定不等式的解的范围。
当Δ>0时,不等式有两个不相等的实数根x1、x2,解集为(-∞, x1)并(x2, +∞);当Δ=0时,方程有两个相等的实数根x1=x2,解集为{x1};当Δ<0时,方程没有实数根,不等式无解。
5.多元不等式组的解法对于多元不等式组,我们通常需要通过代数方法或图形法来求解。
在代数方法中,可以通过变量替换、加减消元、乘除整理等步骤来逐步化简不等式组,最终得到每个变量的取值范围。
在图形法中,可以将不等式用图形的方式表示出来,通过观察不同图形的交集关系来求解不等式组的解。
6.个人观点和总结不等式是数学中重要的概念之一,掌握不等式的解法将有助于我们更好地理解和应用数学知识。
高中数学中所有不等式解法汇总每题均含详细解析本文介绍了解简单不等式的几种方法,包括解二元一次不等式组、一元二次不等式、含绝对值的简单不等式、分式不等式和简单高次不等式。
其中,第一部分介绍了分数不等式的性质,包括两种情况下的大小关系。
第二部分介绍了“三个二次”的关系,即二次函数图象、一元二次方程的根和不等式的解集之间的关系。
第三部分介绍了解一元二次方程的三种方法,包括求根公式、因式分解法和配方法。
最后一部分介绍了解一元二次不等式的方法,包括统一处理二次项系数为正数,以及(x -a)(x-b)>0或(x-a)(x-b)<0型不等式的解法。
由y=x^2-3x-10的开口向上,可得x^2-3x-10>0的解集为(-∞,-2)∪(5,+∞)。
设集合M={x|x^2-3x-4<0},N={x|0≤x≤5},则M∩N等于[0,4)。
解析:因为M={x|x^2-3x-4<0}={x|-1<x<4},所以M∩N=[0,4)。
已知不等式ax^2-bx-1≥0的解集是(3/2,3],则不等式x^2-bx-a0,且Δ=b^2-4ac0,b<0,且0<b<3.综合可得x^2-bx-a<0的解集是(0,3)。
若关于x的不等式m(x-1)>x^2-x的解集为{x|1x^2-x的解集为{x|1<x<2},所以1和2一定是m(x-1)=x^2-x的解,因此m=2.若一元二次不等式2kx^2+kx-8<0对一切实数x都成立,则k的取值范围为(-3,0]。
解析:因为2kx^2+kx-8<0对一切实数x都成立,所以2k<0,解得k∈(-∞,0),又因为Δ=k^2-4×2k×(-8)<0,解得k∈(-3,0]。
设a为常数,∀x∈R,ax^2+ax+1>0,则a的取值范围是(0,4)。
解析:对于任意实数x,ax^2+ax+1>0,即Δ=a^2-4a<0,解得0<a<4.若不等式x^2-2x+5≥a^2-3a对任意实数x恒成立,则实数a的取值范围为(-∞,-1]∪[4,+∞)。
不等式与不等式组的解法不等式是数学中常见的一种关系表达式,它描述了变量之间的大小关系。
不等式的解集是使不等式成立的所有变量取值的集合。
解不等式的方法有很多种,下面我将介绍常用的不等式解法及其应用。
一、一元不等式的解法对于形如ax + b < 0的一元不等式,我们可以采用以下步骤进行求解:步骤一:将不等式转化为等价的形式,即ax + b = 0。
步骤二:求得等式的根x0,即x0 = -b/a。
步骤三:根据x0求得不等式在数轴上的解集。
例如,对于不等式2x - 1 < 5,我们可以按照上述步骤进行求解:步骤一:2x - 1 = 5。
步骤二:2x = 6,x = 3。
步骤三:不等式在数轴上的解集为(-∞, 3)。
二、一元不等式组的解法一元不等式组是由多个一元不等式构成的方程组。
解一元不等式组的方法可以通过解每个一元不等式,并求它们的交集得到。
具体步骤如下:步骤一:解每个一元不等式,得到它们的解集。
步骤二:求得不等式组的解集,即取所有一元不等式的解集的交集。
例如,解不等式组{2x - 1 < 5, x + 3 > 2},我们可以按照上述步骤进行求解:步骤一:2x - 1 < 5的解集为(-∞, 3),x + 3 > 2的解集为(-∞, -1)。
步骤二:不等式组的解集为(-∞, -1) ∩ (-∞, 3) = (-∞, -1)。
三、二元不等式组的解法二元不等式组是由多个二元不等式构成的方程组。
解二元不等式组的方法可以通过图像法或代数法来求解。
下面分别介绍两种方法。
1. 图像法通过将二元不等式转化为二维平面上的区域,将不等式的解集表示为区域内的点的集合。
例如,我们解不等式组{y > 2x, y < x + 2}:首先,将每个不等式转化为等式,得到y = 2x和y = x + 2;然后,在二维平面上绘制两条直线y = 2x和y = x + 2,分别用虚线表示;最后,确定满足题目要求的不等式组解集,即两条直线所围成的区域,如图所示。
高中数学不等式的解题方法与技巧
高中数学不等式的解题方法与技巧有以下几点:
1. 确定不等式的范围:首先要确定不等式的变量范围,例如确
定变量为正数、自然数等,以便后续的推导和计算。
2. 利用基本不等式:基本不等式是指常见的数学不等式,例如
平均不等式、柯西-施瓦茨不等式、均方根不等式等。
通过运用这些
基本不等式,可以简化和推导复杂的不等式。
3. 分析不等式的性质:通过观察不等式的形式和特点,可以得
出不等式的一些性质。
例如,不等式是否对称、是否单调递增等,这些性质可以为解题提供线索。
4. 使用增减法:对于复杂的不等式,可以通过增减法将不等式
变换成简单的形式。
增减法是指在不等式两边同时加减相同的数,从而改变不等式的形式。
通过多次的增减操作,可以逐步简化不等式的形式。
5. 运用数学归纳法:对于涉及自然数的不等式,可以使用数学
归纳法进行证明。
数学归纳法是通过证明某个命题对于自然数n成立,然后再证明对于n+1也成立,从而得出该命题对于所有自然数成立的结论。
6. 剖析复杂不等式:对于特别复杂的不等式,可以使用分段函数、图像、积分等方法进行剖析。
这些方法可以将不等式转化为求解函数的最值或积分的问题,进而求解不等式。
总之,解决高中数学不等式需要灵活运用各种方法和技巧,通过
观察、推导和计算,找到合适的途径来简化不等式、得出结论。
掌握了这些解题方法与技巧,可以提高解决数学不等式问题的能力。
不等式与不等式组在数学中,不等式是描述数之间关系的一种表达方式。
不等式可以用于求解线性方程组、判断函数的增减性以及解决许多实际问题。
本文将介绍不等式及不等式组的概念、性质和解法。
1. 不等式的定义和性质不等式是用符号>、<、≥或≤表示数值之间相对大小关系的数学表达式。
其中,>表示大于,<表示小于,≥表示大于等于,≤表示小于等于。
例如,对于两个实数a和b,若a>b,则称a大于b,记作a>b。
不等式满足如下的性质:(1)传递性:如果a>b,b>c,那么a>c。
(2)反对称性:如果a>b且b>a,那么a=b。
(3)加法性:如果a>b,那么a+c>b+c,其中c为任意实数。
(4)乘法性:如果a>b且c>0,那么ac>bc。
2. 不等式的解法要求解一个不等式,需要确定不等式的解集。
解集是满足不等式条件的所有的实数集合。
(1)一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次方程。
解一元一次不等式的方法与解一元一次方程相类似。
例如,对于不等式2x+3<7,我们可以按照如下步骤解题:2x+3<72x<4x<2因此,解集为x<2。
(2)一元二次不等式的解法一元二次不等式是指含有一个未知数的二次方程。
解一元二次不等式的方法与解一元二次方程相类似。
例如,对于不等式x^2-5x+6>0,我们可以按照如下步骤解题:(x-2)(x-3)>0根据零点的性质,我们可以得出两个解为x<2或x>3。
(3)不等式组的解法不等式组是由多个不等式组成的方程组。
解不等式组的方法与解方程组类似,需要找到所有满足所有不等式条件的解。
例如,考虑以下不等式组:x+y>32x-y<2我们可以通过图像法或代入法求解不等式组。
最终我们得到解集为x>1,y>2。
3. 不等式的应用不等式在实际问题中有着广泛的应用。
第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。
4、解不等式:求不等式的解集的过程,叫做解不等式。
⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。
用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。
第九章 不等式与不等式知识点归纳一、不等式及其解集和不等式的性质用不等号表示大小关系的式子叫做不等式。
常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。
含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。
注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈.②方向:大于向右画,小于向左画。
不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变;②不等式两边同时乘(或除)同一正数,不等号不变;③不等式两边同时乘(或除)同一负数,不等号改变。
作差法比较a 与b 的大小:若a —b >0,则a >b ;若a —b <0;则a <b ;若a —b=0, 则a=b 。
例1 、下列式子中哪些是不等式?a+b=b+a ; ②a <b -5; ③-3>-5;④x ≠1 ;⑤2x —3.例2、若a 〈b <0,m <0,用不等号填空。
① a -b 0; ②a -5 b -5; ③-2a -2b ;④31+a 21+b ;⑤22___bm am ⑥ab 0;⑦a+m b+m ;⑧a ² b ²;⑨am bm 。
例3、①由a ax <,可得1>x 可得____a ;②由a ax <,可得1x <可得____a ;③ 由122-≥-≤-x m x mx 可得,那么______m 。
例4、不等式x x 228)2(5-≤+的非负整数解是__________________。
二、一元一次不等式及其实际问题一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式(即分母中不含未知数),这样的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤:(1)去分母(两边每一项同乘分母的最小公倍数)(2)去括号(括号里每一项都要乘括号前面的系数)(3)移项(变号后移项)(4)合并同类项(5)将x 项系数化为1(系数为负数要变号)。
高中数学一元二次不等式与二元一次不等式组的解法一、一元二次不等式与分式不等式1、一元二次不等式的解集端点→一元二次方程的解→二次函数的零点。
2、解一元二次不等式的步骤:二次项系数化为正→因式分解(求根)→判断符号(大于0,两根之外,小于0,两根之外)3、分式不等式:转化成整式不等式求解二、二元一次不等式解法1、可行域的判断依据:y 的系数by 与不等号,同号,直线上方;异号,直线下方。
2、目标函数平移规律:y 的系数b 为正,往上平移变大;y 的系数b 为负,往上平移变小三、典型例题1、解含参一元二次不等式与分式不等式例题1:已知0 a 1,则关于x 的不等式(x - a)(x - 1/a)0 的解集为?解:根据不等式的性质可得故而可得解集为变式:解析:将不等式因式分解可得例题2:若a 0,则不等式解析:将不等式化简可得2、不等式中的参数求解例题3:函数的定义域为R,则实数k 的取值范围为( )解析:函数的定义域为R,故而可得故而变式:若不等式则实数m的取值范围为________。
解析:化简可得例题4:设不等式mx -2x-m+1<0 对于满足|m| ≤ 2的一切m 的值都成立,求x 的取值范围。
解析:将不等式化简可得故而将m 当作自变量,这是一个一次函数,故而可得3、二元一次不等式组的基础解法例题5:(2017年课标1卷13题)设x,y 满足约束条件则z = 3x - 2y 的最小值为________。
解析:根据约束条件可画出可行域如图所示,y 的系数为负,故而可得当初始函数平移经过点A 时函数取最小值,联立4、含参二元一次不等式组的解法例题6:已知x , y 满足约束条件目标函数z = 2x - 3y 的最大值是2,则实数a = (A )解析:根据约束条件可以发现,可行域必然在直线x - y - 2 = 0 的上方和直线x - 2y + 3 = 0 的下方,直线y = 4 - ax 是恒过点(0 , 4)的一条直线。
数学高中不等式知识点总结高中不等式是数学中的重要内容,在数学学习中有着重要的地位。
不等式作为数学中的一个概念,与等式类似,是数学中一种重要的推理等式。
不等式能够用来描述数的大小关系,包含等于、大于、小于、不等于等关系。
高中不等式的知识点主要包括:不等式的定义、解不等式的方法、不等式的性质、不等式方程的解法以及不等式的应用等。
1.不等式的定义:不等式是数学中用不等号表示的一种数的大于或小于关系。
不等式中的”不等号“主要包括大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)、不等于号(≠)等。
2.不等式的解法:解不等式的方法主要有图形法和代数法两种。
(1)图形法:可以借助图形来得到不等式的解集。
如在数轴上标明不等式的解集。
(2)代数法:借助数学运算的性质,对不等式进行等价变形,得出不等式的解集。
解不等式时常用的运算性质有:加减、乘除等。
- 加减性:如果将一个不等式的两边都加上或减去一个相同的数,不等式的大小关系保持不变。
即如果a > b,则有a + c > b + c(其中c为常数),同样,如果a < b,则有a + c < b+ c。
- 乘除性:如果将一个不等式的两边都乘以或除以一个正数,不等式的大小关系保持不变。
即如果a > b 且c > 0,则有ac > bc,同样,如果a > b 且c < 0,则有ac < bc。
3.不等式的性质:不等式在数学中有一些特殊的性质。
(1)加法性:如果一个不等式两边都加上相同的正数,不等式的大小关系不变。
(2)乘法性:如果一个不等式两边都乘以相同的正数,不等式的大小关系不变。
但若两边都乘以或除以一个负数,则不等号方向会发生改变。
(3)传递性:如果a > b 且 b > c,则有a > c。
同样,如果a < b 且 b < c,则有a < c。
4.不等式方程的解法:不等式方程是不等式和等式相结合的方程,解不等式方程时可以先将不等式方程转化为等式方程,再根据等式方程的解法求解。
“不等式的解法”专题一.整式不等式的解法步骤:正化,求根,标轴,穿线(奇过偶不过),定解1. 一元一次不等式ax >b 解的讨论: 当a>0时解集为⎪⎭⎫ ⎝⎛+∞,a b ,当a<0时解集为,b a ⎛⎫-∞ ⎪⎝⎭当a=0且b<0时解集为R ,当a=0且b ≥0时,解集为Φ;2. 一元二次不等式我们总可化为ax 2+bx+c>0和ax 2+bx+c+<0(a>0)两形式之一,记△=b 2-4ac 。
跟踪训练1.若01,a <<则不等式()10x a x a ⎛⎫--< ⎪⎝⎭的解是 2. x 的取值范围是3. 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.4.解下列不等式(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()二.分式不等式的解法先移项通分化为一边为()()f xg x ,一边为0的形式,再等价转化为整式不等式,即: ()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩跟踪训练 1.下列不等式与012≤+x x同解的是( ) (A)01≤+xx (B)0)1(≤+x x (C) 0)1lg(≤+x (D)21|1|≤+x x 2. 不等式x x<1的解集为 .3. 不等式1213≥--xx 的解集为( ) (A){x |43≤x ≤2} (B) {x |43≤x <2} (C) {x |x >2或x ≤43} (D){x |x <2} 4. 不等式21≥+x x的解集为 .5.解不等式237223x x x -≥+- 巩固训练不等式(x -2)2·(x -1)>0的解集为 . 不等式(x +1) ·(x -1)2≤0的解集为 .1. 不等式(x 2-2x -3)(x 2-4x +4)<0的解集为( ) A .{x | x <-1或x >3} B .{x | -1<x <3}C .{x | x <-3或x >1}D .{x | -1<x <2或2<x <3} 2.与不等式023≥--xx 同解的不等式是 ( ) A.(x -3)(2-x )≥0 B.lg(x -2)≤0 C.032≥--x xD.(x -3)(2-x )>0 3.不等式12x x-≥的解集为( ) A. [1,0)- B. [1,)-+∞C. (,1]-∞-D. (,1](0,)-∞-+∞U含绝对值的不等式1.应用分类讨论思想去绝对值;2.应用数形结合思想;3.应用平方法(要求不等式两端同号)基础训练1. 不等式|8-3x|>0的解集是( )A B RC {x|x }D {83}...≠.∅83 2.不等式1|1|3x <+<的解集为( ).C. (4,0)-D. (4,2)(0,2)--U3. 不等式4<|1-3x|≤7的解集为指数、对数不等式的解法解指数、对数不等式的一些常用方法:(1) 同底法:能化为同底数先化为同底,再根据指数、对数的单调性转化为代数不等式,底是参数时要注意分类讨论,并注意到对数真数大于零的限制条件 (2) 转化法:多用于指数不等式,通过两边取对数转化为对数不等式(3) 换元法:多用于不等式两边均有统一的组合形式,或取对数后再换元,注意所换“元”的范围 (4) 数形结合 基础训练 1. 不等式2261xx +-<的解集为2.不等式1(33>的解集为 3. 不等式2log (2)0x -≤的解集为 4.函数()f x =为5. 不等式20.20.2log (23)log (31)x x x +->+的解集为6. 不等式0.51log x x ->的解集为 巩固训练 1.已知当94x =时,不等式22log (2)log (23)a a x x x x -->-++成立,则不等式的解集为 2.设1232,(2)()log (1),(2)x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则不等式()2f x >的解集为 3. 已知集合22{228,},{log 1,}x A x x Z B x x x R -=≤≤∈=>∈,则()R A C B ⋂的元素个数为_____个5 若关于x 的方程2222x xxxa ---=+有解,求实数a 的取值范围6 已知0,1a a >≠,若2log 2log a a <,求实数a 的取值范围不等式解法六种典型例题典型例题一(整式不等式) 例1. 解不等式:(1)015223>--x x x ; (2)0)2()5)(4(32<-++x x x说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”。
高二不等式知识点总结不等式是数学中一种重要的关系式,它描述了两个数或两个式子之间的大小关系。
在高二阶段学习数学时,不等式是必不可少的知识点之一。
本文将对高二阶段学习的不等式知识点进行总结和概述。
一、一元一次不等式1. 不等式的定义:不等式是含有不等号(<、>、≤、≥)的数学式子。
2. 不等式的解:解不等式可以通过移项和绘制数轴的方法。
解集通常用区间表示。
3. 不等式的性质:不等式在两边同时加上一个相等的数或者在两边同时乘以一个正数时,不等关系不变;在两边同时乘以一个负数时,不等关系会颠倒。
4. 一元一次不等式的解法:考虑到正负数以及系数的情况,可以分为以下几种情况进行讨论。
二、一元二次不等式1. 一元二次不等式的定义:一元二次不等式是含有平方项的不等式。
2. 一元二次不等式的解法:可通过化为标准形式,配方法或绘制图像等方式进行求解,解集常用区间来表示。
3. 一元二次不等式的性质:与一元一次不等式类似,需要注意平方项对不等式性质的影响。
三、绝对值不等式1. 绝对值不等式的定义:绝对值不等式是含有绝对值的不等式。
2. 绝对值不等式的解法:可通过绝对值的定义以及正负号的讨论来解决。
四、分式不等式1. 分式不等式的定义:分式不等式是含有分式的不等式。
2. 分式不等式的通解:利用分式不等式的定义,可通过化简、拆分分式等方式求得通解。
五、不等式组1. 不等式组的定义:含有多个不等式的组合形式。
2. 不等式组的解法:可通过图示法、代入法、消元法等不同的方法求解。
六、不等式的应用1. 不等式在数学问题中的应用:不等式常常被应用于解决实际问题,如优化问题、约束条件等。
2. 不等式在证明中的应用:不等式在数学证明中具有重要的作用,可通过不等式进行推导、化简等。
综上所述,高二阶段的不等式知识点主要包括一元一次不等式、一元二次不等式、绝对值不等式、分式不等式、不等式组等内容。
掌握这些知识点对高中数学的学习以及今后的学习和工作都具有重要的意义。
不等式与不等式组的解法不等式是数学中常见的一种表示方法,用于比较两个数值的大小关系。
解决不等式问题的关键是确定不等式的解集,即使不等式成立的所有实数值。
一、一元一次不等式的解法:一元一次不等式指的是只含有一个变量的不等式,且变量的最高次数为一次。
解决一元一次不等式的问题主要有以下两种方法:1. 图解法:通过将一元一次不等式转化为图形,可以直观地判断不等式的解集。
以不等式2x - 3 < 5为例,可以将其转化为2x < 8,即x < 4。
在数轴上标出x = 4,由于左侧为不等式解集,在4的左边全部为解集,即(-∞, 4)。
2. 代入法:对于一元一次不等式,可以通过代入数值来验证不等式的解集。
以不等式3 - 2x ≥ 7为例,可以将x = 2代入不等式,得到3 - 2(2) = -1。
由于-1≥7不成立,说明x = 2不是不等式的解。
继续将x = 3代入不等式,得到3 - 2(3) = -3。
由于-3≥7不成立,说明x = 3也不是不等式的解。
继续将x = 4代入不等式,得到3 - 2(4) = -5。
由于-5≥7不成立,说明x = 4同样不是不等式的解。
因此,不等式的解集为(-∞, 2)。
二、一元二次不等式的解法:一元二次不等式指的是含有一个变量的二次方项的不等式。
解决一元二次不等式的问题需要利用二次曲线的几何性质或变形后进行求解。
1. 分析法:对于一元二次不等式,可以通过对二次方程的根和导数进行分析,确定不等式的解集。
以不等式x^2 - 3x - 4 > 0为例,首先求出二次方程x^2 - 3x - 4 = 0的根x1 = -1和x2 = 4。
通过观察可知,当x位于这两个根之间时,不等式的解集为x∈(-1, 4)。
2. 图解法:通过将一元二次不等式转化为图形,可以直观地判断不等式的解集。
以不等式x^2 - 4x + 3 > 0为例,可以将其转化为(x - 1)(x - 3) > 0。
高中数学不等式解题技巧高中数学不等式解题技巧有哪些呢,同学们清楚吗,不清楚的话,快来小编这里瞧瞧。
下面是由小编为大家整理的“高中数学不等式解题技巧”,仅供参考,欢迎大家阅读。
高中数学不等式解题技巧1)熟练掌握一元一次不等式(组),一元二次不等式(组)的解法(2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法(4)掌握含绝对值不等式的几种基本类型的解法(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论不等式的基本性质是什么不等式的基本性质有对称性,传递性,加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
不等式的基本性质:1、对称性。
2、如果x>y,y>z;那么x>z;(传递性)。
3、如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变。
4、如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变。
5、不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变。
6、如果x>y,m>n,那么x+m>y+n。
7、如果x>y>0,m>n>0,那么xm>yn。
8、如果x>y>0,那么x的n次幂>y的n次幂(n为正数)。
不等式与不等式组的解法不等式和不等式组是数学中常见的概念,它们在实际问题中的应用非常广泛。
本文将详细介绍不等式与不等式组的解法,帮助读者更好地理解和掌握这一内容。
一、不等式解法解不等式的方法主要包括图像法、代数法和参数法。
图像法:对于一元一次不等式,可以通过绘制直线来表示其解集。
例如,对于不等式x > 2,可以在数轴上标出2,并用箭头表示大于2的所有实数。
类似地,对于其他类型的不等式,我们也可以通过绘制图像来确定其解集。
代数法:对于一元一次不等式,我们可以使用代数方法来解决。
例如,对于不等式2x + 3 > 7,我们可以将其转化为等价的不等式2x > 4,并最终得到x > 2的解集。
参数法:对于复杂的不等式,我们可以引入参数来简化求解过程。
例如,对于不等式x^2 - 4x + 4 < 0,我们可以通过引入参数t,得到(x - 2)^2 < t的形式,然后通过解关于t的一元一次不等式来确定x的取值范围。
二、不等式组解法解不等式组的方法主要包括图像法、代数法和矩阵法。
图像法:对于一元一次不等式组,我们可以将其绘制在平面坐标系上,通过图像来确定其解集的位置。
例如,对于不等式组{x > 3,y < 2}我们可以在坐标系中将x > 3表示为右侧的所有实数,将y < 2表示为下方的所有实数,最终得到两个不等式的交集作为解集。
代数法:对于一元一次不等式组,我们可以使用代数方法来解决。
例如,对于不等式组{x + y > 5,x - y < 1}我们可以通过联立这两个不等式,得到x的取值范围,并将其带入其中一个不等式,求解y的取值范围。
矩阵法:对于多元不等式组,我们可以使用矩阵法来求解。
例如,对于不等式组{2x + 3y > 7,3x - y < 2}我们可以将其转化为矩阵形式,通过高斯消元法来求解。
三、实例分析为了更好地理解不等式与不等式组的解法,以下给出一个实例进行分析。
方法技巧专题30不等式的解法与基本不等式不等式是数学中常见的一类问题,解决不等式问题需要掌握一些方法和技巧。
本文将介绍不等式的解法以及基本不等式。
一、不等式的解法1.同加同减法:对于不等式a<b,可以在两边同时加上(或减去)同一个数得到新的不等式,即:a+c<b+ca-c<b-c2.同乘同除法:对于不等式a<b,可以在两边同时乘上(或除以)同一个正数得到新的不等式,即:a*c<b*c,c>0a/c<b/c,c>0需要注意的是,当同乘或同除的数为负数时,不等号的方向需要颠倒,即:a*c>b*c,c<0a/c>b/c,c<03.倒置不等号:对于不等式a<b,如果两边同时乘以-1,不等号的方向需要颠倒,即:-a>-b4.分类讨论:对于一些复杂的不等式,可以通过分类讨论的方法进行求解。
根据不等式中出现的变量或系数的范围,将不等式分为几个情况进行讨论,然后逐一解决。
5.代换法:对于一些复杂的不等式,可以通过代换一些变量来简化问题。
选择合适的代换变量,使得不等式中的形式更加简单,从而更容易求解。
二、基本不等式基本不等式是不等式求解中常用且重要的技巧,掌握了基本不等式可以更方便地求解复杂的不等式问题。
以下是几个常用的基本不等式:1.平均值不等式:对于任意一组非负实数a1, a2, ..., an,平均值不等式成立:(a1 + a2 + ... + an) / n ≥ √(a1 * a2 * ... * an)即算术平均数大于等于几何平均数。
2.均值不等式:对于任意一组非负实数a1, a2, ..., an,有下列不等式成立:(a1 + a2 + ... + an) / n ≥ (√a1 + √a2 + ... + √an) / √n 即算术平均数大于等于几何平均数。
3.柯西-施瓦茨不等式:对于任意一组实数a1, a2, ..., an和b1, b2, ..., bn,有下列不等式成立:(a1 * b1 + a2 * b2 + ... + an * bn)^2 ≤ (a1^2 + a2^2 + ... + an^2) * (b1^2 + b2^2 + ... + bn^2)即两组数的乘积之和的平方不超过各自平方和的乘积之和。
高中数学简单不等式的分类、解法一、知识点回顾1.简单不等式类型:一元一次、二次不等式,分式不等式,高次不等式,指数、对数不等式,三角不等式,含参不等式,函数不等式,绝对值不等式。
2.一元二次不等式的解法解二次不等式时,将二次不等式整理成首项系数大于0的一般形式,再求根、结合图像写出解集 3三个二次之间的关系:二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228)4.5.6.a>1时af 0<a<17.8.9.10.(1)3-(23-<(2)213022x x ++>解集为(R )(变为≤,则得?)(无实根则配方) 三、例题与练习例1已知函数)()1()(b x ax x f +∙-=,若不等式0)(>x f 的解集为)3,1(-,则不等式0)2(<-x f 的解集为),21()23,(+∞--∞解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解解法二:由二次不等式0)(>x f 的解集为)3,1(-得0)(<x f 解集为),3()1,(+∞--∞ ,再由∈-x 2),3()1,(+∞--∞ 得解集变式1.已知关于x 的不等式20x mx n -+≤的解集是 的解集是.. 1<0 ) 当0<a<1时,原不等式解集为)1,1(a当a=1时,0)1(2<-x ,原不等式解集为φ 当a>1时,原不等式解集为)1,1(a②.解关于x 的不等式0)1(log 12<--x a a答案:当a>1时,解集为)2log 21,0(a当0<a<1时,解集为)2log 21,(a -∞(总结指数与对数不等式解法)思维点拨:含参数不等式,应选择恰当的讨论标准对所含字母分类讨论,要做到不重不漏.例4:已知函数⎩⎨⎧≤≥+=)0(,1)0(,1)(2x x x x f ,则不等式)2()1(2x f x f >-的解集为分析:考虑解题思路,有两种方向---函数不等式或分段解不等式⎩⎨⎧-<122x x 变式4x f )(=解集为(例5:f e x f =)(分析:x ),0[+∞为1(f -)1,(--∞变式5为f (x )则不等解析 故不等-6<3,解得x ∈(2,3)四、小结1.含参不等式求解要先考虑分类标准,做到不漏不重2.要善于转化,化为不等式组或整式不等式或代数不等式,注意数形结合。
高中数学中的不等式组求解方法不等式组是高中数学中的一个重要概念,它由多个不等式组成,需要找到满足所有不等式的解集。
在解不等式组时,我们需要运用一些方法和技巧,下面将介绍几种常见的不等式组求解方法。
一、图像法图像法是一种直观且易于理解的不等式组求解方法。
通过将不等式转化为图像,我们可以直观地看出解集的范围。
例如,对于一个简单的一元一次不等式组,我们可以将其转化为一条直线的图像。
通过观察直线与坐标轴的交点,我们可以得出解集的范围。
二、代数法代数法是一种常用的不等式组求解方法。
通过代数运算,我们可以将不等式组转化为等价的形式,从而找到解集。
例如,对于一个二元一次不等式组,我们可以通过消元法或代入法将其转化为一个只含有一个变量的不等式,然后求解这个不等式即可得到解集。
三、区间法区间法是一种常用的不等式组求解方法,特别适用于含有绝对值的不等式组。
通过将不等式组中的变量范围划分成若干个区间,然后分别求解每个区间内的不等式,最后将解集合并起来,即可得到整个不等式组的解集。
这种方法可以有效地简化求解过程,提高求解效率。
四、求导法求导法是一种适用于含有函数的不等式组求解方法。
通过求解函数的导数,我们可以找到函数的增减性,从而确定不等式的解集。
例如,对于一个含有二次函数的不等式组,我们可以通过求解函数的导数和零点,来确定函数的增减性和极值点,从而得到不等式的解集。
五、数列法数列法是一种适用于含有数列的不等式组求解方法。
通过构造递推数列,我们可以找到数列的通项公式,并通过分析数列的性质来确定不等式的解集。
例如,对于一个含有递推数列的不等式组,我们可以通过构造数列的递推关系式和递推初值,来确定数列的通项公式和解集。
六、综合运用在实际的不等式组求解过程中,我们常常需要综合运用多种方法和技巧。
通过灵活运用各种方法,我们可以更准确地确定不等式的解集。
例如,对于一个复杂的不等式组,我们可以先通过图像法或代数法简化不等式,然后再运用区间法或求导法求解。
八种方法解决高中数学不等式问题下面用八种方法解决高中数学常见的不等式问题: 例题:224x y ,求34x y 的最大值.【解法一】柯西不等式先备知识:柯西不等式(二维下的)解:3,4,,a b c x d y ,由柯西不等式得:222223434x y x y 所以:3410x y ,当且仅当34x y ,即68,55x y 时,取得最大值10.【总结】柯西不等式常用,建议理解记忆。
【解法二】线性规划解:令34x y t ,则344t y x (将t 看作是直线的截距,转化为求直线截距的范围) ,x y 满足直线方程344t y x ,也满足方程224x y ,因此:显然,由图像得: 2.5104t t .【总结】数形结合典型做法,但是线性规划新高考不考。
建议从数形结合角度理解。
【解法三】判别式法解:令34x y t ,则344t y x ,代入方程:224x y ,得: 223444t x x , 整理,得:222534016816t x tx ………………(*) 一元二次方程(*)有解,则:2232544081616t t210010t t . 【总结】常用方法之一,解决“条件极值”问题的常用手段。
【解法四】三角换元224x y 22144x y ,不妨令:cos ,sin 22x y x x . 则:34346cos 8sin 10cos sin 10sin 1055x y x x x x x,(3tan 4 ). 【总结】三角换元、参数法建议学有余力的同学适当了解。
【解法五】对偶式先备知识: 34x y 的对偶式为43x y2223492416x y x xy y (1)2224316249x y x xy y (2)(1)+(2),得:222234432525100x y x y x y223410043100x y x y .【总结】进阶方法,学有余力可了解。
【解法六】向量法(类似柯西不等式)34x y 可以看作向量 3,4,,a b x y 的数量积:34a b x y .所以:cos ,10a b a b a b.【总结】注意观察代数式的结构特征。
高二数学不等式与不等式组的解法整理高二数学不等式与不等式组的解法(整理)导语:知识是为老年准备的最好的食粮。
下面是小编为大家整理的,高中数学知识点。
希望对大家有所帮,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!1不等式与不等式组的数轴穿根解法数轴穿根:用根轴发解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,一次穿过这些零点,这大于零的不等式地接对应这曲线在x轴上放部分的实数x得起值集合,小于零的这相反。
做法:1.把所有X前的系数都变成正的(不用是1,但是得是正的);2.画数轴,在数轴上从小到大依次标出所有根;3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使使不等式为0的根。
例如不等式:x2-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)⒈分解因式:(x-1)(x-2)≤0;⒉找方程(x-1)(x-2)=0的根:x=1或x=2;⒊画数轴,并把根所在的点标上去;⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。
高次不等式也一样.比方说一个分解因式之后的不等式:x(x+2)(x-1)(x-3)>0一样先找方程x(x+2)(x-1)(x-3)=0的根x=0,x=1,x=-2,x=3在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。
方程中要求的是>0,只需要观察曲线在数轴上方的部分所取的x的范围就行了。
x<-2或03。
⑴遇到根是分数或无理数和遇到整数时的处理方法是一样的,都是在数轴上把这个根的位置标出来;⑵“奇过偶不过”中的“奇、偶”指的是分解因式后,某个因数的指数是奇数或者偶数;比如对于不等式(X-2)2(X-3)>0(X-2)的指数是2,是偶数,所以在数轴上画曲线时就不穿过2这个点,而(X-3)的指数是1,是奇数,所以在数轴上画曲线时就要穿过3这个点。
2高中数学不等式与不等式组的解法1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。
例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a<2时,其解集为(-∞,b+2a-2)③当a=2,b≥-2时,其解集为φ④当a=2且b<-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△<0,其解集为R②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的.解法将不等式中每个不等式求得解集,然后求交集即可.例3:解不等式组m2+4m-5>0(1)m 2+4m-12<0(2)解:由①得m<-5或m>1由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)4.分式不等式的解法任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.例4:解不等式x2-x-6-x2-1>2解:原不等式化为:3x2-x-4-x2-1>0它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0解(I)得解集空集,解(II)得解集(-1,43).故原不等式的解集为(-1,43).5.含有绝对值不等式的解法去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。
(1)|x|>a(a>0)?x>a或x<-a.(2)|x|0)?-a解:原不等式等价于3xx2-4≥1,①或3xx2-4≤-1②解①得2 解②得-4≤x<-2或1≤x<2故原不等式的解集为[-4,-2)∪(-2,-1]∪[1,2)∪(2,4].例6:解不等式|x2-3x+2|>x2-1解:原不等式等价于x2-3x+2>x2-1①或x2-3x+2<-x2+1②解①得{x|x<1},解②得{x|12g(x)和|f(x)|a和|x| 例7:解不等式|x+1|+|x|<2解:①当x≤-1时,原不等式变为-x-1-x<2 ∴-32 ②当-1 ∴-1 ③当x>0时,原不等式变为x+1+x<2.∴解得0 综合①,②,③知,原不等式的解集为{x|-32 例8:解不等式|x2-3x+2|+|x2-4x+3|>2解:①当x≤1时,原不等式变为x2-3x+2+x2-4x+3>2,此时解集为{x|x<12}.②当12,此时解集为空集。
③当22,此时的解集是空集。
④当x>3时,原不等式化为x2-3x+2+x2-4x+3>2,此时的解集为{x|x>3}.综合①②③④可知原不等式的解集为{x|x≤12}∪{x|x>3}.从以上两个例子可以看出,解含有两个或两个以上的绝对值的不等式,一般是先找出一些关键数(如例7的关键数是-1,0;例8中的关键数是1,2,3)这些关键数将实数划分为几个区间,在这些区间上,可以根据绝对值的意义去掉绝对值号,从而转化为不含绝对值的不等式,应当注意的是,在解这些不等式时,应该求出交集,最后综合各区间的解集写出答案。
6.无理不等式的解法无理不等式f(x)>g(x)的解集为不等式组(I)f(x)≥[g(x)] 2f(x)≥0g(x)≥0和(II)f(x)≥0g(x)<0的解集的并集.无理不等式f(x)0)的解集为不等式组f(x)≥0f(x)<[g(x)] 2g(x)>0的解集.例9:解不等式:2x+5-x-1>0解:原不等式化为:2x+5>x+1 由此得不等式组(I)2x+5≥0x+1<0或(II)2x+5≥0x+1≥02x+5>(x+1)2解(I)得-52≤x<-1,解(II)得-1≤x<2故原不等式的解集为[-52,2].7.指数不等式的解法根据指数函数的单调性来解不等式。
例10.解不等式:9x>(3)x+2解:原不等式化为 3 2x>3x+22∴2x>x+22即x>23故原不等式解集为(23 ,+∞).8.对数不等式的解法根据对数函数的单调性来解不等式。
例11:解不等式:log12(x+1)(2-x)>0解:原不等式化为log12(x+1)(2-x)>log121∴ (x+1)(2-x)>0 (1)(x+1)(2-x)<1 (2)解①得-1 解②得x<1-52 或x>1+52故原不等式解集(-1,1-52)∪(1+52,2).9.简单高次不等式的解法简单高次不等式可以利用数轴标根法来解不等式.例12:解不等式(x+1)(x 2-5x+4)<0解:原不等式化为:(x+1)(x-1)(x-4)<0如图,由数轴标根法可得原不等式解集为(-∞,-1)∪(1,4)10.三角不等式的解法根据三角函数的单调性,先求出在同一周期内的解集,然后写出通值。
例13:解不等式:sinx≤-12解:sinx≤-12在[0,2π]内的解是:76 π≤x≤116π故原不等式的解集为[2kπ+76 ,2kπ+116 ](k∈z)。
11.含有字母系数不等式的解法在解不等式过程中,还常常遇到含有字母系数的一些不等式,此时,一定要注意字母系数进行讨论,以保证解题的完备性。
例14:解不等式2 3x-2x 解:原不等式变形为2 2x(2 2x-1) ∴(2 2x-1) (2 2x-a)<0∴原不等式等价于2 2x-1>02 2x-a<0 或2 2x-1<02 2x-a>0①当a≤0时,x<0;②当0 ③当a=1时,无解④当a>1时,0 解不等式的基础是解一元一次不等式,解一元二次不等式,解由一元一次不等式和一元二次不等式组成的不等式组。
解其它各式各样的不等式(三角不等式除外)关键在于根据有关的定义,定理,性质转化这些不等式为上述三类不等式。
在具体转化的过程中,特别应该注意每一步都应是同解变形。
像无理不等式中的开偶次方时的被开方数及对数不等式中的真数等,在去根号和去对数符号时,一定要使被开方数非负,真数大于零。