最大功率点跟踪控制的方法
- 格式:doc
- 大小:6.44 KB
- 文档页数:2
MPPT控制技术引言在太阳能发电系统中,最大功率点跟踪(MPPT)控制技术是一种关键的技术。
MPPT控制技术可以提高太阳能电池板的发电效率,使太阳能发电系统能够更好地适应不同的环境条件,并最大限度地利用太阳能资源。
本文将介绍MPPT控制技术的基本原理以及常用的几种实现方法。
MPPT控制技术的原理MPPT控制技术的基本原理是通过调节太阳能电池板的工作电压和电流,使其输出功率达到最大值。
太阳能电池板的输出功率与其工作电压和电流之间存在着一定的关系。
对于太阳能电池板来说,其最大功率点就是工作电压和电流组合中产生最大功率的点。
MPPT控制技术通过监测太阳能电池板的输出电压和电流,以及太阳能辐射的强度等环境参数,不断调节太阳能电池板的工作电压和电流,使其运行在最佳的工作点上,从而达到最大功率输出的目的。
MPPT控制技术的实现方法基于功率导数的MPPT控制方法基于功率导数的MPPT控制方法是一种比较简单的实现方式。
它利用功率与电压的关系,通过对太阳能电池板的工作电压进行微小的扰动,然后通过测量扰动后的功率变化来判断太阳能电池板的工作点是否在最大功率点附近。
如果功率变化为正值,则说明太阳能电池板的工作点在最大功率点的左边;如果功率变化为负值,则说明太阳能电池板的工作点在最大功率点的右边。
通过不断微调太阳能电池板的工作点,最终可以找到最大功率点。
基于 perturb and observe 算法的MPPT控制方法基于 perturb and observe 算法的MPPT控制方法是一种比较常用的实现方式。
它通过周期性地进行电压扰动,然后观察功率的变化情况来判断当前工作点的位置。
如果功率变化为正值,则说明太阳能电池板的工作点在最大功率点的左边;如果功率变化为负值,则说明太阳能电池板的工作点在最大功率点的右边。
根据功率变化的情况,调整扰动的幅度和方向,直到找到最大功率点。
基于模型预测控制的MPPT控制方法基于模型预测控制的MPPT控制方法是一种相对较复杂的实现方式。
光伏发电系统的最大功率跟踪控制一、引言光伏发电系统作为一种可再生能源发电方式,具有环保、安全、可持续等优势,逐渐受到关注。
然而,光伏发电系统的发电功率受到天气、温度等环境因素的影响,导致输出功率存在一定的波动。
为了最大化光伏发电系统的发电效率,我们需要实施最大功率跟踪控制。
二、最大功率跟踪控制的原理最大功率跟踪控制是指通过调整光伏阵列输出电压和电流的方式,使得输出功率达到最大。
光伏阵列的输出功率一般由以下几个因素决定:1. 太阳辐照度:太阳辐照度越高,光伏阵列的输出功率越大。
因此,通过监测太阳辐照度的变化,可以实时调整光伏阵列的工作状态。
2. 温度:高温会导致光伏电池的效率下降,从而减小了输出功率。
因此,根据温度变化调整光伏阵列的工作状态也是最大功率跟踪控制的一个重要因素。
3. 光伏阵列电压和电流:光伏阵列的输出功率与其电压和电流的乘积成正比。
通过控制电压和电流的变化,可以达到最大功率输出。
三、最大功率跟踪控制的方法1. 突变搜索法:该方法通过固定步长搜索的方式,在不同的电压和电流点上测量输出功率,并选择功率最大的点作为工作点。
该方法简单有效,但可能存在多个局部最大值的问题。
2. 渐进调整法:该方法通过不断改变光伏阵列的工作电压和电流,观察功率变化,最终找到功率最大的点。
该方法需要周期性地进行调整,但可以达到更精确的最大功率跟踪。
3. 梯度下降法:该方法利用数学模型计算出功率对电压和电流的梯度,并根据梯度的方向调整光伏阵列的工作状态。
该方法复杂度较高,但可以实现更精确的最大功率跟踪。
四、最大功率跟踪控制的应用最大功率跟踪控制已经广泛应用于光伏发电系统中。
通过实施最大功率跟踪控制,可以提高光伏发电系统的发电效率,增加发电量。
这对于实现可持续能源发展、减少对传统能源的依赖具有重要意义。
除了光伏发电系统,最大功率跟踪控制的技术也可以应用于其他可再生能源发电系统,如风力发电系统、潮汐发电系统等。
通过调整工作状态,使得系统功率达到最大,可以提高可再生能源的利用效率。
3.5传统的最大功率点跟踪方法3.5.1 定电压跟踪法通过图3-10a 、3-10b 可知,当辐照度大于一定值并且温度变化不大时,光伏电池的输出P -U 曲线上最大功率点几乎分布于一条垂直直线的两侧附近。
定电压跟踪法正是利用这一特性。
根据实际系统设定一个恒定不变的运行电压,使系统在设定的电压下运行,从而尽可能使系统输出的功率最大。
在外界环境变化不大时,可以近似认为太阳能电池始终工作在最大功率点处[24]。
mpp U 表示光伏阵列的最大功率点电压,oc U 表示光伏阵列的开路电压,经研究发现,mpp U 和oc U 有着近似的线性关系:mpp OC U k U ≈ (3.14)式(3.14)中,k 为比例系数,取决于光伏电池的特性,一般其取值为0.8左右。
该算法结构简单,容易实现,但是由于该算法只是一种近似的MPPT 控制算法,在外界环境发生变化时,很容易偏离最大功率点。
因此,电压跟踪法常用在控制要求低,成本低廉的简易系统中[25]。
3.5.2 电导增量法根据光伏阵列的P-U 输出特性曲线可知,它是一条连续可导的单峰曲线,在最大功率点处,功率对电压的导数为零,也就是说,最大功率点的跟踪实质就是搜索满足0dP dU =条件的工作点。
考虑光伏电池的瞬时输出功率为:P UI = (3.15)将上式两边对光伏电池输出电压U 求导,则dP dI I U dU dU=+ (3.16) 当0dP dU =时,光伏电池的输出功率达到最大。
则可以推导出工作点位于最大功率点时需满足以下关系:dI I dU U=- (3.17) 即当光伏电池阵列工作在最大功率点时,需满足(3.17)式。
电导增量法的优点是与太阳能电池组件特性及参数无关,因而能够适应光照强度快速变化的情况,而且该方法的电压波动小,并具有较高的控制精度;其缺点是该方法实现起来复杂,并且容易受到其他信号的干扰而出现误动作。
一般情况下dI 和dU 值取的很小,那么就需要光伏阵列输出电压、输出电流等参数的采样精度很高,而传感器的采样精度有限,所以必然会存在误差,另外,电导增量法存在振荡问题。
课程设计说明书风力发电机组控制系统设计-最大功率点跟踪控制专业新能源科学与工程学生姓名喻绸绢班级能源121学号1210604122指导教师薛迎成完成日期2015年12月14日目录1。
控制功能设计要求 01.1任务 02。
设计 (2)2。
1 介绍对象(风力发电系统的最大功率点跟踪控制技术研究)2 2。
2控制系统方案 (2)2.2.1风力机最大功率点跟踪原理 (2)2.2.2风力机发电系统 (5)2。
2。
3风速变化时的系统跟踪过程 (10)3。
硬件设计 (12)4。
软件设计 (15)5.仿真或调试 (16)参考文献 (18)1.控制功能设计要求1.1任务能源与环境是当今人类生存和发展所要解决的紧迫问题而传统能源已被过度消耗,因此,可再生能源的开发利用越来越受到重视和关注,其中风能具有分布广、储量大、利用方便、无污染等优点是最具大规模开发利用前景的新能源之一。
目前,变速恒频风力发电系统已经广泛用于实际风机中,在低于额定风速的情况下根据风速变化的情况调节风机转速,使其运行于最优功率点,从而捕获最大风能;在高于额定风速时,通过对桨距角的调节,使风机以额定功率输出。
常用最大功率捕获方法主要有功率反馈法、模糊控制法、混合控制法等。
为了充分利用风能,提高风电机组的发电总量,本文分析风机特性及最大功率点跟踪(maximum pow er point tracking MPPT)工作原理。
众多的MPPT实现方法各有千秋,对于不同的应用场所各有所长,对于多种方案,需要进行大量细致的实验工作和数据分析。
风能是一种具有随机性、不稳定性特征的能源,风能的获取不仅与风力发电机的机械特性有关,还与其采用的控制方法有关。
在某一风机转速情况下,风速越大时风力机的输出功率越大,而对某一风速而言,总有一最大功率点存在。
只有当风力发电机工作在最佳叶尖速比时,才能输出最大功率.好的控制方法可使风轮的转速迅速跟踪风速变化,使风力发电机始终保持在最佳叶尖速比上运行,从而最大限度地获得风能.要保证最大限度地将捕获到的风能转化为电能,目前一般采用最大功率点追踪控制(MPPT)控制策略。
光伏发电中MPPT控制方法综述在光伏发电系统里,为了能充分利用光伏发电功率,最大功率点跟踪(MPPT)起着无法替代的作用。
本文将进行具体的分析,以供参考。
标签:光伏发电;MPPT;控制;应用1、前言光伏產业是当今世界上增速最快的行业之一。
为了实现环境和能源的可持续发展,光伏发电已成为很多国家发展新能源的重点,光伏发电将是未来主要的能量来源。
为了充分利用太阳能源,通过最大功率点跟踪(MPPT)的控制方法来使能量最大化以逐渐成为发展趋势。
2、常见的MPPT控制方法2.1 扰动观测法扰动观测法是最大功率跟踪算法中使用最广泛的一种算法,基本思想是:首先增加或减小光伏电池板的输出电压(或电流),然后观测光伏电池输出功率的变化,根据功率变化再连续改变电压(或电流)的幅值,使光伏电池输出功率最终工作于最大功率点。
扰动观察法由于简单易行而被广泛用于MPPT控制中,但随着研究的深入,该方法存在的不足之处逐渐显现出来,即存在震荡和误判的问题。
在实际应用过程中,由于检测精度和计算速度的限制,电压扰动的步长一般是一个定值,在这种情况下,就会产生震荡。
当步长越小时,震荡就越小,跟踪的速度就越慢。
要想达到理想的状态,就要在速度和精度做权衡考虑。
在扰动观察算法运行过程中,当工作电压达到最大功率点附近时,由于步长恒定,有些情况下,工作电压会跨过最大功率点,改变扰动方向后,工作电压再一次反向跨过最大功率点,如此往复循环,即出现了震荡,即扰动观察法的震荡问题。
当日照,温度等外界条件发生变化时,光伏阵列的特性缺陷也会跟着发生变化。
而扰动算法却无法察觉到,算法还认为是在一条曲线上进行扰动观察,此时就会出现扰动方向误判的情况,即扰动观测法的误判问题。
定步长的扰动观测法存在震荡和误判的问题,使系统不能准确的跟踪到最大功率点,造成了能量损失,因此需要对上述定步长的扰动观测法进行改进。
其中,基于变步长的扰动观测法可以在减小震荡的同时,使系统更快的跟踪到最大功率点;基于功率预测的扰动观测法可以解决外部环境剧烈变化时所产生的误判现象;基于滞环比较的扰动观测法在最大功率点跟踪过程中的震荡和误判这两方面均有较好的性能。
光伏发电最大功率点跟踪算法1. 简介光伏发电是一种利用太阳能将光能转化为电能的技术。
在光伏发电系统中,为了获取最大的发电功率,需要实时跟踪太阳能辐射强度的变化,并调整光伏组件的工作状态以保持在最大功率点附近。
本文将介绍光伏发电最大功率点跟踪算法的原理及应用。
2. 最大功率点跟踪算法原理在光伏发电系统中,光伏组件的输出功率与其工作点相关。
而工作点又由组件的电压和电流决定。
因此,通过调整组件的工作状态来使其工作在最大功率点附近,可以实现最大发电效率。
最大功率点跟踪算法是通过对太阳能辐射强度进行实时监测,并根据监测结果调整组件工作状态来实现的。
常用的最大功率点跟踪算法有以下几种:2.1 Perturb and Observe (P&O) 算法P&O算法是一种简单且广泛应用的最大功率点跟踪算法。
其原理是通过不断扰动组件的工作状态,然后观察功率的变化情况来确定最大功率点。
具体步骤如下:1.初始化工作状态,包括电压和电流。
2.测量当前功率。
3.增加或减小电压或电流的值,并测量新的功率。
4.比较新旧功率,如果新功率大于旧功率,则继续增加或减小电压或电流的值;如果新功率小于旧功率,则改变方向并减小步长。
5.重复步骤3和4,直到达到最大功率点。
P&O算法简单易实现,但由于其基于局部搜索方法,容易受到噪声和阴影等因素的干扰。
2.2 Incremental Conductance (INC) 算法INC算法是一种基于微分方法的最大功率点跟踪算法。
其原理是通过根据组件的导纳特性来调整工作状态,以实现最大功率点跟踪。
具体步骤如下:1.初始化工作状态,包括电压和电流。
2.测量当前输出功率和导纳。
3.根据当前导纳与前一时刻导纳的比较结果来调整工作状态:–如果导纳增大,则增加电压或电流的值;–如果导纳减小,则减小电压或电流的值;–如果导纳不变,则保持当前工作状态。
4.重复步骤2和3,直到达到最大功率点。
扰动观察法最大功率点跟踪原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、扰动观察法最大功率点跟踪原理扰动观察法(Perturb and Observe,P&O)是一种简单有效的最大功率点跟踪(Maximum Power Point Tracking,MPPT)方法,广泛应用于太阳能光伏发电系统中。
光伏发电系统中的最大功率点跟踪算法研究光伏发电系统是一种利用太阳光能直接转换成电能的系统,在可再生能源领域具有广泛的应用前景。
而在光伏发电系统中,最大功率点跟踪算法是一种关键技术,能够实现光伏电池阵列输出功率的最大化。
本文将针对光伏发电系统中的最大功率点跟踪算法进行深入研究,探讨其原理和应用。
首先,我们先来介绍一下光伏发电系统中的最大功率点。
光伏电池的I-V特性曲线中存在一个最大功率点,该点的电流和电压使得光伏电池阵列能够输出最大的功率。
而光伏发电系统中的最大功率点跟踪算法,即MPPT算法,就是通过调节光伏电池阵列的工作状态,使得系统输出功率达到最大化。
目前,常见的最大功率点跟踪算法包括传统的Perturb and Observe(P&O)算法、一种改进的P&O算法和模型预测控制(MPC)算法等。
首先是传统的P&O算法。
该算法通过调节光伏电池阵列的工作电压,使得系统实时功率与前一时刻功率进行比较,根据差值调整电压的增减方向,并逐步趋近于最大功率点。
然而,该算法存在着震荡问题,当环境条件变化较大时,系统可能无法稳定在最大功率点附近。
为解决传统P&O算法的问题,研究人员提出了一种改进的P&O算法。
该算法引入了一种自适应的步长参数,根据当前功率值与前一时刻功率值的比较结果动态调整步长,使得系统更加稳定地跟踪到最大功率点。
改进的P&O算法相比传统P&O算法具有更好的性能,能够在环境条件变化较大的情况下实现更稳定的功率跟踪。
另一种常见的最大功率点跟踪算法是模型预测控制(MPC)算法。
该算法通过建立光伏发电系统的数学模型,利用最优控制策略进行功率跟踪。
MPC算法基于系统模型和预测性能指标,通过迭代计算得到一个最优的控制策略,从而实现最大功率点跟踪。
相比于P&O算法,MPC算法具有更高的精度和稳定性,但是其计算复杂度较高,需要较长的计算时间。
除了传统的P&O算法、改进的P&O算法和MPC算法,还有一些其他的最大功率点跟踪算法在实际应用中得到了研究和应用。
最大功率点跟踪控制的方法
最大功率点 (Maximum Power Point) 跟踪控制(MPPT)是指在太阳能电池阵列中,通过一定的电路和控制策略,实现扫描整个太阳能电池阵列,从中找到当前工作状态下的最大功率点,并最终控制整个太阳能电池阵列工作在该最大功率点处,从而使得太阳能电池的输出功率最大化,以提高太阳能发电的效率和经济性。
最大功率点跟踪控制技术是太阳能电池阵列控制的重要技术,不仅可以将太阳能电池的输出功率最大化,同时还能提高系统的可靠性、稳定性和使用寿命等方面的性能。
下面将介绍最大功率点跟踪控制的几种方法。
1. 模拟式最大功率点跟踪控制
模拟式最大功率点跟踪控制是最早出现的一种方法,也是相对简单的一种方法。
该方法的核心是通过调节单片机的PWM信号,控制电荷控制器输出电压和电流,使得电荷控制器输出的功率达到最大值。
但是,该方法存在着效率低下、稳定性差、不够灵活等缺点。
2. 开环跟踪方法
开环跟踪方法是指进行一定的计算得到最大功率点的位置,然后使用控制器直接控制输出电压和电流,以使得太阳能电池处于最大功率点。
该方法具有工作简单、可靠
性高等优点,但是由于无法根据输出功率对最大功率点进行跟踪调整,同时还容易受到天气和环境等因素的影响,存在着功率损失和不够灵活等缺点。
3. 闭环反馈跟踪方法
闭环反馈跟踪方法是一种对于开环跟踪的改进方法。
在闭环反馈方式下,控制器会根据实际输出功率来调节工作点,以精准地跟踪到最大功率点。
基于闭环反馈思想,目前常见的控制器有基于模糊控制、神经网络控制和PID控制等,这些控制器的应用难度和控制效果各不相同。
例如,模糊控制器可以灵活应对光照强度和温度变化等复杂的环境因素,但需要充分的实验数据和模型的准确性作为基础。
神经网络控制器具有良好的适应性和泛化能力,但是需要大量的数据训练和计算资源,并且难以进行解释。
PID控制器具有成熟的算法和实现方法,但对电流、电压等参数的变化较为敏感,需要进行较为精确的参数调节,因此需要一定的实际操作经验和技术支持。
总的来说,各种最大功率点跟踪控制方法都有其特点和适用范围。
在选择最大功率点跟踪控制方法时,需要根据实际需求和经济考虑综合考虑。
同时,还需要充分了解各种方法的原理和实现方式,以及其优缺点和使用条件等,以确保整个系统的稳定性和安全性。