2018年高考数学(理)总复习高考达标检测(四十)曲线与方程求解3方法——直接法、定义法、代入法 含答案
- 格式:doc
- 大小:81.00 KB
- 文档页数:6
高考达标检测(五十八) 参数方程1.(2017·吉林实验中学)已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t(t为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其直线l 的距离相等,求点P 的坐标.解:(1)椭圆C 的参数方程为:⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为x -3y +9=0. (2)设P (2cos θ,3sin θ), 则|AP |=θ-2+3sin θ2=2-cos θ,P 到直线l 的距离 d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1, 得sin θ=35,cos θ=-45.故P ⎝ ⎛⎭⎪⎫-85,335.2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)的距离的最小值.解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.(2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ), 故M -2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|, 从而当cos θ=45,sin θ=-35时,d 取最小值855.3.(2017·辽宁五校联考)倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围. 解:(1)曲线C 的普通方程为x 232+y 24=1, 直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得: (8+t cos α)2+8(2+t sin α)2=32,整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0, 由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎢⎡⎭⎪⎫0,π4, ∴|PM 1|·|PM 2|=|t 1t 2|=641+7sin 2α∈⎝ ⎛⎦⎥⎤1289,64. 4.(2017·山西模拟)在极坐标系中,曲线C 的极坐标方程为ρ=42sin ⎝ ⎛⎭⎪⎫θ+π4.现以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+12t ,y =-3+32t (t 为参数).(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 和曲线C 交于A ,B 两点,定点P (-2,-3),求|PA |·|PB |的值.解:(1)ρ=42sin ⎝ ⎛⎭⎪⎫θ+π4=4sin θ+4cos θ, 所以ρ2=4ρsin θ+4ρcos θ, 所以x 2+y 2-4x -4y =0, 即(x -2)2+(y -2)2=8;直线l 的普通方程为3x -y +23-3=0.(2)把直线l 的参数方程代入到圆C :x 2+y 2-4x -4y =0中,得t 2-(4+53)t +33=0,设A ,B 对应的参数分别为t 1,t 2,则t 1t 2=33. 点P (-2,-3)显然在直线l 上, 由直线标准参数方程下t 的几何意义知 |PA |·|PB |=|t 1t 2|=33, 所以|PA |·|PB |=33.5.(2017·贵州模拟)极坐标系与直角坐标系xOy 有相同的长度单位,以原点为极点,以x 轴正半轴为极轴,曲线C 1的极坐标方程为ρ=4cos θ(ρ≥0),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =m +t cos α,y =t sin α(t 为参数,0≤α<π),射线θ=φ,θ=φ+π4,θ=φ-π4与曲线C 1分别交于(不包括极点O )点A ,B ,C .(1)求证:|OB |+|OC |=2|OA |;(2)当φ=π12时,B ,C 两点在曲线C 2上,求m 与α的值.解:(1)证明:依题意|OA |=4cos φ, |OB |=4cos ⎝ ⎛⎭⎪⎫φ+π4, |OC |=4cos ⎝⎛⎭⎪⎫φ-π4, 则|OB |+|OC |=4cos ⎝⎛⎭⎪⎫φ+π4+4cos ⎝⎛⎭⎪⎫φ-π4 =22(cos φ-sin φ)+22(cos φ+sin φ) =42cos φ=2|OA |.(2)当φ=π12时,B ,C 两点的极坐标分别为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫23,-π6,化为直角坐标为B ()1,3,C ()3,-3,所以经过点B ,C 的直线方程为y -3=-3(x -1),而C 2是经过点(m,0)且倾斜角为α的直线,故m =2,α=2π3. 6.(2017·唐山模拟)将曲线C 1:x 2+y 2=1上所有点的横坐标伸长到原来的 2 倍(纵坐标不变)得到曲线C 2,点A 为C 1与x 轴正半轴的交点,直线l 经过点A 且倾斜角为30°,记l 与曲线C 1的另一个交点为B ,与曲线C 2在第一、三象限的交点分别为C ,D .(1)写出曲线C 2的普通方程及直线l 的参数方程; (2)求|AC |-|BD |.解:(1)由题意可得C 2:x 22+y 2=1,l :⎩⎪⎨⎪⎧ x =1+32t ,y =12t(t 为参数).(2)将⎩⎪⎨⎪⎧x =1+32t ,y =12t代入x 22+y 2=1,整理得5t 2+43t -4=0.设点C ,D 对应的参数分别为t 1,t 2, 则t 1+t 2=-435, 且|AC |=t 1,|AD |=-t 2. 又|AB |=2|OA |cos 30°=3, 故|AC |-|BD |=|AC |-()|AD |-|AB | =|AC |-|AD |+|AB | =t 1+t 2+3=35. 7.(2016·长春模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos ⎝⎛⎭⎪⎫θ-π3. (1)求曲线C 2的直角坐标方程,并指出其表示何种曲线;(2)若曲线C 1和曲线C 2交于A ,B 两点,求|AB |的最大值和最小值.解:(1)对于曲线C 2有ρ=8cos ⎝⎛⎭⎪⎫θ-π3, 即ρ2=4ρcos θ+43ρsin θ,因此曲线C 2的直角坐标方程为x 2+y 2-4x -43y =0, 即(x -2)2+(y -23)2=16,其表示一个圆. (2)将C 1的参数方程代入C 2的方程可得,t 2-23sin α·t -13=0,设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=23sin α,t 1t 2=-13. 所以|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=()23sin α2--=12sin 2α+52,因此|AB |的最大值为8,最小值为213.8.(2017·云南一模)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t -1,y =t +2(t为参数).在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=31+2cos 2θ.(1)直接写出直线l 的普通方程、曲线C 的直角坐标方程; (2)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围. 解:(1)直线l 的普通方程为x -y +3=0. 曲线C 的直角坐标方程为3x 2+y 2=3. (2)∵曲线C 的直角坐标方程为3x 2+y 2=3, 即x 2+y 23=1,∴曲线C 上的点的坐标可表示为(cos α,3sin α). ∴d =|cos α-3sin α+3|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫π6-α+32=2sin ⎝ ⎛⎭⎪⎫π6-α+32.∴d 的最小值为12=22, d 的最大值为52=522. ∴22≤d ≤522, 即d 的取值范围为⎣⎢⎡⎦⎥⎤22,522.。
第8讲 曲线与方程[学生用书P192]1.曲线与方程在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎨⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解,若此方程组无解,则两曲线无交点.3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程. 常用结论1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“f(x0,y0)=0”是“点P(x0,y0)在曲线f(x,y)=0上”的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y=x与x=y2表示同一曲线.()(5)y=kx与x=1k y表示同一直线.()答案:(1)√(2)×(3)×(4)×(5)×二、易错纠偏常见误区|K(1)混淆“轨迹”与“轨迹方程”出错;(2)忽视轨迹方程的“完备性”与“纯粹性”.1.(1)平面内与两定点A(2,2),B(0,0)距离的比值为2的点的轨迹是________.(2)设动圆M与y轴相切且与圆C:x2+y2-2x=0相外切,则动圆圆心M的轨迹方程为_________________________________________________.解析:(1)设动点坐标为(x,y),则(x-2)2+(y-2)2x2+y2=2,整理得3x2+3y2+4x+4y-8=0,所以满足条件的点的轨迹是圆.(2)若动圆在y轴右侧,则动圆圆心到定点C(1,0)与到定直线x=-1的距=1,所以其方程为y2=4x(x>0);若动圆在y轴离相等,其轨迹是抛物线,且p2左侧,则圆心轨迹是x轴负半轴,其方程为y=0(x<0).故动圆圆心M的轨迹方程为y2=4x(x>0)或y=0(x<0).答案:(1)圆(2)y2=4x(x>0)或y=0(x<0)2.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是________.解析:由角的平分线性质定理得|P A|=2|PB|,设P(x,y),则(x+2)2+y2=2(x-1)2+y2,整理得(x-2)2+y2=4(y≠0).答案:(x-2)2+y2=4(y≠0)3.已知⊙O的方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,则弦AB的中点P的轨迹方程为________.解析:根据垂径定理知:OP⊥PM,所以P点的轨迹是以OM为直径的圆且在⊙O内的部分.以OM为直径的圆的方程为(x-2)2+y2=4,它与⊙O的交点为(1,±3).结合图形可知所求轨迹方程为(x-2)2+y2=4(0≤x<1).答案:(x-2)2+y2=4(0≤x<1)[学生用书P192]直接法求轨迹方程(师生共研)已知△ABC的三个顶点分别为A(-1,0),B(2,3),C(1,22),定点P (1,1).(1)求△ABC 外接圆的标准方程;(2)若过定点P 的直线与△ABC 的外接圆交于E ,F 两点,求弦EF 中点的轨迹方程.【解】 (1)由题意得AC 的中点坐标为(0,2),AB 的中点坐标为⎝ ⎛⎭⎪⎫12,32,k AC =2,k AB =1,故AC 中垂线的斜率为-22,AB 中垂线的斜率为-1,则AC的中垂线的方程为y -2=-22x ,AB 的中垂线的方程为y -32=-⎝ ⎛⎭⎪⎫x -12.由⎩⎪⎨⎪⎧y -32=-⎝ ⎛⎭⎪⎫x -12,y -2=-22x , 得⎩⎪⎨⎪⎧x =2,y =0.所以△ABC 的外接圆圆心为(2,0),半径r =2+1=3,故△ABC 外接圆的标准方程为(x -2)2+y 2=9.(2)设弦EF 的中点为M (x ,y ),△ABC 外接圆的圆心为N ,则N (2,0), 由MN ⊥MP ,得NM →·PM →=0, 所以(x -2,y )·(x -1,y -1)=0, 整理得x 2+y 2-3x -y +2=0,所以弦EF 中点的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=12.(1)若曲线上的动点满足的条件是一些几何量的等量关系,则可用直接法,其一般步骤是:设点→列式→化简→检验.求动点的轨迹方程时要注意检验,即除去多余的点,补上遗漏的点.(2)若是只求轨迹方程,则把方程求出,把变量的限制条件附加上即可;若是求轨迹,则要说明轨迹是什么图形.已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,若过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解:(1)由|MP |=5|MQ |,得(x -26)2+(y -1)2=5(x -2)2+(y -1)2,化简得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25,轨迹是以(1,1)为圆心,5为半径的圆.(2)当直线l 的斜率不存在时,l :x =-2,此时所截得的线段长度为2×52-32=8,所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 圆心(1,1)到l 的距离d =|3k +2|k 2+1,由题意,得⎝ ⎛⎭⎪⎪⎫|3k +2|k 2+12+42=52,解得k =512, 所以直线l 的方程为512x -y +236=0, 即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.定义法求轨迹方程(师生共研)已知圆C 与两圆x 2+(y +4)2=1,x 2+(y -2)2=1外切,圆C 的圆心轨迹为L ,设L 上的点与点M (x ,y )的距离的最小值为m ,点F (0,1)与点M (x ,y )的距离为n .(1)求圆C 的圆心轨迹L 的方程;(2)求满足条件m =n 的点M 的轨迹Q 的方程.【解】 (1)两圆半径都为1,两圆圆心分别为C 1(0,-4),C 2(0,2),由题意得|CC 1|=|CC 2|,可知圆心C 的轨迹是线段C 1C 2的垂直平分线,C 1C 2的中点为(0,-1),直线C 1C 2的斜率不存在,所以圆C 的圆心轨迹L 的方程为y =-1.(2)因为m =n ,所以M (x ,y )到直线y =-1的距离与到点F (0,1)的距离相等,故点M 的轨迹Q 是以y =-1为准线,点F (0,1)为焦点,顶点在原点的抛物线,而p2=1,即p =2,所以,轨迹Q 的方程是x 2=4y .定义法求轨迹方程(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.1.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________________.解析:设A (x ,y ),由题意可知D ⎝ ⎛⎭⎪⎫x 2,y 2.又因为|CD |=3,所以⎝ ⎛⎭⎪⎫x 2-52+⎝ ⎛⎭⎪⎫y 22=9,即(x -10)2+y 2=36,由于A ,B ,C 三点不共线,所以点A 不能落在x 轴上,即y ≠0,所以点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)2.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫|AB |22=3,所以曲线M 的方程为x 24+y 23=1(y ≠0).相关点法(代入法)求轨迹方程(师生共研)如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.【解】 (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px (p >0),解得p =1. (2)由(1)知抛物线E :y 2=2x .设C ⎝ ⎛⎭⎪⎫y 212,y 1,D ⎝ ⎛⎭⎪⎫y 222,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝ ⎛⎭⎪⎫x -y 212,代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1, 所以l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎪⎨⎪⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎨⎧x =y 1·y 22,y =y 1+y 22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎪⎨⎪⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x 0,代入⎩⎨⎧x =y 1·y 22,y =y 1+y 22,可得M (x ,y )满足⎩⎪⎨⎪⎧x =-8x 0,y =-y 0x 0,可得⎩⎪⎨⎪⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1,考虑到x 0∈[2,22],知x ∈[-4,-22],所以动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].1.如图,已知P 是椭圆x 24+y 2=1上一点,PM ⊥x 轴于点M .若PN →=λNM →. (1)求N 点的轨迹方程;(2)当N 点的轨迹为圆时,求λ的值.解:(1)设点P ,点N 的坐标分别为P (x 1,y 1),N (x ,y ), 则M 的坐标为(x 1,0),且x =x 1, 所以PN →=(x -x 1,y -y 1)=(0,y -y 1), NM →=(x 1-x ,-y )=(0,-y ), 由PN →=λNM →得(0,y -y 1)=λ(0,-y ). 所以y -y 1=-λy ,即y 1=(1+λ)y .因为P (x 1,y 1)在椭圆x 24+y 2=1上, 则x 214+y 21=1,所以x 24+(1+λ)2y 2=1, 故x 24+(1+λ)2y 2=1为所求的N 点的轨迹方程. (2)要使点N 的轨迹为圆,则(1+λ)2=14,解得λ=-12或λ=-32.故当λ=-12或λ=-32时,N 点的轨迹是圆.2.已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝ ⎛⎭⎪⎫33,0的直线l 与曲线E 交于点A ,B ,且MB →=-2MA →.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),因为B (0,2),M ⎝ ⎛⎭⎪⎫33,0,故MB →=⎝ ⎛⎭⎪⎫-33,2,MA →=⎝ ⎛⎭⎪⎫x 0-33,y 0.由于MB →=-2MA →,所以⎝ ⎛⎭⎪⎫-33,2=-2⎝ ⎛⎭⎪⎫x 0-33,y 0.所以x 0=32,y 0=-1,即A ⎝ ⎛⎭⎪⎫32,-1.因为A ,B 都在曲线E 上,所以⎩⎨⎧a ·02+b ·22=1,a ·⎝ ⎛⎭⎪⎫322+b ·(-1)2=1,解得⎩⎨⎧a =1,b =14. 所以曲线E 的方程为x 2+y24=1.[学生用书P407(单独成册)][A 级 基础练]1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:选C.(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.2.(2020·新高考卷Ⅰ改编)已知曲线C :mx 2+ny 2=1.以下结论正确的个数是( )①若m >n >0,则C 是椭圆,其焦点在y 轴上;②若m =n >0,则C 是圆,其半径为n ;③若mn <0,则C 是双曲线,其渐近线方程为y =± -mn x ;④若m=0,n >0,则C 是两条直线.A .1B .2C .3D .4解析:选C.对于①,因为m >n >0,所以0<1m <1n ,方程mx 2+ny 2=1可变形为x 21m +y 21n =1,所以该方程表示焦点在y 轴上的椭圆,正确;对于②,因为m=n >0,所以方程mx 2+ny 2=1可变形为x 2+y 2=1n ,该方程表示半径为1n 的圆,错误;对于③,因为mn <0,所以该方程表示双曲线,令mx 2+ny 2=0⇒y =± -mn x ,正确;对于④,因为m =0,n >0,所以方程mx 2+ny 2=1变形为ny 2=1⇒y =±1n ,该方程表示两条直线,正确.3.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D.当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 项图象所示,故选D.4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x解析:选A.设P (x ,y ).因为M (-2,0),N (2,0),所以MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ),由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理得y 2=-8x .故选A.5.动点M 在圆x 2+y 2=25上移动,过点M 作x 轴的垂线段MD ,D 为垂足,则线段MD 中点的轨迹方程是( )A.4x 225+y 225=1 B .x 225+4y 225=1 C.4x 225-y 225=1D.x 225-4y 225=1解析:选B.如图,设线段MD 的中点为P (x ,y ),M (x 0,y 0),D (x 0,0),因为P 是MD 的中点,所以⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又M 在圆x 2+y 2=25上,所以x 20+y 20=25,即x 2+4y 2=25,x 225+4y 225=1,所以线段MD 的中点P 的轨迹方程是x 225+4y 225=1.故选B.6.设D 为椭圆y 25+x 2=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为________.解析:设点P 坐标为(x ,y ).因为D 为椭圆y 25+x 2=1上任意一点,且A ,B 为椭圆的焦点,所以|DA |+|DB |=2 5.又|PD |=|BD |,所以|P A |=|PD |+|DA |=|DA |+|DB |=25,所以x 2+(y +2)2=25,所以x 2+(y +2)2=20,所以点P 的轨迹方程为x 2+(y +2)2=20.答案:x 2+(y +2)2=207.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t ,得点C 的轨迹方程为y =2x -2.答案:y =2x -28.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析:如图,△ABC 与内切圆的切点分别为G ,E ,F .则|AG |=|AE |=8,|BF |=|BG |=2,|CE |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,轨迹方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)9.如图所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).解:(1)根据题意,知|PA |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点的轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r , 因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4.因此其轨迹方程为y 2=-8x .10.已知动圆P 恒过定点⎝ ⎛⎭⎪⎫14,0,且与直线x =-14相切.(1)求动圆P 圆心的轨迹M 的方程;(2)在正方形ABCD 中,AB 边在直线y =x +4上,另外C ,D 两点在轨迹M 上,求该正方形的面积.解:(1)由题意得动圆P 的圆心到点⎝ ⎛⎭⎪⎫14,0的距离与它到直线x =-14的距离相等,所以圆心P 的轨迹是以⎝ ⎛⎭⎪⎫14,0为焦点,直线x =-14为准线的抛物线,且p =12,所以动圆P 圆心的轨迹M 的方程为y 2=x . (2)由题意设CD 边所在直线方程为y =x +t . 联立⎩⎪⎨⎪⎧y =x +t ,y 2=x ,消去y ,整理得x 2+(2t -1)x +t 2=0.因为直线CD 和抛物线交于两点,所以Δ=(2t -1)2-4t 2=1-4t >0,解得t <14. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=1-2t ,x 1x 2=t 2. 所以|CD |=2[(x 1+x 2)2-4x 1x 2]=2[(1-2t )2-4t 2]=2(1-4t ).又直线AB 与直线CD 之间的距离为|AD |=|t -4|2,|AD |=|CD |,所以2(1-4t )=|t -4|2,解得t =-2或t =-6,经检验t =-2和t =-6都满足Δ>0. 所以正方形边长|AD |=32或|AD |=52, 所以正方形ABCD 的面积S =18或S =50.[B 级 综合练]11.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)解析:选A.设A (a ,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).12.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.13.(2021·四川成都石室中学模拟)已知两定点F 1(-1,0),F 2(1,0)和一动点P ,给出下列结论:①若|PF 1|+|PF 2|=2,则点P 的轨迹是椭圆; ②若|PF 1|-|PF 2|=1,则点P 的轨迹是双曲线; ③若|PF 1||PF 2|=λ(λ>0,且λ≠1),则点P 的轨迹是圆;④若|PF 1|·|PF 2|=a 2(a ≠0),则点P 的轨迹关于原点对称;⑤若直线PF 1与PF 2的斜率之积为m (m ≠0),则点P 的轨迹是椭圆(除长轴两端点).其中正确的是________.(填序号)解析:对于①,由于|PF 1|+|PF 2|=2=|F 1F 2|,所以点P 的轨迹是线段F 1F 2,故①不正确.对于②,由于|PF 1|-|PF 2|=1,故点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,故②不正确.对于③,设P (x ,y ),由题意得(x +1)2+y 2(x -1)2+y 2=λ,整理得(1-λ2)x 2+(1-λ2)y 2+(2+2λ2)x +1-λ2=0.因为λ>0,且λ≠1,所以x 2+y 2+(2+2λ2)1-λ2x +1-λ21-λ2=0,所以点P 的轨迹是圆,故③正确.对于④,设P (x ,y ),则|PF 1|·|PF 2|=(x +1)2+y 2·(x -1)2+y 2=a 2.又点P (x ,y )关于原点的对称点为P ′(-x ,-y ),因为(-x +1)2+(-y )2·(-x -1)2+(-y )2=(x +1)2+y 2·(x -1)2+y 2=a 2,所以点P ′(-x ,-y )也在曲线(x +1)2+y 2·(x -1)2+y 2=a 2上,即点P 的轨迹关于原点对称,故④正确.对于⑤,设P (x ,y ),则k PF 1=y x +1,k PF 2=y x -1,由题意得k PF 1·k PF 2=y x +1·yx -1=y 2x 2-1=m (m ≠0),整理得x 2-y 2m =1,此方程不一定表示椭圆,故⑤不正确. 综上,正确结论的序号是③④. 答案:③④14.如图,已知椭圆C :x 218+y 29=1的短轴端点分别为B 1,B 2,点M 是椭圆C 上的动点,且不与B 1,B 2重合,点N 满足NB 1⊥MB 1,NB 2⊥MB 2.(1)求动点N 的轨迹方程;(2)求四边形MB 2NB 1面积的最大值.解:(1)方法一:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② ①×②得y 2-9=x 20y 20-9x 2.又因为x 2018+y 209=1,所以y 2-9=18⎝ ⎛⎭⎪⎫1-y 209y 20-9x 2=-2x 2,整理得动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法二:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② 联立①②,解得⎩⎪⎨⎪⎧x =y 20-9x 0,y =-y 0.又x 2018+y 209=1,所以x =-x 02,故⎩⎪⎨⎪⎧x 0=-2x ,y 0=-y ,代入x 2018+y 209=1,得y 29+x 292=1. 所以动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法三:设直线MB 1:y =kx -3(k ≠0), 则直线NB 1:y =-1k x -3,①直线MB 1与椭圆C :x 218+y 29=1的交点M 的坐标为⎝ ⎛⎭⎪⎪⎫12k 2k 2+1,6k 2-32k 2+1. 则直线MB 2的斜率为k MB 2=6k 2-32k 2+1-312k 2k 2+1=-12k .所以直线NB 2:y =2kx +3.②由①②得点N 的轨迹方程为y 29+x 292=1(x ≠0).(2)由(1)方法三得直线NB 1:y =-1k x -3,① 直线NB 2:y =2kx +3,②联立①②解得x =-6k2k 2+1,即x N =-6k2k 2+1,故四边形MB 2NB 1的面积S =12|B 1B 2|(|x M |+|x N |)=3×⎝ ⎛⎭⎪⎫12|k |2k 2+1+6|k |2k 2+1=54|k |2k 2+1=542|k |+1|k |≤2722,当且仅当|k |=22时,S 取得最大值2722.[C 级 提升练]15.在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP →=λRQ →(λ>1),求证:NF →=λFQ →.解:(1)依题意知,直线A 1N 1的方程为y =m6(x +6),①直线A 2N 2的方程为y =-n6(x -6),②设M (x ,y )是直线A 1N 1与A 2N 2的交点,①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎨⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP →=λRQ →,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF →=λFQ →,即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),只需证x 1-3x 2-3=-x 1-2x 2-2,即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6tt 2+3=0成立,得证.。
(完整版)求曲线方程的六种常用方法求曲线方程的六种常用方法在数学中,求解曲线方程是一个非常重要的问题。
这篇文档将介绍六种常用的方法,帮助你解决这个问题。
方法一:代数法代数法是求解曲线方程最常用的方法之一。
它的基本思想是将给定的曲线方程转化为代数方程,然后通过求解代数方程来得到曲线方程的解。
方法二:几何法几何法是另一种常用的求解曲线方程的方法。
它的基本思想是通过几何性质和图形的特点来确定曲线方程的形式和参数。
方法三:微积分法微积分法在求解曲线方程中也起到了非常重要的作用。
它利用微积分的工具和技巧来对曲线进行分析和求解。
通过求导、积分等操作,我们可以推导出曲线的方程式。
方法四:插值法插值法是一种通过已知的离散数据点来推测出未知数据点的方法。
利用插值法,我们可以找到曲线方程经过的点,并进而求解出曲线方程。
方法五:拟合法拟合法和插值法类似,它也是一种通过已知的数据点来求解曲线方程的方法。
拟合法通常通过根据给定的数据点,选择合适的曲线方程形式,使得曲线与这些数据点最为接近。
方法六:数值计算法数值计算法是一种通过数值计算的方式来求解曲线方程的方法。
它利用计算机的高速计算能力,通过迭代等方法快速求解出曲线方程的解。
通过掌握这六种常用的方法,相信你能更加轻松地求解曲线方程。
选择适合你的方法,并进行实践,相信你一定能够取得理想的结果。
结论本文介绍了六种常用的求解曲线方程的方法,包括代数法、几何法、微积分法、插值法、拟合法和数值计算法。
通过掌握这些方法,你能够更加有效地求解曲线方程,解决数学问题。
希望这些方法能够对你有所帮助。
第8讲 曲线与方程1.曲线与方程在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解,若此方程组无解,则两曲线无交点.1.辨明两个易误点(1)轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).(2)求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响. 2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系; (2)设点——设轨迹上的任一点P (x ,y ); (3)列式——列出动点P 所满足的关系式;(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简;(5)证明——证明所求方程即为符合条件的动点轨迹方程.1.已知曲线C 的方程为x 2-xy +y -5=0,则下列各点中,在曲线C 上的点是( )A .(-1,2)B .(1,-2)C .(2,-3)D .(3,6)A2.方程x =1-4y 2所表示的曲线是( ) A .双曲线的一部分 B .椭圆的一部分 C .圆的一部分D .直线的一部分B x =1-4y 2两边平方,可变为x 2+4y 2=1(x ≥0),表示的曲线为椭圆的一部分. 3.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0D 由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x ,4-y ),代入2x -y +3=0得2x -y +5=0.4.教材习题改编 已知方程ax 2+by 2=2的曲线经过点A ⎝ ⎛⎭⎪⎫0,53和B (1,1),则曲线方程为________.由题意得⎩⎪⎨⎪⎧259b =2,a +b =2,解得⎩⎪⎨⎪⎧a =3225,b =1825.所以曲线方程为3225x 2+1825y 2=2,即1625x 2+925y 2=1.1625x 2+925y 2=1 5.平面上有三个不同点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为________.AB →=⎝ ⎛⎭⎪⎫2,-y 2,BC →=⎝ ⎛⎭⎪⎫x ,y 2,由AB →⊥BC →,得AB →·BC →=0, 即2x +⎝ ⎛⎭⎪⎫-y 2·y2=0,所以动点C 的轨迹方程为y 2=8x (x ≠0).y 2=8x (x ≠0)直接法求轨迹方程(高频考点)直接法求点的轨迹方程是求轨迹方程的一种重要方法,也是高考考查的重要内容. 直接法求点的轨迹方程,在高考中有以下两个命题角度: (1)已知动点满足的关系式求轨迹方程(或判断轨迹); (2)无明确等量关系求轨迹方程.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积. 【解】 (1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为y =-13x +83.又|OM |=|OP |=22,O 到l 的距离为4105,|PM |=4105,所以△POM 的面积为165.直接法求曲线方程的一般步骤(1)建立合理的直角坐标系;(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程; (3)化简整理这个方程,检验并说明所求的方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系“翻译”为代数方程,要注意“翻译”的等价性.角度一 已知动点满足的关系式求轨迹方程(或 判断轨迹)1.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →,则动点P 的轨迹C 的方程为( )A .x 2=4y B .y 2=3x C .x 2=2yD .y 2=4xA 设点P (x ,y ),则Q (x ,-1). 因为QP →·QF →=FP →·FQ →,所以(0,y +1)·(-x ,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1), 整理得x 2=4y ,所以动点P 的轨迹C 的方程为x 2=4y .角度二 无明确等量关系求轨迹方程2.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2xD .(x -1)2+y 2=2D 如图,设P (x ,y ),圆心为M (1,0).连接MA ,PM , 则MA ⊥PA ,且|MA |=1, 又因为|PA |=1,所以|PM |=|MA |2+|PA |2=2, 即|PM |2=2,所以(x -1)2+y 2=2.定义法求轨迹方程已知A (-5,0),B (5,0),动点P 满足|PB →|,12|PA →|,8成等差数列,则点P 的轨迹方程为________.【解析】 由已知得|PA →|-|PB →|=8,所以点P 的轨迹是以A ,B 为焦点的双曲线的右支, 且a =4,b =3,c =5,所以点P 的轨迹方程为x 216-y 29=1(x ≥4).【答案】x 216-y 29=1(x ≥4)若将本例中的条件“|PB →|,12|PA →|,8”改为“|PA →|,12|PB →|,8”,求点P 的轨迹方程.由已知得|PB →|-|PA →|=8,所以点P 的轨迹是以A ,B 为焦点的双曲线的左支,且a =4,b =3,c =5, 所以点P 的轨迹方程为x 216-y 29=1(x ≤-4).定义法求轨迹方程(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程;(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.(2017·江西红色七校二模)已知动圆C 过点A (-2,0),且与圆M :(x-2)2+y 2=64相内切.求动圆C 的圆心的轨迹方程.圆M :(x -2)2+y 2=64,圆心M 的坐标为(2,0),半径R =8.因为|AM |=4<R ,所以点A (-2,0)在圆M 内.设动圆C 的半径为r ,依题意得r =|CA |,且|CM |=R -r ,即|CM |+|CA |=8>|AM |.所以圆心C 的轨迹是中心在原点,焦点为A ,M ,长轴长为8的椭圆,设其方程为x 2a 2+y 2b2=1(a >b >0),则a =4,c =2.所以b 2=a 2-c 2=12.所以动圆C 的圆心的轨迹方程为x 216+y 212=1.利用相关点法(代入法)求轨迹方程(2017·石家庄一模)已知点Q 在椭圆C :x 216+y 210=1上,点P 满足OQ →=12(OF 1→+OP →)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆 【解析】 因为点P 满足OQ →=12(OF 1→+OP →),所以Q 是线段PF 1的中点.设P (x 1,y 1), 由于F 1为椭圆C :x 216+y 210=1的左焦点,则F 1(-6,0),故Q ⎝⎛⎭⎪⎫x 1-62,y 12, 由点Q 在椭圆C :x 216+y 210=1上,则点P 的轨迹方程为(x 1-6)264+y 2140=1,故点P 的轨迹为椭圆. 【答案】 D(2017·中原名校联考)已知双曲线x 22-y 2=1的左、右顶点分别为A 1,A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同于A 1、A 2的两个不同的动点,则直线A 1P 与A 2Q交点的轨迹方程为________.由题设知|x 1|>2,A 1(-2,0),A 2(2,0),则有 直线A 1P 的方程为y =y 1x 1+2(x +2),①直线A 2Q 的方程为y =-y 1x 1-2(x -2),②联立①②,解得⎩⎪⎨⎪⎧x =2x 1,y =2y 1x1,所以⎩⎪⎨⎪⎧x 1=2x,y 1=2y x,③所以x ≠0,且|x |<2,因为点P (x 1,y 1)在双曲线x 22-y 2=1上,所以x 212-y 21=1.将③代入上式,整理得所求轨迹的方程为x 22+y 2=1(x ≠0,且x ≠±2).x 22+y 2=1(x ≠0,且x ≠±2)1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对C (x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0. 故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1. 2.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0),距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16yB 因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.3.(2017·珠海模拟)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为( )A .y =-2xB .y =2xC .y =2x -8D .y =2x +4B 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,所以⎩⎪⎨⎪⎧x +x12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y . 因为点R (x 1,y 1)在直线y =2x -4上, 所以y 1=2x 1-4,所以-y =2(2-x )-4,即y =2x .4.已知动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4,则动圆圆心Q 的轨迹C 的方程为( )A .y 2=2x B .y 2=4x C .x 2=2yD .x 2=4yB 设Q (x ,y ),因为动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4,所以⎝ ⎛⎭⎪⎫MN 22+|x |2=|AQ |2,所以|x |2+22=(x -2)2+y 2,整理得y 2=4x , 所以动圆圆心Q 的轨迹C 的方程是y 2=4x ,故选B .5.(2017·湖南东部六校联考)已知两定点A (0,-2),B (0,2),点P 在椭圆x 212+y 216=1上,且满足|AP →|-|BP →|=2,则AP →·BP →为( )A .-12B .12C .-9D .9D 由|AP →|-|BP →|=2,可得点P (x ,y )的轨迹是以两定点A 、B 为焦点的双曲线的上支,且2a =2,c =2,所以b = 3.所以点P 的轨迹方程为y 2-x 23=1(y ≥1).由⎩⎪⎨⎪⎧x 212+y 216=1,y 2-x 23=1解得⎩⎪⎨⎪⎧x 2=9,y 2=4,所以AP →·BP →=(x ,y +2)·(x ,y -2)=x 2+y 2-4=9+4-4=9,故选D .6.(2017·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y225=1 B .4x 221+4y225=1C.4x 225-4y221=1 D .4x 225+4y221=1D 因为M 为AQ 垂直平分线上一点,则|AM |=|MQ |,所以|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆.所以a =52,c =1,则b 2=a 2-c 2=214,所以椭圆的方程为4x 225+4y221=1.7.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足向量OP →在向量OA →上的投影为-5,则点P 的轨迹方程是________.由OP →·OA →|OA →|=-5,知x +2y =-5,即x +2y +5=0.x +2y +5=08.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t 得点C 的轨迹方程为y =2x -2.y =2x -29.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________.设P (x ,y ),因为△MPN 为直角三角形, 所以|MP |2+|NP |2=|MN |2,所以(x +2)2+y 2+(x -2)2+y 2=16, 整理得,x 2+y 2=4.因为M ,N ,P 不共线,所以x ≠±2, 所以轨迹方程为x 2+y 2=4(x ≠±2). x 2+y 2=4(x ≠±2)10.已知点P 是圆C :(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q (x ,y )的轨迹方程是________.依题意有|QP |=|QF |,则||QC |-|QF ||=|CP |=2,又|CF |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,得b 2=3,所求轨迹方程为x 2-y 23=1.x 2-y 23=111.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N 的轨迹方程.设M (x 0,0),P (0,y 0),N (x ,y ), 因为PM →⊥PF →,PM →=(x 0,-y 0), PF →=(1,-y 0),所以(x 0,-y 0)·(1,-y 0)=0, 所以x 0+y 20=0.由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),所以⎩⎪⎨⎪⎧x -x 0=-2x 0,y =2y 0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=12y ,所以-x +y 24=0,即y 2=4x . 故所求的点N 的轨迹方程是y 2=4x .12.(2017·唐山模拟)已知P 为圆A :(x +1)2+y 2=8上的动点,点B (1,0).线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P 在第一象限,且cos ∠BAP =223时,求点M 的坐标.(1)圆A 的圆心为A (-1,0),半径等于2 2. 由已知|MB |=|MP |,于是|MA |+|MB |=|MA |+|MP |=22>2=|AB |, 故曲线Γ是以A ,B 为焦点,以22为长轴长的椭圆, 即a =2,c =1,b =1, 所以曲线Γ的方程为x 22+y 2=1.(2)由cos ∠BAP =223,|AP |=22,得P ⎝ ⎛⎭⎪⎫53,223.于是直线AP 的方程为y =24(x +1). 由⎩⎪⎨⎪⎧x 22+y 2=1,y =24(x +1),整理得5x 2+2x -7=0,解得x 1=1,x 2=-75.由于点M 在线段AP 上, 所以点M 坐标为⎝ ⎛⎭⎪⎫1,22.13.已知正方体ABCD A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线D 过点P 在平面ABCD 内作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1, 即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线, 所以点P 的轨迹为抛物线.14.已知点A ,B 分别是射线l 1:y =x (x ≥0),l 2:y =-x (x ≥0)上的动点,O 为坐标原点,且△OAB 的面积为定值2,则线段AB 中点M 的轨迹方程为________.由题意可设A (x 1,x 1),B (x 2,-x 2),M (x ,y ),其中x 1>0,x 2>0,则⎩⎪⎨⎪⎧x =x 1+x 22,①y =x 1-x 22.②因为△OAB 的面积为定值2,所以S △OAB =12OA ·OB =12(2x 1)(2x 2)=x 1x 2=2.①2-②2得x 2-y 2=x 1x 2,而x 1x 2=2, 所以x 2-y 2=2.由于x 1>0,x 2>0,所以x >0,即所求点M 的轨迹方程为x 2-y 2=2(x >0). x 2-y 2=2(x >0)15.已知实数m >1,定点A (-m ,0),B (m ,0),S 为一动点,点S 与A ,B 两点连线的斜率之积为-1m2.(1)求动点S 的轨迹C 的方程,并指出它是哪一种曲线;(2)若m =2,问t 取何值时,直线l :2x -y +t =0(t >0)与曲线C 有且只有一个交点. (1)设点S (x ,y ),则k SA =y -0x +m ,k SB =y -0x -m. 由题意,得y 2x 2-m2=-1m2,即x 2m2+y 2=1(x ≠±m ). 因为m >1,所以轨迹C 是中心在坐标原点,焦点在x 轴上的椭圆(除去x 轴上的两顶点),其中长轴长为2m ,短轴长为2.(2)若m =2,则曲线C 的方程为x 22+y 2=1(x ≠±2).由⎩⎪⎨⎪⎧2x -y +t =0,x 22+y 2=1,消去y ,得9x 2+8tx +2t 2-2=0. 令Δ=64t 2-36×2(t 2-1)=0,得t =±3. 因为t >0,所以t =3.此时直线l 与曲线C 有且只有一个交点.16.(2017·郑州质检)已知动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A 、B 两点,直线l :y =mx +n 与曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合).(1)求曲线E 的方程;(2)当直线l 与圆x 2+y 2=1相切时,四边形ACBD 的面积是否有最大值?若有,求出其最大值及对应的直线l 的方程;若没有,请说明理由.(1)设点P (x ,y ),由题意可得,(x -1)2+y 2|x -2|=22,整理可得x 22+y 2=1.所以曲线E 的方程是x 22+y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),由已知可得|AB |= 2. 当m =0时,不合题意.当m ≠0时,由直线l 与圆x 2+y 2=1相切,可得|n |m 2+1=1,即m 2+1=n 2. 联立⎩⎪⎨⎪⎧y =mx +n ,x 22+y 2=1消去y 得⎝ ⎛⎭⎪⎫m 2+12x 2+2mnx +n 2-1=0,Δ=4m 2n 2-4⎝ ⎛⎭⎪⎫m 2+12(n 2-1)=2m 2>0,x 1=-2mn +Δ2m 2+1,x 2=-2mn -Δ2m 2+1, S 四边形ACBD =12|AB ||x 2-x 1|=2|m |2m 2+1=22|m |+1|m |≤22,当且仅当2|m |=1|m |,即m =±22时等号成立,此时n =±62,经检验可知,直线y =22x -62和直线y =-22x +62符合题意.。
课时达标 第46讲[解密考纲]考查直线的倾斜角与斜率、直线的方程常以选择题、填空题出现,或者在直线与圆锥曲线的位置关系中进行考查.一、选择题1.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( C ) A .[0,π) B .⎣⎡⎭⎫π4,π2C .⎣⎡⎦⎤π4,3π4D .⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4解析:当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k =-1cos θ.∵cos θ∈[-1,1]且cos θ≠0, ∴k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4. 由上知,倾斜角的范围是⎣⎡⎦⎤π4,3π4,故选C .2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( D )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 解析:直线l 1的斜率角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.3.若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( A ) A .(1,-2) B .(1,2) C .(-1,2)D .(-1,-2)解析:因为k ,-1,b 三个数成等差数列,所以k +b =-2,即b =-2-k ,于是直线方程化为y =kx -k -2,即y +2=k (x -1),故直线必过定点(1,-2).4.(2017·浙江嘉兴模拟)如果AC <0,且BC <0,那么直线 Ax +By +C =0不通过( C ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:直线Ax +By +C =0的斜率k =-A B <0,在y 轴上的截距为-CB >0,所以,直线不通过第三象限.5.将直线l 沿y 轴的负方向平移a (a >0)个单位,再沿x 轴正方向平移a +1个单位得直线l ′,此时直线l ′与l 重合,则直线l ′的斜率为( B )A .aa +1B .-aa +1C .a +1aD .-a +1a解析:结合图形,若直线l 先沿y 轴的负方向平移,再沿x 轴正方向平移后,所得直线与l 重合,这说明直线l 和l ′的斜率均为负,倾斜角是钝角.设l ′的倾斜角为θ,则tan θ=-a a +1.6.设点 A (-2,3),B (3,2),若直线 ax + y +2 = 0 与线段 AB 没有交点,则a 的取值范围是( B )A .⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫43,+∞ B .⎝⎛⎭⎫-43,52 C .⎣⎡⎦⎤-52,43 D .⎝⎛⎦⎤-∞,-43∪⎣⎡⎭⎫52,+∞ 解析:直线ax +y +2=0恒过点 M (0,-2),且斜率为-a , ∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=-43,由图可知:-a >-52且-a <43,∴a ∈⎝⎛⎭⎫-43,52. 二、填空题7.(2017·哈尔滨模拟)一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为x +2y -2=0或2x +y +2=0.解析:设所求直线的方程为x a +yb =1,∵A (-2,2)在直线上,∴-2a +2b =1, ①又因直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1. ②由①②可得(1)⎩⎪⎨⎪⎧ a -b =1,ab =2或(2)⎩⎪⎨⎪⎧a -b =-1,ab =-2. 由(1)解得⎩⎪⎨⎪⎧ a =2,b =1或⎩⎪⎨⎪⎧a =-1,b =-2,方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0为所求直线的方程.8.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是3. 解析:∵直线AB 的方程为x 3+y4=1,易知x >0,y >0时xy 才最大, ∴1=x 3+y 4≥2|xy |12, ∴|xy |≤3,∴(xy )max =3, 当且仅当x 3=y 4=12,即当P 点的坐标为⎝⎛⎭⎫32,2时,xy 取最大值3.9.若 ab >0,且 A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为16. 解析:根据A (a,0),B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上, 故-2a +-2b=1,所以-2(a +b )=ab . 又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16, 当且仅当a =b =-4时取等号,即ab 的最小值为16. 三、解答题10.过点P (3,0)作一直线,使它夹在两直线l 1:2x -y -2=0与l 2:x +y +3=0之间的线段AB 恰被点P 平分,求此直线的方程.解析:设点A (x ,y )在l 1上,点B (x B ,y B )在l 2上. 由题意知⎩⎨⎧x +xB 2=3,y +yB2=0,则点B (6-x ,-y ),解方程组⎩⎪⎨⎪⎧2x -y -2=0,(6-x )+(-y )+3=0,得⎩⎨⎧x =113,y =163则k =163-0113-3=8.故所求的直线方程为y =8(x -3),即8x -y -24=0. 11.已知点A (3,4),求满足下列条件的直线方程. (1)经过点A 且在两坐标轴上截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形. 解析:(1)设直线在x ,y 轴上的截距均为a . ①若a =0,即直线过点(0,0)及(3,4). ∴直线的方程为y =43x ,即4x -3y =0.②若a ≠0,设所求直线的方程为x a +ya =1,又点(3,4)在直线上, ∴3a +4a =1,∴a =7. ∴直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 12.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.解析:(1)证明:直线l 的方程是 k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0, 解得⎩⎪⎨⎪⎧x =-2,y =1,故无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解之得k >0;当k =0时,直线为y =1,符合题意,故k ≥0.即k 的取值范围是[0,+∞).(3)由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, 等号成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.。
解析:选 A 设D (0 ,入),E (1,1 —入),O w 入w i ,所以线段 AD 的方程为1(0 w x w 1),线段 OE 的方程为 y = (1 —入)x (0 w x w 1),联立方程组咼考达标检测(四十)曲线与方程求解 3方法直接法、定义法、代入法、选择题 1. (2017 •深圳调研)已知点F (0,1),直线l : y =— 1, F 为平面上的动点,过点 F 作 直线i 的垂线,垂足为 Q 且-F • ~QiF ="FP • —Q ,则动点F 的轨迹方程为( ) 八 2 ,A. x = 4y C. x 2= 2y B . y 2= 3x D. y 2= 4x 解析:选A 设点F (x , y ),则Qx , — 1). -- > ---- > --- > ---- > ••• QF • QF = FF • FQ ,• - (0 , y + 1) • ( — X, 2) = (x , y — 1) •(x , — 2), 即 2(y + 1) = x 2— 2(y — 1),整理得 x 2= 4y , •••动点P 的轨迹方程为x 2= 4y . 2 2 x y 2. (2016 •呼和浩特调研)已知椭圆 尹話=1(a >b >0) , M 为椭圆上一动点, Fi 为椭圆的左焦点,则线段 MF 的中点F 的轨迹是( ) A.圆 B .椭圆 C.双曲线 D.抛物线 解析:选B 设椭圆的右焦点是 F 2, 由椭圆定义可得|MF | + |MF = 2a >2c ,yVV 1 所以 | FF | + | PQ 円刿 MF | + | MF |) = a >c , 企J 所以点P 的轨迹是以F 1和0为焦点的椭圆. Jz 3.已知正方形的四个顶点分别为 O 0,0) , A (1,0),耳1,1) , C (0,1),点D, 线段OC AB 上运动,且 OD= BE 设AD 与 OE 交于点 G 则点G 的轨迹方程是( E 分别在 A. y = x (1 — x )(0 w x w 1) B. C .D .x = y (1 — y )(0 w y w 1) 2y = x (0 w x w 1) 2y = 1 — x (0 w x w 1) x+¥(入为参数),消去参数 入得点G 的轨迹方程为y = x (1 —x )(0 < x < 1).4. (2016 •廊坊二模)有一动圆P 恒过定点F (a, 0)(a >0)且与y 轴相交于点 A, B,若厶ABP 为正三角形,则圆心 P 的轨迹为( )解析:选 A 设P 点的坐标为(x ,y ),由|PA = 3| PO ,得,x —1 2+ y +? 23 x 2+ y 2,整理得 8x 2+ 8y 2 + 2x — 4y — 5 = 0,故选 A.2x 2—鲁=1的左焦点且与直线x = 2相切,则圆3心M 的轨迹方程是()A. y 2= 8xx +¥ = 1, o w X < 1, y =[—入 x , 0< x <1A.直线B .圆C.椭圆D.双曲线解析:选D 设Rx , y ),动圆P 的半径为R,•••△ ABP 为正三角形, ••• P 至U y 轴的距离d =而 R = |PF = ~x — a~2+222整理得(x + 3a ) — 3y = 12a ,c22 即丄亠-角=1.12a 4a / w•••点P 的轨迹为双曲线.故选 D.5. (2016 •沈阳质检)已知点 Q0,0) ,A (1,— 2),动点P 满足| PA = 31 PQ ,则P 点的轨迹方程是()22 lA*8x + 8y + 2x — 4y — 5= 0 2 28x + 8y — 2x — 4y — 5= 02 28x + 8y + 2x + 4y — 5= 0 8x 2 + 8y 2— 2x + 4y — 5= 0A. B. C.D.6. (2017 •梅州质检)动圆M 经过双曲线B . y 2= — 8xD. y = — 4x即 | x | =C. y2= 4x2解析:选B 双曲线X 2—售=1的左焦点F ( — 2,0),动圆M 经过F 且与直线x = 2相切,3则圆心M 到点F 的距离和到直线 x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方2程为y =— 8x .二、填空题7. (2017 •聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),巳2,2),若点C-- > --- > ------ > ---- >满足 OC = OA +1( OB — OA ),其中t € R ,则点C 的轨迹方程是 _________________解析:设 C (x ,y ),则"OC = (x,y ), "O/A +1( "OB —"OA ) = (1 + t, 2t ),所以 f ^1, y= 2t 消去参数t 得点C 的轨迹方程为y = 2x — 2.答案:y = 2x — 2&已知圆的方程为x 2 + y 2 = 4,若抛物线过点 A — 1,0) , B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是 _________________F ,过 A, B, O 作准线的垂线 AA , BB , OO,则 | AA | + | BB | =| AA | + | BB | = | FA + | FB ,二 | FA + | FE | = 4,故 F 点的轨迹 是以代B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为2+ y 3 = 1" 0).2 2“宀 x y答案:4+ 3=1(y 丰0)9•在△ ABC 中, A 为动点,B , C 为定点,B ;— |, 0 i, C |, 0 (a >0),且满足条件sin1C- sin B = 2sin A ,则动点A 的轨迹方程是 ________________ .解析:由正弦定理得LAR-— 瞬=》LBR-,1即 |AB — I AC = 2 BC ,故动点A 是以B, C 为焦点,2为实轴长的双曲线右支.三、解答题10. 已知圆C 的圆心在坐标原点 O,且恰好与直线 丨1: x — y — 2迈=0相切.解析:设抛物线焦点为2|OO = 4,由抛物线定义得即动点A 的轨迹方程为16x 2 a 16y 23a 2 =1( x >0 且 y 丰 0). 答案:16x 2 a16y 2=1(x > 0且沪 0)(1)求圆的标准方程;⑵设点A为圆上一动点,ANILx轴于点N若动点Q满足"O)Q= mOA + (1 —m) "ON (其中m为非零常数),试求动点Q的轨迹方程C2.解:(1)设圆的半径为r,圆心到直线11的距离为d, 则d =1當=2= r,•••圆C的方程为x2+ y2= 4.(2)设动点Qx, y) , A(x o, y o),••• ANLx轴于点N,• Nx o,o),由题意,得(x, y) = m(x o, y o) + (1 —m(x o,O),x o = x,x= x o,•十即f 1l y = my, y o= ?,F 1 \ 2 2将A卜my 代入x2+ y2=4,得7+4^= j2 2 即动点Q的轨迹方程为x + £= 1.4 4m2 211. (2017 •唐山统考)已知动点P到直线1 : x =—1的距离等于它到圆C: x + y —4x + 1 = 0的切线长(P到切点的距离).记动点P的轨迹为曲线E.(1) 求曲线E的方程;y/X/Tk At(2) 点Q是直线l上的动点,过圆心C作QC的垂线交曲线E于A B两点,设AB的中点| QD 一为D求|AJ的取值范围... 2 2解:(1)由已知得圆的方程为(x—2) + y = 3,7 /严丿则圆心为C(2,0),半径r = .'3.设P(x, y),依题意可得| x + 1| = . x—2+ y2—3,整理得y2= 6x.故曲线E的方程为y2= 6x.⑵设直线AB的方程为my= x—2, 则直线CQ的方程为y=—m(x—2),可得Q —1,3 m .2 2将my= x —2代入y= 6x并整理可得y—6my- 12= 0,设A(X1, y1) , B(X2, y2),则y1+ y2=6m y1y2=—12,即 D (3m + 2,3 m , I QD =3m + 3.| QD一故的取值范围是1 AB(2)求直线AA 与直线AB 交点M 的轨迹方程.解:⑴ 设 A (x o , y o ),则 S 矩形ABC H 4|x °y o | ,2 2X o 22X o由 9+y o =1 得 y o =1 — 6,9 1当 x o = 2, y o =2时,S max = 6.从而 12= x 0+ y 0= 5, t = ;.:5,•••当t = ,5时,矩形ABC 啲面积取到最大值 6.2X 2(2)由椭圆 C 2: 9十 y = 1,知 A( — 3,0) , A(3,0),由曲线的对称性及 A (x o , y o ), 得 B (x o ,— y o ), 设点M 的坐标为(x , y ),y o直线AA 的方程为y = 七(x + 3).① X o 十3——y o直线AB 的方程为y =— (x — 3).②X o — 32由①②得y 2= x —y - 9).③ 又点A (x o , y o )在椭圆C 上,AB 的中点D 的坐标为y 1 + y 2,2, + m ■ . y i — y 223m + 3I AB =11 QD 2所以=27QAB 丿2=2.3;1+m,=41-3m 2 + 4的取值范围是审4)'12. (2016 •泰安质检 )如图所示,动圆亠 2 2.2, .C : x + y = t 1v t v 3,相交于A , B, C, D 四点,点A ,A 分别为C 2的左,右顶点. (1)当t 为何值时,矩形 ABCD 勺面积取得最大值?并求出其最大面积.从而 x 0y 2= x 0 1 — 9 :1 —-X o — 922272X o故 y o = 1 — 9.④X 2 将④代入③得-—y =1(x v — 3, y v 0).2x 2因此点M 的轨迹方程为——y = 1(x v — 3, y v 0)・。
第8讲 曲线与方程最新考纲 1.了解方程的曲线与曲线的方程的对应关系;2.了解解析几何的基本思想和利用坐标法研究曲线的简单性质;3.能够根据所给条件选择适当的方法求曲线的轨迹方程.知 识 梳 理1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f (x ,y )=0的实数解满足如下关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,将其转化为x ,y 的方程式,并化简. (5)证明——证明所求方程即为符合条件的动点轨迹方程. 3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎨⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解.若此方程组无解,则两曲线无交点.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( ) (2)方程x 2+xy =x 的曲线是一个点和一条直线.( ) (3)动点的轨迹方程和动点的轨迹是一样的.( )(4)方程y=x与x=y2表示同一曲线.( )解析对于(2),由方程得x(x+y-1)=0,即x=0或x+y-1=0,所以方程表示两条直线,错误;对于(3),前者表示方程,后者表示曲线,错误;对于(4),曲线y=x是曲线x=y2的一部分,错误.答案(1)√(2)×(3)×(4)×2.已知命题“曲线C上的点的坐标是方程f(x,y)=0的解”是正确的,则下列命题中正确的是( )A.满足方程f(x,y)=0的点都在曲线C上B.方程f(x,y)=0是曲线C的方程C.方程f(x,y)=0所表示的曲线不一定是曲线CD.以上说法都正确解析曲线C可能只是方程f(x,y)=0所表示的曲线的一部分,因此答案C 正确.答案 C3.已知M(-1,0),N(1,0),|PM|-|PN|=2,则动点P的轨迹是( )A.双曲线B.双曲线左支C.一条射线D.双曲线右支解析由于|PM|-|PN|=|MN|,所以D不正确,应为以N为端点,沿x轴正向的一条射线.答案 C4.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是________.解析连接OP,则|OP|=2,∴P点轨迹是去掉M,N两点的圆,∴方程为x2+y2=4(x≠±2).答案x2+y2=4(x≠±2)5.(选修2-1P35例1改编)曲线C:xy=2上任一点到两坐标轴的距离之积为________.解析曲线xy=2上任取一点(x0,y0),则x0y0=2,该点到两坐标轴的距离之积为|x0||y0|=|x0y0|=2.答案 26.(2017·宁波月考)设定点F1(0,-3),F2(0,3),动点P满足条件|PF1|+|PF2|=a+9a(a>0),(1)当a=3时,点P的轨迹是________;(2)当a≠3时,点P的轨迹是________.解析∵a+9a≥2a·9a=6(a>0).(1)当a=3时,a+9a=6,此时|PF1|+|PF2|=|F1F2|,P点的轨迹为线段F1F2,(2)当a≠3,a>0时,|PF1|+|PF2|>|F1F2|.由椭圆定义知P点的轨迹为椭圆.答案(1)线段F1F2(2)椭圆考点一直接法求轨迹方程【例1】(2017·义乌模拟)已知动圆过定点A(4,0),且在y轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明:直线l过定点.(1)解如图,设动圆圆心为O1(x,y),由题意,|O1A|=|O1M|,当O1不在y轴上时,过O1作O1H⊥MN交MN于H,则H是MN的中点.∴|O1M|=x2+42,又|O1A|=(x-4)2+y2,∴(x-4)2+y2=x2+42,化简得y2=8x(x≠0).当O1在y轴上时,O1与O重合,点O1的坐标(0,0)也满足方程y2=8x,∴动圆圆心的轨迹C的方程为y2=8x.(2)证明由题意,设直线l的方程为y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x中,得k2x2+(2bk-8)x+b2=0. 其中Δ=-32kb+64>0.由根与系数的关系得,x1+x2=8-2bkk2,①x 1x2=b2k2,②因为x轴是∠PBQ的角平分线,所以y1x1+1=-y2x2+1,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0③将①,②代入③得2kb2+(k+b)(8-2bk)+2k2b=0,∴k=-b,此时Δ>0,∴直线l的方程为y=k(x-1),即直线l过定点(1,0).规律方法利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简.(2)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略.【训练1】在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-13,则动点P的轨迹方程为________.解析因为点B与点A(-1,1)关于原点O对称,所以点B的坐标为(1,-1).设点P的坐标为(x,y),由题意得y-1x+1·y+1x-1=-13,化简得x2+3y2=4(x≠±1).故动点P的轨迹方程为x2+3y2=4(x≠±1).答案x2+3y2=4(x≠±1)考点二定义法求轨迹方程【例2】已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求C的方程.解由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4>|MN|=2.由椭圆的定义可知,曲线C是以M,N为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x24+y23=1(x≠-2).规律方法(1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(2)理解解析几何中有关曲线的定义是解题关键.(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x或y进行限制. 【训练2】已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|=4,动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M的轨迹方程,并说明轨迹是何种曲线.解如图所示,以O1O2的中点O为原点,O1O2所在直线为x轴建立平面直角坐标系.由|O1O2|=4,得O1(-2,0),O2(2,0).设动圆M的半径为r,则由动圆M与圆O1内切,有|MO1|=r-1;由动圆M与圆O2外切,有|MO2|=r+2.∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点, 实轴长为3的双曲线的左支. ∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29- 4y 27=1⎝⎛⎭⎪⎫x ≤-32. 考点三 相关点法(代入法)求轨迹方程【例3】 如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0);由曲线的对称性, 得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②相乘得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④ 将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).规律方法 “相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 0,y 0);(2)求关系式:求出两个动点坐标之间的关系式⎩⎨⎧x 0=f (x ,y ),y 0=g (x ,y );(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程.【训练3】 已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,点P 为椭圆C上的动点,则△PF 1F 2的重心G 的轨迹方程为( ) A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D.x 2+4y 23=1(y ≠0) 解析 依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0),G (x ,y ),则由三角形重心坐标关系可得⎩⎪⎨⎪⎧x =x 0-1+13,y =y 03即⎩⎨⎧ x 0=3x ,y 0=3y ,代入x 204+y 203=1,得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0).答案C[思想方法]求轨迹方程的常用方法1.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.2.定义法:若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程.3.相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. [易错防范]1.求轨迹方程时,要注意曲线上的点与方程的解是一一对应关系.检验可从以下两个方面进行:一是方程的化简是否是同解变形;二是是否符合题目的实际意义.2.求点的轨迹与轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.基础巩固题组 (建议用时:40分钟)一、选择题1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A.两条直线 B.两条射线C.两条线段D.一条直线和一条射线解析 原方程可化为⎩⎨⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线. 答案 D2.(2017·嘉兴一中质检)若方程x 2+y 2a=1(a 是常数),则下列结论正确的是( )A.任意实数a 方程表示椭圆B.存在实数a 方程表示椭圆C.任意实数a 方程表示双曲线D.存在实数a 方程表示抛物线解析 当a >0且a ≠1时,方程表示椭圆,故选B. 答案 B3.(2017·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( ) A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1D.4x 225+4y 221=1解析 ∵M 为AQ 的垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹是以定点C ,A 为焦点的椭圆.∴a =52,∴c =1,则b 2=a 2-c 2=214,∴M 的轨迹方程为4x 225+4y 221=1.答案 D4.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则点P 的轨迹方程是( ) A.y 2=2x B.(x -1)2+y 2=4 C.y 2=-2xD.(x -1)2+y 2=2解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1,又∵|PA |=1, ∴|PM |=|MA |2+|PA |2=2, 即|PM |2=2,∴(x -1)2+y 2=2. 答案 D5.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( ) A.直线B.椭圆C.圆D.双曲线解析 设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎨⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧λ1= y +3x10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x 10=1,即x +2y =5 ,所以点C 的轨迹为直线,故选A. 答案 A 二、填空题6.(2017·湖州月考)已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹方程是________;轨迹所包围的图形的面积为__________.解析 设P (x ,y ),由|PA |=2|PB |, 得(x +2)2+y 2=2(x -1)2+y 2, ∴3x 2+3y 2-12x =0, 即x 2+y 2-4x =0.∴P 的轨迹为以(2,0)为圆心,半径为2的圆. 即轨迹所包围的面积等于4π. 答案 x 2+y 2-4x =0 4π7.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为________.解析设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎪⎨⎪⎧x +x12=1, y +y 12=0,即⎩⎨⎧x 1=2-x ,y 1=-y . ∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x . 答案 y =2x8.在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为________.解析 以BC 的中点为原点,中垂线为y 轴建立如图所示的坐标系,E ,F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |,|AE |=|AF |.∴|AB |-|AC |=22<|BC |=4,∴点A 的轨迹为以B ,C 的焦点的双曲线的右支(y ≠0)且a =2,c =2,∴b =2,∴轨迹方程为x 22-y 22=1(x >2).答案x 22-y 22=1(x >2) 三、解答题9.(2017·温州十校模拟)已知点C (1,0),点A ,B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.解 (1)连接CP ,OP ,由AC →·BC →=0,知AC ⊥BC , ∴|CP |=|AP |=|BP |=12|AB |,由垂径定理知|OP |2+|AP |2=|OA |2, 即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9, 化简,得x 2-x +y 2=4.(2)存在.根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px (p >0)上,其中p2=1.∴p =2,故抛物线方程为y 2=4x , 由方程组⎩⎨⎧y 2=4x ,x 2-x +y 2=4得x 2+3x -4=0, 解得x 1=1,x 2=-4,由x ≥0, 故取x =1,此时y =±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).10.如图所示,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ).解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以A 点坐标为⎝ ⎛⎭⎪⎫-1,14,故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是 y 0=-12(2-2)+14=-3-224,①y 0=-(1-2)22p =-3-222p .②由①②得p =2.(2)设N (x ,y ),A ⎝ ⎛⎭⎪⎫x 1,x 214,B ⎝ ⎛⎭⎪⎫x 2,x 224,x 1≠x 2.由N 为线段AB 的中点知x =x 1+x 22,③ y =x 21+x 228.④切线MA ,MB 的方程分别为y =x 12(x -x 1)+x 214,⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,x 1x 24. 因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 的中点N 为点O ,坐标满足x 2=43y .因此AB 的中点N 的轨迹方程为x 2=43y .能力提升题组 (建议用时:30分钟)11.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216=1 B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4)解析 如图,|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=8-2=6<10=|AB |,根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支(y ≠0),方程为x 29-y 216=1(x >3).答案 C12.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( ) A.y 2=8x B.y 2=-8x C.y 2=4xD.y 2=-4x解析 MN →=(4,0),MP →=(x +2,y ),NP →=(x -2,y ).∴|MN →|=4,|MP →|=(x +2)2+y 2,MN →·NP →=4(x -2).根据已知条件得4(x +2)2+y 2=4(2-x ).整理得y 2=-8x .∴点P 的轨迹方程为y 2=-8x . 答案 B13.如图,P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →=⎝ ⎛⎭⎪⎫-x 2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y 2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1.答案 x 24a 2+y 24b 2=114.设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程. 解 由QM →=λMP →知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2), 则x 2-y 0=λ(y -x 2),即y 0=(1+λ)x 2-λy .① 再设B (x 1,y 1),由BQ →=λQA →, 即(x -x 1,y 0-y 1)=λ(1-x ,1-y 0), 解得⎩⎨⎧x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0,得⎩⎨⎧x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③ 又点B 在抛物线y =x 2上,所以y 1=x 21,再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2,(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2,2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0. 因λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1.15.(2016·全国Ⅲ卷)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 解 由题设F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明 由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2.所以 AR ∥FQ .(2)设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0), 则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2.由题设可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=1,x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合. 所以,所求轨迹方程为y 2=x -1.。
第4节曲线与方程题型123求动点的轨迹方程1.(2013辽宁理20)如图,抛物线()2212:4:2>0C x y C x py p ==-,.点()00M x y ,在抛物线2C 上,过M 作1C 的切线,切点为AB ,(M 为原点O 时,A B ,重合于O ).当012x =-时,切线MA 的斜率为12-. (1)求P 的值;(2)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程(AB ,重合于O 时,中点为O ).2.(2014湖北理21)(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .(1)求轨迹为C 的方程;(2)设斜率为k 的直线l 过定点()2,1P -.求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.3.(2014广东理20)(14分)已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为53, (1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.4.(2016四川理15)在平面直角坐标系中,当(,)P x y 不是原点时,定义P 的“伴随点”为2222,y x P x y x y ⎛⎫-⎪++⎝⎭,当P 是原点时,定义“伴随点”为它自身,现有下列命题:①若点A 的“伴随点”是点A ',则点A '的“伴随点”是点A . ②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称. ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是.4.②③解析对于①,若令(1,1),A 则其伴随点为11,22A ⎛⎫'- ⎪⎝⎭,而11,22A ⎛⎫'- ⎪⎝⎭的伴随点为()11--,,而不是P ,故错误; 对于②,令单位圆上点的坐标为(cos ,sin )P x x ,其伴随点为(sin ,cos )P x x '-仍在单位圆上,故②正确; 对于③,设曲线(,)0f x y =关于x 轴对称,则(,)0f x y -=对曲线(,)0f x y =表示同一曲线,其伴随曲线分别为2222,0y x f x y x y ⎛⎫-=⎪++⎝⎭与2222,0y x f x y x y ⎛⎫--= ⎪++⎝⎭也表示同一曲线,又因为其伴随曲线分别为2222,0y x f x y x y ⎛⎫-= ⎪++⎝⎭与2222,0y x f x y x y ⎛⎫--= ⎪++⎝⎭的图像关于y 轴对称,所以③正确;对于④,直线y kx b =+上取点得,其伴随点2222,y x x y x y ⎛⎫-⎪++⎝⎭消参后轨迹是圆,故④错误.所以正确的序号为②③.5.(2016全国乙理20(1))设圆222150x y x ++-=的圆心为A ,直线l 过点()1,0B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明EA EB +为定值,并写出点E 的轨迹方程. 5.解析(1)如图所示,圆A 的圆心为()1,0A -,半径4R =,因为//BE AC ,所以C EBD ∠=∠.又因为AC AD =,所以C EDB ∠=∠,于是EBD EDB ∠=∠,所以EB ED =.故4AE EB AE ED AD +=+==为定值. 又2AB =,点E 的轨迹是以A ,B 为焦点,长轴长为4的椭圆,由1c =,2a =,得23b =.故点E 的轨迹1C 的方程为()221043x yy +=≠.6.(2016全国丙卷20)已知抛物线的焦点为F ,平行于x 轴的两条直线分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明FQ AR ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.6.解析(1)连接RF ,PF ,由AP AF =,BQ BF =及//AP BQ ,得AFP BFQ PFQ ∠+∠=∠,所以90PFQ ∠=o.因为R 是PQ 中点,RFRP RQ ==,所以PAR FAR ≅△△,所以PAR FAR ∠=∠,PRA FRA∠=∠,又1802BQF BFQ QBF PAF PAR ∠+∠=-∠=∠=∠o ,所以FQB ∠PAR =∠,所以PRA ∠=PQF ∠(等角的余角相等),所以//AR FQ . (2)设1122(,),(,)A x y B x y ,1(,0)2F ,准线为12x =-,121122PQF S PQ y y ==-△,设直线AB 与x 轴交点为N ,1212ABF S FN y y =-△,因为2PQF ABF S S ∆∆=,所以21FN =,得1N x =,即(1,0)N . 设AB 中点为(,)M x y ,由21122222y x y x ⎧=⎪⎨=⎪⎩,得2212122()y y x x -=-,即12121212y y y y x x -=+-. 又12121y y yx x x -=--,所以11y x y =-,即21y x =-.易知当直线AB 不存在时,点M 也满足此方程, 所以AB 中点轨迹方程为21y x =-.7.(2017全国2卷理科20(1))设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u ru u u r.(1)求点P 的轨迹方程;7.解析(1)设点()P x y ,,易知(0)N x ,,(0)NP y =u u u r ,,又0NM NP ⎛== ⎝u u u u r u u u r , 所以点M x y ⎛⎫ ⎪⎝⎭.又M 在椭圆C 上,所以2212x +=,即222x y +=.。
2018年高考数学一轮复习 第八章 解析几何 课时达标53 曲线与方程 理[解密考纲]求曲线的轨迹方程,经常通过定义法或直接法,在解答题的第(1)问中出现. 一、选择题1.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则动点P 的轨迹是( B )A .直线B .圆C .椭圆D .双曲线解析:设P (x ,y ),则x +2+y 2=2x -2+y 2,整理得x 2+y 2-4x =0,又D 2+E 2-4F =16>0,所以动点P 的轨迹是圆.2.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( D )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0解析:设Q (x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0得Q 点的轨迹方程为2x -y +5=0.3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点,线段AQ 的垂直平分线与 CQ 的连线交于点M ,则M 的轨迹方程为( D )A .4x 221-4y225=1B .4x 221+4y225=1C .4x 225-4y221=1D .4x 225+4y221=1解析:∵M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5, 故M 的轨迹是以定点C ,A 为焦点的椭圆, ∴a =52,c =1,则b 2=a 2-c 2=214,∴椭圆的标准方程为4x 225+4y221=1.4.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2PA →,且OQ →·AB →=1,则点P 的轨迹方程是( A )A .32x 2+3y 2=1(x >0,y >0) B .32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:设A (a,0),B (0,b ),a >0,b >0.由BP →=2PA →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0,点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a ,b 代入ax +by =1得所求的轨迹方程为32x2+3y 2=1(x >0,y >0).5.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为( B )A .4B .3C .2D .1解析:∵e 是方程2x 2-5x +2=0的根,∴e =2或e =12,mx 2+4y 2=4m 可化为x 24+y2m =1,当它表示焦点在x 轴上的椭圆时,有4-m 2=12,∴m =3;当它表示焦点在y 轴上的椭圆时,有m -4m=12,∴m =163;当它表示焦点在x 轴上的双曲线时,可化为x 24-y 2-m =1,有4-m2=2,∴m =-12,∴满足条件的圆锥曲线有3个,故选B.6.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系上的点uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A —B —C 运动时,在映射f 的作用下,动点P ′的轨迹是( D )解析:当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y2(0≤y ≤1),∴y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),∴y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 所示,故选D. 二、填空题7.已知△ABC 的顶点 A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是x 29-y 216=1(x >3).解析:如图,|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x >3).8.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足O C →=O A →+t (O B →-O A →),其中t ∈R ,则点C 的轨迹方程是2x -y -2=0.解析:设 C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t 得点C 的轨迹方程为y =2x -2.9.P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,有一动点Q 满足O Q →=PF 1→+PF 2→,则动点Q 的轨迹方程是x 24a 2+y 24b2=1.解析:作P 关于O 的对称点M ,连结F 1M ,F 2M , 则四边形F 1PF 2M 为平行四边形, 所以PF 1→+PF 2→=PM →=2PO →=-2OP →. 又OQ →=PF 1→+PF 2→,所以OP →=-12OQ →,设Q (x ,y ),则OP →=⎝ ⎛⎭⎪⎫-x2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1.三、解答题10.已知圆C 1的圆心在坐标原点O ,且恰好与直线l 1:x -y -22=0相切. (1)求圆的标准方程;(2)设点A 为圆上一动点,AN ⊥x 轴于点N ,若动点Q 满足OQ →=mOA →+(1-m )ON →(其中m 为非零常数),试求动点Q 的轨迹方程C 2.解析:(1)设圆的半径为r ,圆心到直线l 1的距离为d ,则d =|-22|12+12=2=r ,则圆C 1的方程为x 2+y 2=4.(2)设动点Q (x ,y ),A (x 0,y 0),∵AN ⊥x 轴交于点N , ∴N (x 0,0),由题意,得(x ,y )=m (x 0,y 0)+(1-m )·(x 0,0),∴⎩⎪⎨⎪⎧x =x 0,y =my 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=1m y ,将A ⎝⎛⎭⎪⎫x ,1m y代入x 2+y 2=4,得x 24+y 24m 2=1.即动点Q 的轨迹方程为x 24+y 24m2=1.11.在平面直角坐标系中,已知A 1(-2,0),A 2(2,0),P (x ,y ),M (x,1),N (x ,-2),若实数λ使得λ2OM →·ON →=A 1P →·A 2P →(O 为坐标原点),求P 点的轨迹方程,并讨论P 点的轨迹类型.解析:OM →=(x,1),ON →=(x ,-2),A 1P →=(x +2,y ),A 2P →=(x -2,y ). ∵λ2OM →·ON →=A 1P →·A 2P →,∴(x 2-2)λ2=x 2-2+y 2, 整理得(1-λ2)x 2+y 2=2(1-λ2).①当λ=±1时,方程为y =0,轨迹为一条直线; ②当λ=0时,方程为x 2+y 2=2,轨迹为圆; ③当λ∈(-1,0)∪(0,1)时,方程为x 22+y 2-λ2=1,轨迹为中心在原点,焦点在x 轴上的椭圆;④当λ∈(-∞,1)∪(1,+∞)时,方程为x 22-y 2λ2-=1,轨迹为中心在原点,焦点在x 轴上的双曲线.12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解析:(1)依题意得,c =5,e =c a =53, 因此a =3,b 2=a 2-c 2=4, 故椭圆C 的标准方程是x 29+y 24=1.(2)若两切线的斜率均存在,设过点P (x 0,y 0)的切线方程是y =k (x -x 0)+y 0,则由⎩⎪⎨⎪⎧y =k x -x 0+y 0,x 29+y24=1,得x 29+[k x -x 0+y 0]24=1,即(9k 2+4)x 2+18k (y 0-kx 0)x +9[(y 0-kx 0)2-4]=0, Δ=[18k (y 0-kx 0)]2-36(9k 2+4)[(y 0-kx 0)2-4]=0, 整理得(x 20-9)k 2-2x 0y 0k +y 20-4=0.又所引的两条切线相互垂直,设两切线的斜率分别为k 1,k 2,于是有k 1k 2=-1,即y 20-4x 20-9=-1,即x 20+y 20=13(x 0≠±3). 若两切线中有一条斜率不存在,则易得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=3,y 0=-2或⎩⎪⎨⎪⎧x 0=-3,y 0=-2,经检验知均满足x 20+y 20=13.因此动点P (x 0,y 0)的轨迹方程是x 2+y 2=13.。
2018届高三理科数学坐标系与参数方程解题方法规律技巧详细总结版【简介】坐标系与参数方程作为选做题,和不等式以二选一的形式出现,主要考查极坐标方程及应用,直线,圆和椭圆的参数方程的应用,难度一般不大,但是在做题过程有许多细节需要注意,例如审题时注意问的是参数方程还是极坐标方程,在应用上要从极坐标和参数方程中做出适合的选取,应用直线的参数方程解题时要理解参数t 的意义,如果理解不准极易出错,总之,对于本章的复习,要对概念要有准确的理解.【3年高考试题比较】坐标系与参数方程每年都以解答题的形式,和不等式以二选一的形式出现,在试卷中是最后一道题,但不是压轴题,属于解答题中的容易或比较容易的试题.内容主要涉及曲线与极坐标方程、参数方程、普通方程的关系,求曲线的轨迹、求曲线的交点,极坐标与直角坐标的转化等知识与方程,综合三年的高考题,对于极坐标的考察较多,不仅会极坐标与直角坐标转化,也要掌握极坐标的应用,同时椭圆、圆和直线的参数方程也要应用熟练,尤其是直线的参数方程易错点较多,复习时要引起重视. 【必备基础知识融合】1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换ϕ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换. 2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点);自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 3.极坐标与直角坐标的互化4.5.(1)直线l 过极点,且极轴到此直线的角为α,则直线l 的极坐标方程是θ=α(ρ∈R ). (2)直线l 过点M (a ,0)且垂直于极轴,则直线l 的极坐标方程为ρcos__θ=a .(3)直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴,则直线l 的极坐标方程为ρsin__θ=b . 6.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t )并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 7.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使用x ,y 的取值范围保持一致. 8.常见曲线的参数方程和普通方程(t 为参数)(θ为参数)(φ为参数)提醒一点M (x ,y )到M 0(x 0,y 0)的距离. 【解题方法规律技巧】典例1:将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.典例2:在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ. (1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状; (2)若曲线C 1,C 2交于A ,B 两点,求两交点间的距离. 解 (1)由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线. 由C 2:ρ=2cos θ,得ρ2=2ρcos θ. ∴x 2+y 2=2x ,即(x -1)2+y 2=1. 所以C 2是圆心为(1,0),半径r =1的圆. (2)由(1)知,点(1,0)在直线x -3y -1=0上, 所以直线C 1过圆C 2的圆心.因此两交点A ,B 的连线段是圆C 2的直径. 所以两交点A ,B 间的距离|AB |=2r =2.典例3:在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解 (1)消去t ,得C 1的普通方程x 2+(y -1)2=a 2, ∴曲线C 1表示以点(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.典例4:以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程.典例5:在极坐标系中,已知圆C 的圆心C ⎝⎛⎭⎪⎫3,π3,半径r =3.(1)求圆C 的极坐标方程;(2)若点Q 在圆C 上运动,点P 在OQ 的延长线上,且OQ →=2QP →,求动点P 的轨迹方程.解 (1)设M (ρ,θ)是圆C 上任意一点. 在△OCM 中,∠COM =⎪⎪⎪⎪⎪⎪θ-π3,由余弦定理得 |CM |2=|OM |2+|OC |2-2|OM |·|OC |cos ⎝ ⎛⎭⎪⎫θ-π3,化简得ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3.(2)设点Q (ρ1,θ1),P (ρ,θ), 由OQ →=2QP →,得OQ →=23OP →,∴ρ1=23ρ,θ1=θ,代入圆C 的方程,得23ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3,即ρ=9cos ⎝⎛⎭⎪⎫θ-π3. 典例6:已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.典例7:已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值. 解 (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|, 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.典例8:平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为π6.(1)求圆C 和直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.典例9:以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数,0<α<π),曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值. 解 (1)由ρsin 2θ=4cos θ得(ρsin θ)2=4ρcos θ, ∴曲线C 的直角坐标方程为y 2=4x .(2)将直线l 的参数方程代入y 2=4x 得到t 2sin 2α-4t cos α-4=0. 设A ,B 两点对应的参数分别是t 1,t 2, 则t 1+t 2=4cos αsin 2 α,t 1t 2=-4sin 2α. ∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α≥4,当α=π2时取到等号. ∴|AB |min =4,即|AB |的最小值为4.典例9:在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4= 2.(1)求C 的普通方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|PA |+|PB |的值.(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos π4,y =2+t sin π4(t 为参数),即⎩⎪⎨⎪⎧x =22t ,y =2+22t(t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0, Δ=(182)2-4×5×27=108>0, 设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0,所以|PA |+|PB |=|t 1|+|t 2|=-(t 1+t 2)=1825.典例10:在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标系方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,,点,求的值.【答案】(1),曲线;(2) .【易错易混温馨提醒】一、直线参数方程的应用参数t解题时注意正负易错1:已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;(Ⅱ)若曲线与曲线相交于,两点,且与轴相交于点,求的值.【答案】(1),(2)二、注意直线与圆锥曲线联立时的判别式大于0易错2:在平面直角坐标系xOy 中,以坐标原点为极点, x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2sin ρθ=. (1)求曲线C 的直角坐标方程;(2)在平面直角坐标系中,将曲线C 的纵坐标不变,横坐标变为原来的2倍,得到曲线D ,过点()2,0M 作直线l ,交曲线D 于A B 、两点,若2MA MB ⋅=,求直线l 的斜率.【答案】(1)2220x y y +-=;(2)线l 的斜率为【解析】试题分析:(1)利用222,sin x y y ρρθ=+=把极坐标方程化为直角坐标方程;(2)设直线l 的参试题解析:(1)由2sin ρθ=,得22sin ρρθ=,将222,sin x y y ρρθ=+=,代入整理得2220x y y +-=. (2)把2220x y y +-=中的x 换成2x ,即得曲线D 的直角坐标方程2204x y y +-=. 设直线l 的参数方程为2,{x tcos y tsin φφ=+=(t 为参数, [)0,φπ∈), 代入曲线D 的方程,整理得()()222cos 4sin 4cos 8sin 40t t φφφφ++-+=,()()2224cos 8sin 16cos 4sin 0φφφφ∆=--+>,cos sin 0φφ⇒<.设,A B 两点所对应的参数分别为12,t t , 则12,t t 为上述方程的两个根. 由122240cos 4sin t t φφ=>+,得,MA MB 同向共线. 故由122242cos 4sin MA MB t t φφ⋅===21sin tan 3φφ⇒=⇒=.由cos sin 0φφ<,得tan 2φ=-即直线l 的斜率为2-..三、非标准形式的直线参数方程应用参数t 时要注意换为标准的参数. 易错3:在平面直角坐标系xOy 中,直线l的参数方程是1{x y ==(t 为参数),以O 为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22223cos 4sin 12ρθρθ+=,且直线l 与曲线C 交于,P Q 两点.(Ⅰ)求直线l 的普通方程及曲线C 的直角坐标方程; (Ⅱ)把直线l 与x 轴的交点记为A ,求AP AQ ⋅的值. 【答案】(1)见解析;(2)18.7(II )解法1:在10x y --=中,令0y =,得1x =,则()1,0A . 由223412{10x y x y +=--=消去y 得27880x x --=.设()11,P x y , ()22,Q x y ,其中12x x < , 则有1287x x +=, 1287x x =-.故)1111AP x =-=-,)2211AQ x =-=-,所以AP AQ ⋅ ()()12211x x =--- ()121218217x x x x ⎡⎤=--++=⎣⎦.解法2:把()()112,{2,2x t y t =+=+==代入223412x y +=,整理得21490t +-=, 则12914t t =-, 所以AP AQ ⋅ ()()1212182247t t t t =-⋅=-=. 四、注意参数范围对于方程的影响易错4:在平面直角坐标系xOy 中,曲线1C 的参数方程为22,{32x cos y sin αα=+=+(α为参数, 2παπ≤≤),以原点O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求曲线1C 与2C 的直角坐标方程;(2)当1C 与2C 有两个公共点时,求实数t 的取值范围.【答案】(1)曲线2C 的直角坐标方程为0x y t -+=;(2)11t -<≤-.1C 有两个公共点,则当2C 与1C2=,整理得1t -=∴1t =-或1t =(舍去), 当2C 过点()4,3时, 430t -+=,所以t=-1. ∴当1C 与2C 有两个公共点时,11t -<≤-.点睛:本题的易错点在把曲线1C 的参数方程化为直角坐标方程时,忽略了2παπ≤≤,得到曲线1C 是整个圆,那后面就会出错,所以在解题时,一定要注意认真审题,实行等价转化. 五、求轨迹方程时注意一些特殊点的取舍.易错5:在直角坐标系xOy 中,曲线1C 的参数方程为{x tcos y tsin αα== (t 为参数),其中0απ<<,以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是sin 5ρθ=, P 为曲线1C 与2C 的交点. (1)当3πα=时,求点P 的极径;(2)点Q 在线段OP 上,且满足20OP OQ ⋅=,求点Q 的轨迹的直角坐标方程.【答案】(2) ()()22240x y y +-=≠(2)在极坐标系中,设点(),Q ρθ, ()1,P ρθ,由题意可得, 1120[ 5sin ρρρθ==,进而可得4sin ρθ=,从而点Q 的轨迹的直角坐标方程为()()22240x y y +-=≠.六、参数方程化为普通方程时注意范围的变化在平面直角坐标系xOy 中,直线1l的参数方程为{x t y kt ==(t 为参数),直线2l的参数程为{3x mm y k==(m 为参数),设直线1l 与2l 的交点为P ,当k 变化时点P 的轨迹为曲线1C . (1)求出曲线1C 的普通方程; (2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭,点Q 为曲线1C 的动点,求点Q 到直线2C 的距离的最小值. 【答案】(1)1C 的普通方程为()22103x y y +=≠;(2) d的最小值为由于1C的参数方程为{x y sina==(a 为参数, a k π≠, k Z ∈),所以曲线1C上的点)sin Qa a ,到直线80x y +-=的距离为d ==所以当sin 13a π⎛⎫+= ⎪⎝⎭时, d的最小值为。
2018年全国3卷第16题(直线与圆锥曲线)-2018年高考数学经典题分析及针对训练Word 版含解析一、典例分析,融合贯通典例1.【2018年全国高考课标3第16题】已知点(1,1)M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________. 解法一:点评:由题先设出直线方程,与抛物线方程联立,再借助条件90AMB =︒∠,化为向量语言转换为关于k 方程,进行求解。
解题以方程思想为指针,设而不求为桥梁,最终建立k 方程,完成求解。
解法二:同上,由90AMB =︒∠,则1MA MB k k ?-可得;2121211144011MA MBy y k k k k x x --??-?+=++ 2k \=.点评:将条件90AMB =︒∠,解读为1MA MBk k ?-,进行求解。
解法三:如图所示,点评:数形结合,将90∠的条件化为圆,运用圆的切线性质而简化运算。
AMB=︒二.方法总结,胸有成竹直线与圆锥曲线一直以来是我们高考关注的一个热点话题,主要涉及到圆锥曲线的方程和几何性质,以及直线与圆锥曲线的位置关系的综合运用。
综合考查学生的数学思想、数学方法与数学能力。
1. 直线与圆锥曲线的位置关系的应用问题求解的基本思路:由于直线与圆锥曲线的位置关系一直为高考的热点。
这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想,运用圆锥曲线的定义与平面几何的知识,化难为易,化繁为简,收到意想不到的解题效果;另外采取“设而不求”法,“点差法”与弦长公式及韦达定理,减少变量,建立方程去解决; 2. 基本知识与基本方法(1).直线与圆锥曲线的位置关系的判定方法:直线l :(,)0f x y =和曲线:(,)0C g x y =的公共点坐标是方程组(,)0(,)0f x y g x y =⎧⎨=⎩的解,和C 的公共点的个数等于方程组不同解的个数.这样就将l 和C 的交点问题转化为方程组的解问题研究,对于消元后的一元二次方程,必须讨论二次项系数和判别式∆,若能数形结合,借助图形的几何性质则较为简便.(2).弦的中点或中点弦的问题,除利用韦达定理外,也可以运用“差分法”(也叫“点差法”).(3).弦长公式1212||||AB x x y y =-=-. (4).焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)三.精选试题,能力升级1.【2018河南省焦作市高三联考】已知抛物线C : 22(0)y px p =>的焦点为F ,点M 在抛物线C 上,且32MO MF ==(O 为坐标原点),则MOF ∆的面积为( )A.2B. 12C. 14D.【答案】A2.【2018年全国高考课标1第11题】已知双曲线 22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N 若OMN ∆为直角三角形,则MN =A.B. 3C.D. 4 【答案】B【解析】根据题意,可知其渐近线的斜率为3±(2,0)F ,从而得到030FON ∠=, 所以直线MN 的倾斜角为060或0120,根据双曲线的对称性,设其倾斜角为060,可以得出直线MN 的方程为2)y x -,分别与两条渐近线y x =和y x =联立,求得3(,22M N -B. 3.【2018湖南省长沙市高三联考】抛物线C : 22(0)x py p =>的焦点F 与双曲线22221y x -=的一个焦点重合,过点F 的直线交C 于点A 、B ,点A 处的切线与x 、y 轴分别交于点M 、N ,若OM N ∆的面积为12,则AF 的长为()A. 2B. 3C. 4D. 5 【答案】A4.【2018山东省潍坊市二模】直线()2(0)y k x k =+>与抛物线2:8C y x =交于A , B 两点, F 为C 的焦点,若sin 2sin ABF BAF ∠=∠,则k 的值是( )A.3 B. 3C. 1D. 【答案】B【解析】分别过A , B 项抛物线的准线作垂线,垂足分别为M , N ,则AF AM =,BF BN =. 设直线()2(0)y k x k =+>与x 轴交于点P ,则()2,0P -.5.【2018衡水金卷】已知抛物线22(0)x py p =>的焦点为F ,过焦点F 的直线l 分别交抛物线于点,A B , 过点,A B 分别作抛物线的切线12,l l ,两切线12,l l 交于点M ,若过点M 且与y 轴垂直的直线恰为圆221x y +=的一条切线,则p 的值为( ) A.14 B. 12C. 2D. 4 【答案】C【解析】由题可知抛物线22(0)x py p =>的焦点为F 0,,2p ⎛⎫⎪⎝⎭且过焦点F 的直线斜率存在, 所以可设直线:2p l y kx =+,联立方程组222{ ,20,22py kx x kpx p x py =+∴--==设()11,A x y ,()22,,B x y 则21212,2.x x p x x kp =-+=又由22x py =得2,,2x xy y p p =∴='所以过A 点的切线方程为()22111111111:,2x x x x x l y y x x y y x x p p p p p-=-∴=+-=-. 同理可知过点B 的切线方程为2222:,2x x l y x p p =-联立方程组211122122222{ ,{ ,222x x x x y x x p px x p x x y y x p p p +=-=∴==-=-因此点12,,22x x p M +⎛⎫-⎪⎝⎭过点M 与y 轴垂直的直线为(0)2p y p =->,而圆221x y +=与y 轴负半轴交于点(0,-1),所以1, 2.2pp -=-∴=故选C. 点评:本题的思路比较自然,只要循序渐进,一步一步转化就可以了. 主要是计算有点复杂,在求出过点A 的切线方程2111:2x x l y x p p =-后,不必再重新求过点B 的切线方程,只要利用对称性同理求出2222:2x x l y x p p=-可以提高解题效率.6.【2017高考新课标I 】已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的最小值为( )A .16B .14C .12D .10【答案】A 【解析】解法一:设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 方程为1(1)y k x =-。
专题34 直线及其方程2018年高考数学(理)热点题型和提分秘籍1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
2.掌握确定直线位置的几何要素。
3.掌握直线方程的几种形式(点斜式、两点式及一般式等),了解斜截式与一次函数的关系。
热点题型一 直线的倾斜角与斜率例1、(1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π4,π3C.⎣⎢⎡⎭⎪⎫π4,π2 D.⎣⎢⎡⎦⎥⎤π4,2π3(2)已知直线l 过点P (-1,2),且与以A (-2,-3),B (3,0)为端点的线段相交,则直线l 的斜率的取值范围是________。
解析:(1)直线2x cos α-y -3=0的斜率k =2cos α,由于α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3]。
设直线的倾斜角为θ,则有tan θ∈[1,3],由于θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的变化范围是⎣⎢⎡⎦⎥⎤π4,π3。
选B 。
(2)方法一:如图所示,直线PA 的斜率k PA =2---1--=5,直线PB 的斜率k PB =0-23--=-12。
当直线l 绕着点P 由PA 旋转到与y 轴平 行的位置PC 时,它的斜率变化范 围是[5,+∞);当直线l 绕着点P 由PC 旋转到PB 的位置时, 它的斜率的变化范围是⎝⎛⎦⎥⎤-∞,-12。
∴直线l 的斜率的取值范围是⎝⎛⎦⎥⎤-∞,-12∪[5,+∞)。
【提分秘籍】已知直线方程求直线倾斜角范围的一般步骤 (1)求出斜率k 的取值范围(若斜率不存在,倾斜角为90°)。
(2)利用正切函数的单调性,借助图象或单位圆确定倾斜角的取值范围。
【举一反三】直线x sin α-y +1=0的倾斜角的变化范围是( )A.⎝ ⎛⎭⎪⎫0,π2 B .(0,π) C.⎣⎢⎡⎦⎥⎤-π4,π4 D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,π解析:直线x ·s in α-y +1=0的斜率是k =sin α, 又∵-1≤sin α≤1,∴-1≤k ≤1,∴当0≤k ≤1时,倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4;当-1≤k <0时,倾斜角的范围是⎣⎢⎡⎭⎪⎫34π,π。
曲线的方程摘要:通过曲线方程常见题型的分析,归纳总结曲线的方程的解题巧,对于常见的一些问题,给出规律性的解答.关键词:曲线的方程 轨迹曲线的方程是高考中常出现的问题,要熟练掌握求曲线方程的基本步骤,能利用图像将题目中所给的条件转化为数学表达式. 下面介绍五种求解曲线方程的方法.求轨迹方程的常用方法有:直接法、定义法、待定系数法、转移法(或称代入法)、参数法.一、直接法建立适当的坐标系后,设动点为),(y x P ,根据几何条件直接寻求y x ,之间的关系,其一般步骤为:(1)建立坐标系(选取原点位置及坐标轴的方位);(2)设动点坐标为),(y x P ;(3)依据题意找出等量关系,列出方程;(4)化简方程,并讨论取值范围,说明轨迹曲线特征.【例1】已知两点)0,3(-A ,)0,3(B ,动点M 与A 、B 的连线的斜率之积是32,则点M 的轨迹方程为 .讲解:设点M 的坐标为),(y x ,点M 属于集合⎭⎬⎫⎩⎨⎧=⋅=32|MB MA k k M P . 由经过两点的直线的斜率公式,得3233=-⋅+x y x y ,化简,整理得)3(0183222±≠=--x y x . 此即为所求的轨迹方程.练习1:已知两定点)0,1(-A ,)0,2(B ,动点P 满足21||||=PB PA ,求P 点的轨迹方程. 答案:4)2(22=++y x .二、定义法如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的定义,建立动点的方程,化简整理即得轨迹方程.【例2】一动圆过定点)0,2(-A 且与定圆12)2(22=+-y x 相切. 求动圆圆心C 的轨迹M 的方程.解:设动圆与定圆的切点为T ,定圆的圆心为B ,由题意知动圆内切于定圆,则22||32||||||||||=>==+=+AB BT CT CB CB CA ,∴点C 的轨迹方程是以A 、B 为焦点的椭圆, 则322=a ,222=c . 3=∴a ,2=c . 12=∴b .∴动圆圆心C 的轨迹M 的方程为1322=+y x . 练习2:ABC ∆中,已知的方程)0,4(-A ,)0,4(B ,且C B A sin 21sin sin =-,则点C 的轨迹方程是( ) 1124.22=+y x A )0(1124.22<=-x y x B )0(1124.22<=+x y x C )0(14_12.22<=x y x D 答案:B .三、待定系数法当已知动点的轨迹方程是所学过的曲线,如:直线、圆、圆锥曲线等,则可先设出含有待定系数的方程,再根据动点满足的条件,确定待定系数,从而求得动点的轨迹方程,其基本思路是:先定性,再定型,最后定量.【例3】已知二次函数)(x f 同时满足条件:(1))1()1(x f x f -=+;(2))(x f 的最大值为15;(3)0)(=x f 的两根的立方和等于17,求)(x f 的解析式.解:由已知,可设)0(15)1()(2<+-=a x a x f ,即152)(2++-=a ax ax x f ,设方程01522=++-a ax ax 的两根分别为21,x x ,由韦达定理得221=+x x ,ax x 15121+=⋅.而aa x x x x x x x x 902151232)(3)(321213213231-=⎪⎭⎫ ⎝⎛+⨯⨯-=+-+=+, 17902=-∴a,6-=∴a . 9126)(2++-=∴x x x f .练习3:已知函数)(x f 是二次函数,不等式0)(<x f 的解集是)5,0(且)(x f 在区间]4,1[-上的最大值是12. 求)(x f 的解析式.答案:)(102)(2R x x x x f ∈-=.四、转移法(或称代入法)若已知动点),(1βαP 在曲线0),(:11=y x f C 上移动,动点),(y x P 依动点1P 而动,它满足关系:(1)⎩⎨⎧==),(),(βαβαy y x x 则关于βα,反解方程组(1)得 (2)⎩⎨⎧==),(),(y x h y x g βα 代入曲线方程0),(1=y x f ,即可得动点P 的轨迹方程0),(:=y x f C .【例4】已知直线134:=+y x l ,M 是直线l 上的一个动点,过点M 作x 轴和y 轴的垂线,垂足分别为A 、B ,求把有向线段AB 分成的比2=λ的动点P 的轨迹方程.解:设),(00y x M ,),(y x P ,则)0,(0x A ,),0(0y B ,点P 分有向线段AB 分成的比2=λ, ∴⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧++=++=.233,2120,2100000y y x x y y x x 又 )23,3(y x M 在直线134:=+y x l 上, ∴132343=+y x ,即0423=-+y x .练习4:求曲线x y 42=关于点)3,1(M 对称的曲线方程.答案:)2(4)6(2x y -=-.五、参数法当动点),(y x P 中坐标y x ,之间的关系直接找不出时,可设动点),(y x P 满足关于参数t 的方程组⎩⎨⎧==)()(t y y t x x (t 是参数),则由方程消去参数t ,即求得动点),(y x P 的普通方程:0),(=y x f .【例5】设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆于A 、B 两点,O 是坐标原点,点P 满足)(21+=,点N 坐标为)21,21(,当l 绕点M 旋转时,求:动点P 的轨迹方程.解:线l 过点)1,0(M ,设其斜率为k ,则l 的方程为1+=kx y .设),(11y x A ,),(22y x B , 由⎪⎩⎪⎨⎧=++=14122y x kx y ,得:032)4(22=-++kx x k , 由韦达定理得:22142k k x x +-=+ ∴22148k y y +=+ 于是,)44,4()2,2()(21222121kk k y y x x OB OA OP ++-=++=+=. 设点P 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+-=2244,4k y k k x消去参数k 得0422=-+y y x .当斜率不存在时,A 、B 中点为坐标原点)0,0(,也满足上式,所以点P 的轨迹方程为0422=-+y y x .练习5:已知抛物线x y C 4:2=,O 为原点,动直线)1(:+=x k y l 与抛物线C 交于A 、B 两点,求满足+=的点M 的轨迹方程.答案:)2(842>+=x x y .参考文献:[1] 任志鸿《十年高考分类解析与应试策略》南方出版社2006年7月第2版[2] 曲一线《高中习题化知识清单数学》首都师范大学出版社2007年5月第3版[3] 曲一线《5年高考3年模拟》(2009B版)首都师范大学出版社2007年7月第1版[4] 贾鸿玉《高考绿色通道数学》中国致公出版社2007年3月第6版[5] 全日制普通高级中学教科书《数学》第二册(必修)人民教育出版2006年11月第2版。
2018年高考数学讲练测【新课标版】【讲】第九章 解析几何第八节 曲线与方程【考纲解读】I.23;I 【知识清单】1.直接法求轨迹方程如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程.对点练习:【2017届山西省临汾市高三考前训练三】已知椭圆22:12x C y +=的上、下顶点分别为,M N ,点P 在椭圆C 外,直线PM 交椭圆于点A ,若PN NA ⊥,则点P 的轨迹方程是 ( ) A. ()210y x x =+≠ B. ()230y x x =+≠C.221(0,0)2xy y x-=>≠ D. ()30y x=≠【答案】D2.定义法求轨迹方程如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程.对点练习:【改编自陕西卷】已知动圆的圆心过定点A(4,0), 且和直线4x=-相切,求动圆圆心的轨迹C的方程; 【答案】2=8y x【解析】由已知条件得,动圆圆心到定点A(4,0)和到定直线4x=-距离相等,故动圆圆心的轨迹是抛物线,所求动圆圆心的轨迹C的方程为2=8y x.3.代入法求轨迹方程代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.对点练习:【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
高考达标检测(四十)曲线与方程求解3方法——直接法、定义法、代入法 一、选择题1.(2017·深圳调研)已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP ―→·QF ―→=FP ―→·FQ ―→,则动点P 的轨迹方程为( )A .x 2=4y B .y 2=3x C .x 2=2yD .y 2=4x解析:选A 设点P (x ,y ),则Q (x ,-1). ∵QP ―→·QF ―→=FP ―→·FQ ―→,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y , ∴动点P 的轨迹方程为x 2=4y 、2.(2016·呼和浩特调研)已知椭圆x 2a 2+y 2b2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线解析:选B 设椭圆的右焦点是F 2, 由椭圆定义可得|MF 1|+|MF 2|=2a >2c , 所以|PF 1|+|PO |=12(|MF 1|+|MF 2|)=a >c ,所以点P 的轨迹是以F 1和O 为焦点的椭圆.3.已知正方形的四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),点D ,E 分别在线段OC ,AB 上运动,且OD =BE ,设AD 与OE 交于点G ,则点G 的轨迹方程是( )A .y =x (1-x )(0≤x ≤1)B .x =y (1-y )(0≤y ≤1)C .y =x 2(0≤x ≤1) D .y =1-x 2(0≤x ≤1)解析:选A 设D (0,λ),E (1,1-λ),0≤λ≤1,所以线段AD 的方程为x +yλ=1(0≤x ≤1),线段OE 的方程为y =(1-λ)x (0≤x ≤1),联立方程组⎩⎪⎨⎪⎧x +y λ=1,0≤x ≤1,y = 1-λ x ,0≤x ≤1(λ为参数),消去参数λ得点G 的轨迹方程为y =x (1-x )(0≤x ≤1).4.(2016·廊坊二模)有一动圆P 恒过定点F (a,0)(a >0)且与y 轴相交于点A ,B ,若△ABP 为正三角形,则圆心P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线解析:选D 设P (x ,y ),动圆P 的半径为R , ∵△ABP 为正三角形, ∴P 到y 轴的距离d =32R ,即|x |=32R 、 而R =|PF |= x -a 2+y 2, ∴|x |=32· x -a 2+y 2、 整理得(x +3a )2-3y 2=12a 2, 即 x +3a 212a 2-y 24a2=1、∴点P 的轨迹为双曲线.故选D 、5.(2016·沈阳质检)已知点O (0,0),A (1,-2),动点P 满足|PA |=3|PO |,则P 点的轨迹方程是( )A .8x 2+8y 2+2x -4y -5=0 B .8x 2+8y 2-2x -4y -5=0 C .8x 2+8y 2+2x +4y -5=0 D .8x 2+8y 2-2x +4y -5=0解析:选 A 设P 点的坐标为(x ,y ),由|PA |=3|PO |,得 x -1 2+ y +2 2=3x 2+y 2,整理得8x 2+8y 2+2x -4y -5=0,故选A 、6.(2017·梅州质检)动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4xD .y 2=-4x解析:选B 双曲线x 2-y 23=1的左焦点F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x 、二、填空题7.(2017·聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC ―→=OA ―→+t (OB ―→-OA ―→),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC ―→=(x ,y ),OA ―→+t (OB ―→-OA ―→)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t 消去参数t 得点C 的轨迹方程为y =2x -2、答案:y =2x -28.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是____________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,∴|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0)9.在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________.解析:由正弦定理得|AB |2R -|AC |2R =12×|BC |2R ,即|AB |-|AC |=12|BC |,故动点A 是以B ,C 为焦点,a2为实轴长的双曲线右支.即动点A 的轨迹方程为16x 2a 2-16y23a 2=1(x >0且y ≠0).答案:16x2a 2-16y23a 2=1(x >0且y ≠0)三、解答题10.已知圆C 1的圆心在坐标原点O ,且恰好与直线l 1:x -y -22=0相切. (1)求圆的标准方程;(2)设点A 为圆上一动点,AN ⊥x 轴于点N ,若动点Q 满足OQ ―→=m OA ―→+(1-m )ON ―→(其中m 为非零常数),试求动点Q 的轨迹方程C 2、解:(1)设圆的半径为r ,圆心到直线l 1的距离为d ,则d =|-22|12+12=2=r , ∴圆C 1的方程为x 2+y 2=4、 (2)设动点Q (x ,y ),A (x 0,y 0), ∵AN ⊥x 轴于点N , ∴N (x 0,0),由题意,得(x ,y )=m (x 0,y 0)+(1-m )(x 0,0),∴⎩⎪⎨⎪⎧x =x 0,y =my 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=1m y ,将A ⎝ ⎛⎭⎪⎫x ,1m y 代入x 2+y 2=4,得x 24+y 24m 2=1、即动点Q 的轨迹方程为x 24+y 24m2=1、11.(2017·唐山统考)已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E 、(1)求曲线E 的方程;(2)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,设AB 的中点为D ,求|QD ||AB |的取值范围.解:(1)由已知得圆的方程为(x -2)2+y 2=3, 则圆心为C (2,0),半径r =3、设P (x ,y ),依题意可得|x +1|= x -2 2+y 2-3, 整理得y 2=6x 、故曲线E 的方程为y 2=6x 、 (2)设直线AB 的方程为my =x -2,则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ). 将my =x -2代入y 2=6x 并整理可得y 2-6my -12=0, 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6m ,y 1y 2=-12,AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即D (3m 2+2,3m ),|QD |=3m 2+3、|AB |=1+m 2· y 1-y 2 2=23 1+m 23m 2+4 ,所以⎝ ⎛⎭⎪⎫|QD ||AB |2=3m 2+34 3m 2+4=14⎝ ⎛⎭⎪⎫1-13m 2+4的取值范围是⎣⎢⎡⎭⎪⎫316,14, 故|QD ||AB |的取值范围是⎣⎢⎡⎭⎪⎫34,12、 12.(2016·泰安质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积.(2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解:(1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94、当x 20=92,y 20=12时,S max =6、从而t 2=x 20+y 20=5,t =5,∴当t =5时,矩形ABCD 的面积取到最大值6、 (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0), 得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上, 故y 20=1-x 209、④将④代入③得x 29-y 2=1(x <-3,y <0).x2 9-y2=1(x<-3,y<0).因此点M的轨迹方程为。