高三数学复习(理):第8讲 曲线与方程
- 格式:doc
- 大小:633.00 KB
- 文档页数:20
2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。
第8讲曲线与方程A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.动点P(x,y)满足5(x-1)2+(y-2)2=|3x+4y-11|,则点P的轨迹是().A.椭圆B.双曲线C.抛物线D.直线解析设定点F(1,2),定直线l:3x+4y-11=0,则|PF|=(x-1)2+(y-2)2,点P到直线l的距离d=|3x+4y-11|5.由已知得|PF|d=1,但注意到点F(1,2)恰在直线l上,所以点P的轨迹是直线.选D.答案 D2.(2013·榆林模拟)若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为().A.圆B.椭圆C.双曲线D.抛物线解析依题意,点P到直线x=-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线.答案 D3.(2013·临川模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为().A.4x221-4y225=1 B.4x221+4y225=1C.4x 225-4y 221=1D.4x 225+4y 221=1解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴a =52,c =1,则b 2=a 2-c 2=214, ∴椭圆的标准方程为4x 225+4y 221=1. 答案 D4.(2013·烟台月考)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ). A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0D .2x -y +5=0解析 由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x ,4-y ),代入2x -y +3=0,得2x -y +5=0. 答案 D二、填空题(每小题5分,共10分)5.(2013·泰州月考)在△ABC 中,A 为动点,B 、C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________. 解析 由正弦定理,得|AB |2R -|AC |2R =12×|BC |2R , ∴|AB |-|AC |=12|BC |,且为双曲线右支. 答案 16x 2a 2-16y 23a2=1(x >0且y ≠0)6. 如图,点F (a,0)(a >0),点P 在y 轴上运动,M 在x 轴上运动,N 为动点,且PM →·PF →=0,PM →+PN →=0,则点N 的轨迹方程为________.解析 由题意,知PM ⊥PF 且P 为线段MN 的中点,连接FN ,延长FP 至点Q 使P 恰为QF 之中点;连接QM ,QN ,则四边形FNQM 为菱形,且点Q 恒在直线l :x =-a 上,故点N 的轨迹是以点F 为焦点,直线l 为准线的抛物线,其方程为:y 2=4ax . 答案 y 2=4ax 三、解答题(共25分)7.(12分)已知长为1+2的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,P 是AB 上一点,且AP→=22PB →,求点P 的轨迹C 的方程.解 设A (x 0,0),B (0,y 0),P (x ,y ),AP→=22PB →,又AP →=(x -x 0,y ),PB →=(-x ,y 0-y ), 所以x -x 0=-22x ,y =22(y 0-y ), 得x 0=⎝⎛⎭⎪⎫1+22x ,y 0=(1+2)y .因为|AB |=1+2,即x 20+y 20=(1+2)2,所以⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+22x 2+[(1+2)y ]2=(1+2)2,化简得x 22+y 2=1.∴点P 的轨迹方程为x 22+y 2=1.8.(13分)设椭圆方程为x 2+y 24=1,过点M (0,1)的直线l 交椭圆于A ,B 两点,O为坐标原点,点P 满足OP →=12(OA →+OB →),点N 的坐标为⎝ ⎛⎭⎪⎫12,12,当直线l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)|NP→|的最大值,最小值.解 (1)直线l 过定点M (0,1),当其斜率存在时设为k ,则l 的方程为y =kx +1.设A (x 1,y 1),B (x 2,y 2),由题意知,A 、B 的坐标满足方程组⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1.消去y 得(4+k 2)x 2+2kx -3=0. 则Δ=4k 2+12(4+k 2)>0. ∴x 1+x 2=-2k4+k 2,x 1x 2=-34+k 2. P (x ,y )是AB 的中点,则由⎩⎪⎨⎪⎧x =12(x 1+x 2)=-k 4+k 2,y =12(y 1+y 2)=12(kx 1+1+kx 2+1)=44+k 2;消去k 得4x 2+y 2-y =0.当斜率k 不存在时,AB 的中点是坐标原点,也满足这个方程,故P 点的轨迹方程为4x 2+y 2-y =0.(2)由(1)知4x 2+⎝ ⎛⎭⎪⎫y -122=14,∴-14≤x ≤14而|NP |2=⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=⎝ ⎛⎭⎪⎫x -122+1-16x24=-3⎝ ⎛⎭⎪⎫x +162+712,∴当x =-16时,|NP→|取得最大值216, 当x =14时,|NP→|取得最小值14. B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·全国)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =37.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16B .14C .12D .10解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为AB 的三等分点时,可得结果为6(如图1所示).可以猜想本题碰撞的结果应为2×7=14(如图2所示).故选B.答案 B2.(2013·沈阳二模)在平行四边形ABCD 中,∠BAD =60°,AD =2AB ,若P 是平面ABCD 内一点,且满足:xAB →+yAD →+P A →=0(x ,y ∈R ).则当点P 在以A 为圆心,33|BD →|为半径的圆上时,实数x ,y 应满足关系式为 ( ).A .4x 2+y 2+2xy =1B .4x 2+y 2-2xy =1C .x 2+4y 2-2xy =1D .x 2+4y 2+2xy =1解析 如图,以A 为原点建立平面直角坐标系,设AD=2.据题意,得AB =1,∠ABD =90°,BD = 3.∴B 、D 的坐标分别为(1,0)、(1,3),∴AB →=(1,0),AD →=(1,3).设点P 的坐标为(m ,n ),即AP→=(m ,n ),则由xAB →+yAD →+P A →=0,得:AP →=xAB →+yAD →,∴⎩⎨⎧m =x +y ,n =3y .据题意,m 2+n 2=1,∴x 2+4y 2+2xy =1. 答案 D二、填空题(每小题5分,共10分)3.如图所示,正方体ABCD -A1B 1C 1D 1的棱长为1,点M在AB 上,且AM =13AB ,点P 在平面ABCD 上,且动点P 到直线A 1D 1的距离的平方与P 到点M 的距离的平方差为1,在平面直角坐标系xAy 中,动点P 的轨迹方程是________.解析 过P 作PQ ⊥AD 于Q ,再过Q 作QH ⊥A1D 1于H ,连接PH 、PM ,可证PH ⊥A 1D 1,设P (x ,y ),由|PH |2-|PM |2=1,得x 2+1-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -132+y 2=1,化简得y 2=23x -19.答案 y 2=23x -194.(2013·南京模拟)P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.解析 由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=PM →=2 PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=-12(x ,y )=-x 2,-y 2,即P 点坐标为-x 2,-y2.又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b 2=1. 答案 x 24a 2+y 24b 2=1 三、解答题(共25分)5.(12分)(2013·郑州模拟)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >0,b >0)经过点A ⎝ ⎛⎭⎪⎫62,2,且点F (0,-1)为其一个焦点. (1)求椭圆E 的方程;(2)设随圆E 与y 轴的两个交点为A 1,A 2,不在y 轴上的动点P 在直线y =b 2上运动,直线P A 1,P A 2分别与椭圆E 交于点M ,N ,证明:直线MN 通过一个定点,且△FMN 的周长为定值.解 (1)根据题意可得⎩⎪⎨⎪⎧32a 2+2b2=1,b 2-a 2=1,可解得⎩⎨⎧a =3,b =2,∴椭圆E 的方程为x 23+y 24=1.(2)由(1)知A 1(0,2),A 2(0,-2),P (x 0,4)为直线y =4上一点(x 0≠0),M (x 1,y 1),N (x 2,y 2),直线P A 1方程为y =2x 0x +2,直线P A 2方程为y =6x 0x -2,点M (x 1,y 1),A 1(0,2)的坐标满足方程组⎩⎪⎨⎪⎧ x 23+y 24=1,y =2x 0x +2,可得⎩⎪⎨⎪⎧x 1=-6x 03+x 20,y 1=2x 20-63+x 20.点N (x 2,y 2),A 2(0,-2)的坐标满足方程组⎩⎪⎨⎪⎧x 23+y 24=1,y =6x 0x -2,可得⎩⎪⎨⎪⎧x 2=18x 027+x 20,y 2=-2x 20+5427+x 20.由于椭圆关于y 轴对称,当动点P 在直线y =4上运动时,直线MN 通过的定点必在y 轴上,当x 0=1时,直线MN 的方程为y +1=43⎝ ⎛⎭⎪⎫x +32,令x =0,得y =1可猜测定点的坐标为(0,1),并记这个定点为B .则直线BM 的斜率k BM =y 1-1x 1=2x 20-63+x 20-1-6x 03+x 20=9-x 206x 0,直线BN 的斜率k BN =y 2-1x2=-2x 20+5427+x 20-118x 027+x 20=9-x 206x 0,∴k BM =k BN ,即M ,B ,N 三点共线,故直线MN 通过一个定点B (0,1),又∵F (0,-1),B (0,1)是椭圆E 的焦点,∴△FMN 周长为|FM |+|MB |+|BN |+|NF |=4b =8,为定值.6.(13分)(2013·玉林模拟)已知向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ).(1)求点Q (x ,y )的轨迹C 的方程;(2)设曲线C 与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.解 (1)由题意得a +3b =(x +3,3y ),a -3b =(x -3,3y ),∵(a +3b )⊥(a -3b ),∴(a +3b )·(a -3b )=0, 即(x +3)(x -3)+3y ·3y =0.化简得x 23+y 2=1,∴Q 点的轨迹C 的方程为x 23+y 2=1. (2)由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1.①(i)当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,则x P =x M +x N 2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk ,又|AM |=|AN |,∴AP ⊥MN .则-m +3k 2+13mk =-1k ,即2m =3k 2+1,②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故所求的m 的取值范围是⎝ ⎛⎭⎪⎫12,2.(ii)当k =0时,|AM |=|AN |,∴AP ⊥MN ,m 2<3k 2+1,解得-1<m <1.综上,当k ≠0时,m 的取值范围是⎝ ⎛⎭⎪⎫12,2,当k =0时,m 的取值范围是(-1,1).。
第8讲 函数与方程[基础达标]1.(2019·浙江省名校联考)已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B.依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2019·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.法一:因为f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,所以f (1)·f (2)<0,因为函数f (x )=ln x +x -2的图象是连续的,所以函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f (x )的零点所在的区间为(1,2).3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x-tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( )A .大于1B .大于0C .小于0D .不大于0解析:选B.y 1=⎝ ⎛⎭⎪⎫1e x是减函数,y 2=-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上也是减函数,可知f (x )=⎝ ⎛⎭⎪⎫1e x-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减. 因为0<t <x 0,f (t )>f (x 0)=0.故选B.5.(2019·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14 B .18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.6.(2019·宁波市余姚中学期中检测)已知函数f (x )=|x |x +2-kx 2(k ∈R )有四个不同的零点,则实数k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >1解析:选D.分别画出y =|x |x +2与y =kx 2的图象如图所示,当k <0时,y =kx 2的开口向下,此时与y =|x |x +2只有一个交点,显然不符合题意; 当k =0时,此时与y =|x |x +2只有一个交点,显然不符合题意, 当k >0,x ≥0时, 令f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2-x =0, 即x (kx 2+2kx -1)=0, 即x =0或kx 2+2kx -1=0,因为Δ=4k 2+4k >0,且-1k<0,所以方程有一正根,一负根,所以当x >0时,方程有唯一解.即当x ≥0时,方程有两个解.当k >0,x <0时,f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2+x =0,kx 2+2kx +1=0,此时必须有两个解才满足题意,所以Δ=4k 2-4k >0,解得k >1, 综上所述k >1.7.(2019·金丽衢十二校高三联考)设函数f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1,则f (f (e))=________,函数y =f (x )-1的零点为________.解析:因为f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1, 所以f (e)=ln e =1,f (f (e))=f (1)=tan 0=0,若0<x ≤1,f (x )=1⇒tan[π2(x -1)]=1, 方程无解;若x >1,f (x )=1⇒ln x =1⇒x =e. 答案:0 e 8.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为________. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-129.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 10.(2019·杭州学军中学模拟)已知函数f (x )=|x 3-4x |+ax -2恰有2个零点,则实数a 的取值范围为________.解析:函数f (x )=|x 3-4x |+ax -2恰有2个零点即函数y =|x 3-4x |与y =2-ax的图象有2个不同的交点.作出函数y =|x 3-4x |的图象如图,当直线y =2-ax 与曲线y =-x 3+4x ,x ∈[0,2]相切时,设切点坐标为(x 0,-x 30+4x 0),则切线方程为y -(-x 30+4x 0)=(-3x 20+4)(x -x 0),且经过点(0,2),代入解得x 0=1,此时a =-1,由函数图象的对称性可得实数a 的取值范围为a <-1或a >1.答案:a<-1或a >111.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. [能力提升]1.(2019·杭州市富阳二中高三质检)已知函数f (x )=⎩⎪⎨⎪⎧e x-2(x ≤0)ln x (x >0),则下列关于函数y =f [f (kx )+1]+1(k ≠0)的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有4个零点B .当k >0时,有4个零点;当k <0时,有3个零点C .无论k 为何值,均有3个零点D .无论k 为何值,均有4个零点 解析:选C.令f [f (kx )+1]+1=0得,⎩⎪⎨⎪⎧f (kx )+1≤0,e f (kx )+1-2+1=0或⎩⎪⎨⎪⎧f (kx )+1>0ln[f (kx )+1]+1=0, 解得f (kx )+1=0或f (kx )+1=1e ;由f (kx )+1=0得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=0或⎩⎪⎨⎪⎧kx >0ln (kx )=-1; 即x =0或kx =1e ;由f (kx )+1=1e得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=1e 或⎩⎪⎨⎪⎧kx >0ln (kx )+1=1e ; 即e kx=1+1e (无解)或kx =e 1e -1;综上所述,x =0或kx =1e 或kx =e 1e -1;故无论k 为何值,均有3个解,故选C.2.(2019·宁波市高三教学评估)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R 且a >0),则“f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a <0”是“f (x )与f (f (x ))都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由已知a >0,函数f (x )开口向上,f (x )有两个零点,最小值必然小于0,当取得最小值时,x =-b2a ,即f ⎝ ⎛⎭⎪⎫-b 2a <0,令f (x )=-b2a ,则f (f (x ))=f ⎝ ⎛⎭⎪⎫-b 2a ,因为f ⎝ ⎛⎭⎪⎫-b 2a <0,所以f (f (x ))<0,所以f (f (x ))必有两个零点.同理f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫b 2a <0⇒f ⎝ ⎛⎭⎪⎫-b 2a <0⇒x =-b2a ,因为x =-b2a 是对称轴,a >0,开口向上,f ⎝ ⎛⎭⎪⎫-b 2a <0,必有两个零点所以C 选项正确.3.(2019·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.解析:不等式为2-x 2>|x -a |,则0<2-x 2.在同一坐标系画出y =2-x 2(y ≥0,x ≥0)和y =|x |两个函数图象,将绝对值函数y =|x |向左移动,当右支经过(0,2)点时,a =-2;将绝对值函数y =|x |向右移动让左支与抛物线y =2-x 2(y ≥0,x ≥0)相切时,由⎩⎪⎨⎪⎧y -0=-(x -a )y =2-x2,可得x 2-x +a -2=0, 再由Δ=0解得a =94.数形结合可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫-2,94. 答案:⎝⎛⎭⎪⎫-2,944.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:55.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解:(1)法一:因为g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 所以m 的取值范围是[2e ,+∞).法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使y =g (x )-m 有零点,则只需m ≥2e,即m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的大致图象.因为f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 所以其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.所以m 的取值范围是(-e 2+2e +1,+∞).6.(2019·绍兴一中高三期中)已知函数f (x )=x |x -a |+bx . (1)当a =2,且f (x )是R 上的增函数,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )有三个不相等的实数根,求实数t 的取值范围.解:(1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2-x 2+(b +2)x ,x <2,因为f (x )连续,所以f (x )在R 上递增等价于这两段函数分别递增, 所以⎩⎪⎨⎪⎧2-b2≤22+b 2≥2,解得,b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a -x 2+(a -2)x ,x <a ,tf (a )=-2ta ,当2≤a <4时,a -22<a +22≤a ,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧-2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立,解得0<t <1,当-2<a <2时,a -22<a <a +22,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a +22上单调递减,在⎝ ⎛⎭⎪⎫a +22,+∞上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f ⎝ ⎛⎭⎪⎫a +22=-a 24-a -1,所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立,解得0<t <1,综上所述,0<t <1.。
第二章函数的概念、基本初等函数(1)与应用2.1 函数及其表示2.2 函数的单调性与最大(小)值2.3 函数的奇偶性与周期性2.4 二次函数2.5 基本初等函数(1)2.6 函数与方程2.7 函数模型及其应用第三章三角函数(基本初等函数(2))3.1 弧度制及任意角的三角函数3.2 同角三角函数的基本关系及诱导公式3.3 三角函数的图象与性质3.4 三角函数图象的变换3.5 三角函数模型的应用3.6 三角恒等变换3.7 正弦定理、余弦定理及其应用第四章平面向量4.1 平面向量的概念及其线性运算4.2 平面向量的基本定理及坐标表示4.3 平面向量的数量积4.4 平面向量的综合应用第五章数列5.1 数列的概念与简单表示法5.2 等差数列5.3 等比数列5.4 数列求和及其应用第六章不等式6.1 不等关系与不等式6.2 一元二次不等式及其解法6.3 二元一次不等式(组)与简单的线性规划问题6.4 基本不等式及其应用第七章立体几何7.1 空间几何体的结构、三视图、直观图7.2 空间几何体的表面积与体积7.3 空间点、线、面之间的位置关系7.4 空间中的平行关系7.5 空间中的垂直关系7.6 空间向量及其加减、数乘和数量积运算7.7 空间向量的坐标表示及运算7.8 空间向量的应用第八章平面解析几何8.1 直线的方程8.2 两条直线的位置关系8.3 圆的方程8.4 直线与圆的位置关系8.5 曲线与方程8.6 椭圆8.7 双曲线8.8 抛物线8.9 直线与圆锥曲线的位置关系第九章导数9.1 导数的概念及运算9.2 导数的应用(一)9.3 导数的应用(二)9.4 定积分第十章算法初步10.1 算法与程序框图10.2 基本算法语句与算法案例第十一章计数原理、概率、随机变量及其分布11.1 分类加法计数原理与分步乘法计数原理11.2 排列与组合11.3 二项式定理11.4 随机事件的概率11.5 古典概型11.6 几何概型11.7 互斥、对立、独立、独立重复试验及其应用11.8 离散型随机变量及其分布列11.9 二项分布及其应用11.10 离散型随机变量的均值与方差11.11 正态分布第十二章统计12.1 随机抽样12.2 用样本估计总体12.3 变量间的相关关系与线性回归方程12.4 统计案例第十三章推理与证明13.1 合情推理与演绎推理13.2 直接证明与间接证明13.3 数学归纳法第十四章数系的扩充与复数的引入14.1 数系的扩充和复数的概念14.2 复数代数形式的四则运算14.3。
第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。
第8讲 曲线与方程配套课时作业1.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线 答案 D解析 由已知知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2019·某某模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆.故选B.3.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16y D .x 2=-16y 答案 C解析 由条件知,动点M 到F (0,4)的距离与到直线y =-4的距离相等,所以点M 的轨迹是以F (0,4)为焦点,直线y =-4为准线的抛物线,其标准方程为x 2=16y .4.(2019·某某模拟)设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2 答案 D解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1.又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2,即|PM |2=2,∴(x -1)2+y 2=2.5.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹方程是( )A.x 23+y 24=1B.x 23+y 24=1(x ≠±3)C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析 因为|BC |,|CA |,|AB |成等差数列,所以|BC |+|BA |=2|CA |=4.所以点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.又B 是三角形的顶点,A ,B ,C 三点不能共线,故所求的轨迹方程为x 24+y 23=1,且x ≠±2.故选D.6.动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x 答案 B解析 设双曲线x 2-y 23=1的左焦点为F (-2,0),因为动圆M 经过F 且与直线x =2相切,所以圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .7.(2019·某某某某检测)已知F 1,F 2是双曲线的两个焦点,Q 是双曲线上任意一点,从焦点F 1引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 B解析 不妨设点Q 在双曲线的右支上,延长F 1P 交直线QF 2于点S ,∵QP 是∠F 1QF 2的平分线,且QP ⊥F 1S ,∴P 是F 1S 的中点.∵O 是F 1F 2的中点,∴PO 是△F 1SF 2的中位线,∴|PO |=12|F 2S |=12(|QS |-|QF 2|)=12(|QF 1|-|QF 2|)=a (定值),∴点P 的轨迹为圆. 8.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M 的轨迹方程为( )A.x 29+y 24=1B.y 29+x 24=1C.x 225+y 29=1 D.y 225+x 29=1 答案 A解析 设M (x ,y ),A (x 0,0),B (0,y 0),由OM →=35OA →+25OB →,得(x ,y )=35(x 0,0)+25(0,y 0),则⎩⎪⎨⎪⎧x =35x 0,y =25y 0,解得⎩⎪⎨⎪⎧x 0=53x ,y 0=52y ,由|AB |=5,得⎝ ⎛⎭⎪⎫53x 2+⎝ ⎛⎭⎪⎫52y 2=25,化简得x 29+y 24=1.9.已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线 答案 C解析 以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,轨迹是圆;当λ>0且λ≠1时,轨迹是椭圆;当λ<0时,轨迹是双曲线;当λ=0时,轨迹是直线.综上,动点M 的轨迹不可能是抛物线.10.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1) B .y 2-x 248=1C .y 2-x 248=-1 D .x 2-y 248=1 答案 A解析 由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.∵双曲线中c =7,a =1,∴b 2=48,∴焦点F 的轨迹方程为y 2-x 248=1(y ≤-1).11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线 答案 D解析 在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1,即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线,所以点P 的轨迹为抛物线.12.(2019·某某质量检查)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为( )A .-2B .-12 C.12 D .2答案 D解析 因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk 1-3k 2=12①,y 1+y 2=k (x 1+x 2)+2m =12k +2m =2②,由①②解得k =2,故选D.13.由动点P 向圆x 2+y 2=1引两条切线PA ,PB ,切点分别为A ,B ,∠APB =60°,则动点P 的轨迹方程为________.答案 x 2+y 2=4解析 设P (x ,y ),x 2+y 2=1的圆心为O ,因为∠APB =60°,OP 平分∠APB ,所以∠OPB =30°,因为|OB |=1,∠OBP 为直角,所以|OP |=2,所以x 2+y 2=4.14.(2019·某某模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.答案x 29-y 216=1(x >3)解析 如图,令内切圆与三边的切点分别为D ,E ,F ,可知|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=|AE |-|BE |=8-2=6<|AB |=10.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,其方程为x 29-y 216=1(x >3).15.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,则曲线C 的方程为________.答案x 24+y 23=1(x ≠-2) 解析 设圆M 的半径为r 1,圆N 的半径为r 2,圆P 的半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).16.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平行四边形MONP ,则点P的轨迹方程为________.答案 y 2=4(x -2)解析 (1)当直线斜率k 存在时,设直线方程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,联立得x =x 1+x 2=2k 2+4k2.y =y 1+y 2=4kk 2,消去参数k ,得y 2=4(x -2).(2)当直线斜率k 不存在时,直线方程为x =1,由O P →=2O F →得P (2,0),适合y 2=4(x -2).综合(1)(2),点P 的轨迹方程为y 2=4(x -2).17.(2019·某某质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 (1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1,得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t 2=x 20+y 20=5,t =5,所以当t =5时,矩形ABCD 的面积取到最大值6. (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③,得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).18.(2019·某某某某模拟)已知动点M (x ,y )满足:x +12+y 2+x -12+y 2=2 2.(1)求动点M 的轨迹E 的方程;(2)设过点N (-1,0)的直线l 与曲线E 交于A ,B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合).证明:直线BC 恒过定点,并求该定点的坐标.解 (1)由已知,动点M 到点P (-1,0),Q (1,0)的距离之和为22,且 |PQ |<22,所以动点M 的轨迹为椭圆,且a =2,c =1,所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),则C (x 1,-y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为y =k (x +1).由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.又直线BC 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2), 即y =y 2+y 1x 2-x 1x -x 1y 2+x 2y 1x 2-x 1, 令y =0,得x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k x 1+x 2k x 1+x 2+2k=2x 1x 2+x 1+x 2x 1+x 2+2=4k 2-41+2k 2-4k21+2k 2-4k 21+2k 2+2=-2, 所以直线BC 恒过定点D (-2,0).19.(2016·全国卷Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题意知F ⎝ ⎛⎭⎪⎫12,0. 设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛ -12,⎭⎪⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2.所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得2×12|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.20.(2019·某某模拟)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线y =2上,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值;(3)设点C 在椭圆Γ上运动,OC ⊥OD ,且点O 到直线CD 的距离为常数3,求动点D 的轨迹方程.解 (1)∵椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点,∴b =c =2,∴a =2+2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)证明:设A (x 0,y 0),则OB 的方程为x 0x +y 0y =0,由y =2,得B ⎝⎛⎭⎪⎫-2y 0x 0,2,∴1|OA |2+1|OB |2=1x 20+y 20+14+4y 20x 2=4+x 24x 20+y 2=4+x 24⎝⎛⎭⎪⎫x 20+2-x 22=12, ∴1|OA |2+1|OB |2为定值12. (3)设C (x 1,y 1),D (x ,y ),由OC ⊥OD ,得x 1x +y 1y =0,①由点C 在椭圆上,得x 214+y 212=1,②联立①②,得x 21=4y 22x 2+y 2,y 21=4x 22x 2+y2.③由OC ⊥OD ,点O 到CD 的距离为3,得|OC |·|OD |=3|CD |, ∴|OC |2·|OD |2=3(|OC |2+|OD |2).将③代入得 1|OC |2+1|OD |2=1x 21+y 21+1x 2+y2 =14y 22x 2+y 2+4x 22x 2+y2+1x 2+y 2=2x 2+y 2+44x 2+y 2=13, 化简,得点D 的轨迹方程为y 212-x 26=1.。
8-8曲线与方程(理) 基础巩固强化1.若点P 到直线y =-2的距离比它到点A (0,1)的距离大1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线[答案] D[解析] 由条件知,点P 到直线y =-1的距离与它到点A (0,1)的距离相等,∴P 点轨迹是以A 为焦点,直线y =-1为准线的抛物线.2.已知平面上两定点A 、B 的距离是2,动点M 满足条件MA →·MB →=1,则动点M 的轨迹是( )A .直线B .圆C .椭圆D .双曲线 [答案] B[解析] 以线段AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则A (-1,0),B (1,0),设M (x ,y ),∵MA →·MB →=1,∴(-1-x ,-y )·(1-x ,-y )=1, ∴x 2+y 2=2,故选B.3.(2012·浙江金华十校模拟)如果椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,那么双曲线x 2a 2-y 2b2=1的离心率为( ) A.52 B.54 C. 2 D .2 [答案] A[解析] 设椭圆、双曲线的半焦距分别为c 、c ′,由条件知椭圆x 2a 2+y 2b 2=1的离心率e =c a =32⇒c 2a 2=34⇒a 2-b 2a 2=34⇒b 2a 2=14, 则双曲线x 2a 2-y 2b 2=1中:e 2=c ′2a 2=a 2+b 2a 2=1+b 2a 2=54.所以e =52.4.设x 1、x 2∈R ,常数a >0,定义运算“*”,x 1]x *a ))的轨迹是( ) A .圆B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分[答案] D[解析] ∵x 1]x *a )=(x +a )2-(x -a )2=2ax , 则P (x,2ax ).设P (x 1,y 1),即⎩⎪⎨⎪⎧x 1=x y 1=2ax,消去x 得,y 21=4ax 1(x 1≥0,y 1≥0),故点P 的轨迹为抛物线的一部分.故选D.5.(2012·长沙一中月考)方程(2x +3y -1)(x -3-1)=0表示的曲线是( )A .两条直线B .两条射线C .两条线段D .一条直线和一条射线[答案] D[解析] 原方程化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0,或x -3-1=0, ∴2x +3y -1=0(x ≥3)或x =4,故选D.6.(2011·天津市宝坻区质量检测)若中心在原点,焦点在坐标轴上的双曲线的顶点是椭圆x 22+y 2=1短轴端点,且该双曲线的离心率与此椭圆的离心率之积为1,则该双曲线的方程为( )A .x 2-y 2=1B .y 2-x 2=1 C.x 24-y 2=1 D.y 24-x 2=1 [答案] B[解析] ∵椭圆x 22+y 2=1的短轴端点为(0,±1),离心率e 1=c a =22.∴双曲线的顶点(0,±1),即焦点在y 轴上,且a =1,离心率e 2=c ′a =2,∴c ′=2,b =1,所求双曲线方程为y 2-x 2=1.故选B. 7.设P 为双曲线x 24-y 2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是________.[答案] x 2-4y 2=1[解析] 设M (x ,y ),则P (2x,2y ),代入双曲线方程得x 2-4y 2=1,即为所求.8.(2011·聊城月考)过点P (1,1)且互相垂直的两条直线l 1与l 2分别与x 、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为________.[答案] x +y -1=0[解析] 设l 1:y -1=k (x -1),k ≠0,则l 2:y -1=-1k(x -1),l 1与x 轴交于点A (1-1k ,0),l 2与y 轴交于点B (0,1+1k ),∴AB 的中点M (12-12k ,12+12k),设M (x ,y ),则⎩⎪⎨⎪⎧x =12-12k ,y =12+12k ∴x +y =1.即AB 的中点M 的轨迹方程为x +y -1=0.9.(2011·北京理,14)曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点P 的轨迹.给出下列三个结论:①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. [答案] ②③[解析] 设P (x ,y ),由|PF 1|·|PF 2|=a 2得,(x +1)2+y 2·(x -1)2+y 2=a 2(a >1),将原点O (0,0)代入等式不成立,故①错;将(-x ,-y )代入方程中,方程不变,故曲线C 关于原点对称,故②正确;设∠F 1PF 2=θ,则S △F 1PF 2=12|PF 1||PF 2|·sin θ=12a 2sin θ≤12a 2,故③正确.10.已知双曲线x 29-y 216=1的左、右顶点分别为A 1、A 2,点P 是双曲线上任一点,Q 是P 关于x 轴的对称点,求直线A 1P 与A 2Q 交点M 的轨迹E 的方程.[解析] 由条件知A 1(-3,0),A 2(3,0),设M (x ,y ),P (x 1,y 1),则Q (x 1,-y 1),|x 1|>3,∴直线A 1P :y =y 1x 1+3·(x +3),A 2Q :y =-y 1x 1-3·(x -3),两式相乘得y 2x 2-9=-y 21x 21-9, ∵点P 在双曲线上,∴x 219-y 2116=1,∴-y 21x 21-9=-169∴y 2x 2-9=-169,整理得x 29+y 216=1(xy ≠0).能力拓展提升11.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC →=2CB →,则点C 的轨迹是( )A .线段B .圆C .椭圆D .双曲线[答案] C[解析] 设C (x ,y ),A (a,0),B (0,b ),则 a 2+b 2=9,①又AC →=2CB →,所以(x -a ,y )=2(-x ,b -y ),则⎩⎨⎧a =3x ,b =32y ,②把②代入①式整理可得:x 2+14y 2=1.故选C.12.(2012·天津模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1 D.4x 225+4y 221=1 [答案] D[解析] M 为AQ 垂直平分线上一点, 则|AM |=|MQ |.∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,(5>|AC |) ∴a =52,c =1,则b 2=a 2-c 2=214,∴椭圆的标准方程为4x 225+4y 221=1.故选D.13.已知A 、B 分别是直线y =33x 和y =-33x 上的两个动点,线段AB 的长为23,P 是AB 的中点,则动点P 的轨迹C 的方程为________.[答案] x 29+y 2=1[解析] 设P (x ,y ),A (x 1,y 1),B (x 2,y 2).∵P 是线段AB 的中点,∴⎩⎨⎧x =x 1+x 22,y =y 1+y22.①∵A 、B 分别是直线y =33x 和y =-33x 上的点,∴y 1=33x 1和y 2=-33x 2.代入①中得,⎩⎨⎧x 1-x 2=23y ,y 1-y 2=233x .②又|AB →|=23,∴(x 1-x 2)2+(y 1-y 2)2=12.∴12y 2+43x 2=12,∴动点P 的轨迹C 的方程为x29+y 2=1.14.(2012·福州质检)已知F 1、F 2为椭圆x 225+y 2161的左、右焦点,若M 为椭圆上一点,且△MF 1F 2的内切圆的周长等于3π,则满足条件的点M 的个数为________.[答案] 2[解析] 由题意知椭圆的焦点坐标为:F 1(-3,0),F 2(3,0).∵△MF 1F 2的内切圆的周长等于3π,∴△MF 1F 2的内切圆的半径r =32.又∵S △MF 2F 1=12(|MF 1|+|MF 2|+2c )·r =c |y M |,∴y M =±4.∴满足条件的点M只有两个,在短轴顶点处.15.如图所示,在平面直角坐标系中,N 为圆A :(x +1)2+y 2=16上的一动点,点B (1,0),点M 是BN 的中点,点P 在线段AN 上,且MP →·BN →=0.(1)求动点P 的轨迹方程;(2)试判断以PB 为直径的圆与圆x 2+y 2=4的位置关系,并说明理由.[解析] (1)∵点M 是BN 中点,又MP →·BN →=0, ∴PM 垂直平分BN ,∴|PN |=|PB |,又|PA |+|PN |=|AN |,∴|PA |+|PB |=4,由椭圆定义知,点P 的轨迹是以A 、B 为焦点的椭圆.设椭圆方程为x 2a 2+y 2b2=1,由2a =4,2c =2可得,a 2=4,b 2=3. 可得动点P 的轨迹方程为x 24+y 23=1.(2)设PB 中点为C ,则|OC |=12|AP |=12(|AN |-|PN |)=12(4-|PB |)=2-12|PB |. ∴两圆内切.16.(2012·广东揭阳市模拟)在直角坐标系xOy 上取两个定点A 1(-2,0),A 2(2,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =3.(1)求直线A 1N 1与A 2N 2交点的轨迹M 的方程;(2)已知点G (1,0)和G ′(-1,0),点P 在轨迹M 上运动,现以P 为圆心,PG 为半径作圆P ,试探究是否存在一个以点G ′(-1,0)为圆心的定圆,总与圆P 内切?若存在,求出该定圆的方程;若不存在,请说明理由.[解析] (1)依题意知直线A 1N 1的方程为: y =m2x +2),① 直线A 2N 2的方程为:y =-n2(x -2),②设Q (x ,y )是直线A 1N 1与A 2N 2交点, ①×②得y 2=-mn 4(x 2-4).将mn =3代入,整理得x 24+y 23=1.∵N 1、N 2不与原点重合,∴点A 1(-2,0),A 2(2,0)不在轨迹M 上, ∴轨迹M 的方程为x 24+y 23=1(x ≠±2).(2)由(1)知,点G (1,0)和G ′(-1,0)为椭圆x 24+y 23=1的两焦点,由椭圆的定义得|PG ′|+|PG |=4, 即|PG ′|=4-|PG |,∴以G ′为圆心,以4为半径的圆与圆P 内切, 即存在定圆G ′,该定圆与圆P 恒内切, 其方程为:(x +1)2+y 2=16.1.已知点A (2,0),B 、C 在y 轴上,且|BC |=4,△ABC 外心的轨迹S 的方程为( )A .y 2=2xB .x 2+y 2=4C .y 2=4xD .x 2=4y[答案] C[解析] 设△ABC 外心为G (x ,y ),B (0,a ),C (0,a +4), 由G 点在BC 的垂直平分线上知y =a +2, ∵|GA |2=|GB |2,∴(x -2)2+y 2=x 2+(y -a )2, 整理得y 2=4x ,即点G 的轨迹S 方程为y 2=4x .2.平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是()A.一条直线B.一个圆C.一个椭圆D.双曲线的一支[答案] A[解析]过定点A且与AB垂直的直线l都在过定点A且与AB垂直的平面β内,直线l与α的交点C也是平面α、β的公共点.点C 的轨迹是平面α、β的交线.3.已知log2x、log2y、2成等差数列,则在平面直角坐标系中,点M(x,y)的轨迹为()[答案] A[解析] 由log 2x ,log 2y,2成等差数列得2log 2y =log 2x +2 ∴y 2=4x (x >0,y >0),故选A.4.P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.[答案] x 24a 2+y 24b 2=1 [解析] 设F 1(-c,0),F 2(c,0),Q (x ,y ),P (x 1,y 1),∴PF 1→=(-c -x 1,-y 1),PF 2→=(c -x 1,-y 1),OQ →=(x ,y ), 由OQ →=PF 1→+PF 2→得,⎩⎪⎨⎪⎧x =-2x 1,y =-2y 1,∴⎩⎪⎨⎪⎧ x 1=-x 2,y 1=-y 2.代入椭圆方程x 2a 2+y 2b 2=1中得,x 24a 2+y 24b 2=1. 5.(2012·石家庄质检)点P 为圆O :x 2+y 2=4上一动点,PD ⊥x 轴于D 点,记线段PD 的中点M 的运动轨迹为曲线C .(1)求曲线C 的方程;(2)直线l 经过定点(0,2),且与曲线C 交于A 、B 两点,求△OAB 面积的最大值.[解析] (1)设P (x 0,y 0),M (x ,y ),则D (x 0,0).由题意可得⎩⎨⎧ x =x 0,y =12y 0,得⎩⎪⎨⎪⎧ x 0=x ,y 0=2y ,(*) 将(*)式代入x 2+y 2=4中,得x 24+y 2=1,故曲线C 为焦点在x 轴上的椭圆,且方程为x 24+y 2=1. (2)依题意知直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为y =kx +2,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +2,消去y 整理得(4k 2+1)x 2+16kx +12=0, Δ=(16k )2-4(4k 2+1)×12=16(4k 2-3),由Δ>0,得4k 2-3>0.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-16k 4k 2+1,x 1x 2=124k 2+1.② |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)[(-16k 4k 2+1)2-4·124k 2+1].③ 原点O 到直线l 的距离d =21+k 2.④由三角形的面积公式及③④得S △OAB =12×|AB |d =44k 2-3(1+4k 2)2=44k2-3(4k2-3)2+8(4k2-3)+16=414k2-3+8+164k2-3≤4116=1,当且仅当4k2-3=164k2-3,即4k2-3=4时,等号成立.此时S△OAB的最大值为1.。
第八节 曲线与方程轨迹与轨迹方程了解方程的曲线与曲线的方程的对应关系.知识点 曲线与方程 1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫作曲线的方程,这条曲线叫作方程的曲线.2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标. (2)写出适合条件p 的点M 的集合P ={M |p (M )}. (3)用坐标表示条件p (M ),列出方程f (x ,y )=0. (4)化方程f (x ,y )=0为最简形式.(5)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解.若此方程组无解,则两曲线无交点.易误提醒 (1)曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).(2)求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.[自测练习]1.方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3) C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:把点(-2,3)和点(2,3)的坐标代入方程(a -1)x -y +2a +1=0.验证知(-2,3)适合方程,而(2,3)不一定适合方程,故选A.答案:A2.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为____________.解析:AB →=⎝⎛⎭⎫2,-y 2,BC →=⎝⎛⎭⎫x ,y 2,由AB →⊥BC →,得AB →·BC →=0,即2x +⎝⎛⎭⎫-y 2·y 2=0,∴动点C 的轨迹方程为y 2=8x .答案:y 2=8x3.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,∴|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点). 答案:x 24+y 23=1(y ≠0)考点一 直接法求轨迹方程|1.(2016·津南一模)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析:设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.答案:A2.(2016·南昌模拟)方程(x 2+y 2-2x )x +y -3=0表示的曲线是( )A .一个圆和一条直线B .一个圆和一条射线C .一个圆D .一条直线解析:本题考查曲线与方程、数形结合思想.依题意,题中的方程等价于①x +y -3=0或②⎩⎪⎨⎪⎧x +y -3≥0,x 2+y 2-2x =0.注意到圆x 2+y 2-2x =0上的点均位于直线x +y -3=0的左下方区域,即圆x 2+y 2-2x =0上的点均不满足x +y -3≥0,②不表示任何图形,因此题中的方程表示的曲线是直线x +y -3=0,故选D.答案:D3.在直角坐标平面xOy 中,过定点(0,1)的直线l 与圆x 2+y 2=4交于A ,B 两点.若动点P (x ,y )满足OP →=OA →+OB →,则点P 的轨迹方程为________.解析:设AB 的中点为M ,则OM →=12OP →,M ⎝⎛⎭⎫x 2,y 2.又因为OM ⊥AB ,AB →的方向向量为⎝⎛⎭⎫x 2,y 2-1,OM →=⎝⎛⎭⎫x 2,y 2,所以⎝⎛⎭⎫x 2,y 2-1·⎝⎛⎭⎫x 2,y 2=0,x 2+y (y -2)=0,即x 2+(y -1)2=1. 答案:x 2+(y -1)2=1直接法求轨迹方程的常见类型(1)题目给出等量关系,求轨迹方程.可直接代入即可得出方程.(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.考点二 定义法求轨迹方程|已知点F (1,0),圆E :(x +1)2+y 2=8,点P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Γ的方程;(2)若直线l 与圆O :x 2+y 2=1相切,并与(1)中轨迹Γ交于不同的两点A ,B ,当OA →·OB →=λ,且满足23≤λ≤34时,求△AOB 面积S 的取值范围.[解] (1)连接QF (图略).∵|QE |+|QF |=|QE |+|QP |=|PE |=22(22>|EF |=2),∴点Q 的轨迹是以E (-1,0),F (1,0)为焦点,长轴长2a =22的椭圆,即动点Q 的轨迹Γ的方程为x 22+y 2=1. (2)依题结合图形(图略)知直线l 的斜率不可能为零,所以设直线l 的方程为x =my +n (m ∈R ).∵直线l 即x -my -n =0与圆O :x 2+y 2=1相切,∴|n |m 2+1=1,得n 2=m 2+1. 又∵点A ,B 的坐标(x 1,y 1),(x 2,y 2)满足:⎩⎪⎨⎪⎧x =my +n ,x 2+2y 2-2=0, 消去x 并整理,得(m 2+2)y 2+2mny +n 2-2=0.由一元二次方程根与系数的关系,得y 1+y 2=-2mnm 2+2,y 1y 2=n 2-2m 2+2.其判别式Δ=4m 2n 2-4(m 2+2)(n 2-2)=8(m 2-n 2+2)=8, 又由求根公式得y 1,2=-2mn ±Δ2(m 2+2).∵λ=OA →·OB →=x 1x 2+y 1y 2=(my 1+n )(my 2+n )+y 1y 2=(m 2+1)y 1y 2+mn (y 1+y 2)+n 2=3n 2-2m 2-2m 2+2=m 2+1m 2+2.S △AOB =12|OA →||OB →|sin ∠AOB =12OA →2·OB →2-(OA →·OB →)2=12|x 1y 2-x 2y 1|=12|(my 1+n )y 2-(my 2+n )y 1|=12|n (y 2-y 1)|=12|n |·Δm 2+2=2·m 2+1(m 2+2)2=2·m 2+1m 2+2·1m 2+2∵m 2+1m 2+2+1m 2+2=1,且λ=m 2+1m 2+2∈⎣⎡⎦⎤23,34, ∴S △AOB =2·λ·(1-λ)∈⎣⎡⎦⎤64,23.定义法求轨迹方程的思路(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知轨迹是什么曲线,其方程是什么形式的方程的情况.利用条件把待定系数求出来,使问题得解.1.已知动圆过定点F (0,2),且与定直线l :y =-2相切. (1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过点F (0,2),分别以A ,B 为切点作轨迹C 的切线,设两切线交点为Q ,求证:AQ ⊥BQ .解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,l :y =-2为准线的抛物线,因为抛物线焦点到准线的距离等于4,所以圆心的轨迹方程是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直,设直线AB 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,得x 2-8kx -16=0. 所以x 1+x 2=8k ,x 1x 2=-16.抛物线方程为y =18x 2,求导得y ′=14x .所以过抛物线上A ,B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1·k 2=14x 1·14x 2=116x 1·x 2=-1.所以AQ ⊥BQ .考点三 代入法求轨迹方程|在圆O :x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.设M 为线段PD 的中点.(1)当点P 在圆O 上运动时,求点M 的轨迹E 的方程;(2)若圆O 在点P 处的切线与x 轴交于点N ,试判断直线MN 与轨迹E 的位置关系. [解] (1)设M (x ,y ),则P (x,2y ).∵点P 在圆x 2+y 2=4上,∴x 2+(2y )2=4,即点M 的轨迹E 的方程为x 24+y 2=1.(2)当直线PN 的斜率不存在时,直线MN 的方程为x =2或x =-2.显然与轨迹E 相切. 当直线PN 的斜率存在时,设PN 的方程为y =kx +t (k ≠0). ∵直线PN 与圆O 相切,∴|t |k 2+1=2,即t 2-4k 2-4=0. 又∵直线MN 的斜率为k 2,点N 的坐标为⎝⎛⎭⎫-t k ,0,∴直线MN 的方程为y =k2⎝⎛⎭⎫x +t k , 即y =12(kx +t ).由⎩⎨⎧y =12(kx +t ),x24+y 2=1,得(1+k 2)x 2+2ktx +t 2-4=0.∵Δ=(2kt )2-4(1+k 2)(t 2-4)=-4(t 2-4k 2-4)=0,∴直线MN 与轨迹E 相切. 综上可知,直线MN 与轨迹E 相切.代入法求轨迹方程的四个步骤(1)设出所求动点坐标P (x ,y ).(2)寻求与所求动点P (x ,y )与已知动点Q (x ′,y ′)的关系. (3)建立P ,Q 两坐标的关系表示出x ′,y ′. (4)将x ′,y ′代入已知曲线方程中化简求解.2.已知F 1,F 2分别为椭圆C :x 24+y 23=1的左,右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( )A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0)解析:依题意知F 1(-1,0),F 2(1,0),设P (x 0,y 0),G (x ,y ),则由三角形重心坐标关系可得⎩⎨⎧x =x 0-1+13,y =y 03.即⎩⎪⎨⎪⎧x 0=3x ,y 0=3y .代入x 204+y 203=1得重心G 的轨迹方程为9x 24+3y 2=1(y ≠0).答案:C27.分类讨论思想在由方程讨论曲线类型中的应用【典例】 已知两个定点A 1(-2,0),A 2(2,0),动点M 满足直线MA 1与MA 2的斜率之积是定值m4(m ≠0).求动点M 的轨迹方程,并指出随m 变化时方程所表示的曲线C 的形状.[思路点拨] 依题直接写出方程后,结合方程结构特征分类判断曲线类型,注意分类标准的确定.[解] 设动点M (x ,y ),依题意有y x -2·y x +2=m4(m ≠0),整理得x 24-y 2m=1(x ≠±2),即为动点M 的轨迹方程.当m >0时,轨迹是焦点在x 轴上的双曲线;当m ∈(-4,0)时,轨迹是焦点在x 轴上的椭圆; 当m =-4时,轨迹是圆;当m ∈(-∞,-4)时,轨迹是焦点在y 轴上的椭圆.且点A 1(-2,0),A 2(2,0)不在曲线上.[方法点评] 由曲线方程讨论曲线类型时,常用到分类讨论思想,其分类的标准有两类: (1)二次项系数为0的值. (2)二次项系数相等的值.[跟踪练习] 在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )解析:a >b >0得1b 2>1a 2>0,方程a 2x 2+b 2y 2=1,即x 21a 2+y 21b 2=1表示的是焦点在y 轴上的椭圆;方程ax +by 2=0,即y 2=-ab x 表示的是焦点在x 轴的负半轴上的抛物线上,结合各选项知,选D.答案:DA 组 考点能力演练1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程2x +y =0”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件解析:点M 的坐标满足方程2x +y =0,则点M 在曲线y 2=4x 上,是必要条件;但当y >0时,点M 在曲线y 2=4x 上,点M 的坐标不满足方程2x +y =0,不是充分条件.2.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:∵PM →·PN →=0,∴PM ⊥PN . ∴点P 的轨迹是以线段MN 为直径的圆. 答案:A3.(2016·梅州质检)动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x解析:双曲线x 2-y 23=1的左焦点F (-2,0),动圆M 经过F 且与直线x =2相切,则圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .答案:B4.(2016·沈阳质检)已知点O (0,0),A (1,-2),动点P 满足|P A |=3|PO |,则P 点的轨迹方程是( )A .8x 2+8y 2+2x -4y -5=0B .8x 2+8y 2-2x -4y -5=0C .8x 2+8y 2+2x +4y -5=0D .8x 2+8y 2-2x +4y -5=0解析:设P 点的坐标为(x ,y ),则(x -1)2+(y +2)2=3x 2+y 2,整理得8x 2+8y 2+2x -4y -5=0,故选A.答案:A5.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1 D .x 2=16y解析:M 点的轨迹是双曲线x 216-y 29=1,依题意,是“好曲线”的曲线与M 点的轨迹必有公共点.四个选项中,只有圆x 2+y 2=9与M 点的轨迹没有公共点,其他三个曲线与M 点的轨迹都有公共点,所以圆x 2+y 2=9不是“好曲线”.6.(2016·聊城一模)在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是_____________________________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -27.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是________.解析:本题考查曲线的方程.因为抛物线x 2=4y 的焦点F (0,1),设线段PF 的中点坐标是(x ,y ),则P (2x,2y -1)在抛物线x 2=4y 上,所以(2x )2=4(2y -1),化简得x 2=2y -1.答案:x 2=2y -18.已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).则动点P 的轨迹C 的方程为________.解析:由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ, 整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).答案:x 2-y 2λ=1(λ≠0,x ≠±1)9.在直角坐标系xOy 中,动点P 与定点F (1,0)的距离和它到定直线x =2的距离之比是22. (1)求动点P 的轨迹Γ的方程; (2)设曲线Γ上的三点A (x 1,y 1),B ⎝⎛⎭⎫1,22,C (x 2,y 2)与点F 的距离成等差数列,线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .解:(1)设P (x ,y ).由已知,得(x -1)2+y 2|x -2|=22,两边同时平方,化简得x 22+y 2=1,故动点P 的轨迹Γ的方程是x 22+y 2=1.(2)由已知得|AF |=22(2-x 1),|BF |=22×(2-1), |CF |=22(2-x 2),因为2|BF |=|AF |+|CF |,所以22(2-x 1)+22(2-x 2)=2×22×(2-1), 所以x 1+x 2=2.①故线段AC 的中点坐标为⎝⎛⎭⎫1,y 1+y 22,其垂直平分线的方程为y -y 1+y 22=-x 1-x 2y 1-y 2(x -1).②因为A ,C 在椭圆上,所以代入椭圆,两式相减, 把①代入化简,得-x 1-x 2y 1-y 2=y 1+y 2.③把③代入②,令y =0,得x =12,所以点T 的坐标为⎝⎛⎭⎫12,0.所以直线BT 的斜率k =22-01-12= 2.10.在平面直角坐标系xOy 中,动点P (x ,y )到F (0,1)的距离比到直线y =-2的距离小1.(1)求动点P 的轨迹W 的方程;(2)过点E (0,-4)的直线与轨迹W 交于两点A ,B ,点D 是点E 关于x 轴的对称点,点A 关于y 轴的对称点为A 1,证明:A 1,D ,B 三点共线.解:(1)由题意可得动点P (x ,y )到定点F (0,1)的距离和到定直线y =-1的距离相等,所以动点P 的轨迹是以F (0,1)为焦点,以y =-1为准线的抛物线.所以动点P 的轨迹W 的方程为x 2=4y .(2)证明:设直线l 的方程为y =kx -4,A (x 1,y 1),B (x 2,y 2),则A 1(-x 1,y 1).由⎩⎪⎨⎪⎧y =kx -4,x 2=4y ,消去y ,整理得x 2-4kx +16=0. 则Δ=16k 2-64>0,即|k |>2. x 1+x 2=4k ,x 1x 2=16.直线A 1B :y -y 2=y 2-y 1x 2+x 1(x -x 2),所以y =y 2-y 1x 2+x 1(x -x 2)+y 2,即y =x 22-x 214(x 1+x 2)(x -x 2)+14x 22,整理得y =x 2-x 14x -x 22-x 1x 24+14x 22,即y =x 2-x 14x +x 1x 24.直线A 1B 的方程为y =x 2-x 14x +4,显然直线A 1B 过点D (0,4).所以A 1,D ,B 三点共线. B 组 高考题型专练1.(2014·高考广东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)依题意知c =5,c a =53,∴a =3,b 2=a 2-c 2=4,∴椭圆C 的标准方程为x 29+y 24=1. (2)若过点P (x 0,y 0)的切线的斜率不存在或者斜率为零,则易知点P 的坐标为(3,2)或(3,-2)或(-3,2)或(-3,-2).若过点P (x 0,y 0)的切线的斜率存在且不为0,设切点分别为A (x 1,y 1),B (x 2,y 2),切线P A 的斜率为k ,∵P A ⊥PB ,则切线PB 的斜率为-1k. 切线P A 的方程为y -y 0=k (x -x 0),由⎩⎪⎨⎪⎧y -y 0=k (x -x 0)x 29+y 24=1得4x 2+9[k (x -x 0)+y 0]2=36,即(4+9k 2)x 2+18k (y 0-kx 0)x +9(y 0-kx 0)2-36=0,∵切线P A 与椭圆相切, ∴Δ=[18k (y 0-kx 0)]2-4(4+9k 2)[9(y 0-kx 0)2-36]=0,化简得4+9k 2-k 2x 20+2kx 0y 0-y 20=0.①同理,切线PB 的方程为y -y 0=-1k (x -x 0),与椭圆方程x 29+y 24=1联立可得,4+9k 2-x 20k 2-2x 0y 0k-y 20=0,即4k 2+9-x 20-2kx 0y 0-k 2y 20=0.② 由①+②得13(1+k 2)-(1+k 2)(x 20+y 20)=0,即(1+k 2)(x 20+y 20-13)=0,∵1+k 2≠0,∴x 20+y 20-13=0,即x 20+y 20=13.经检验可知点(3,2),(3,-2),(-3,2),(-3,-2)均满足x 20+y 20=13,故点P (x 0,y 0)的轨迹方程为x 2+y 2=13.2.(2015·高考广东卷)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解:(1)C 1:(x -3)2+y 2=4,圆心C 1(3,0).(2)由垂径定理知,C 1M ⊥AB ,故点M 在以OC 1为直径的圆上,即⎝⎛⎭⎫x -322+y 2=94. 故线段AB 的中点M 的轨迹C 的方程是⎝⎛⎭⎫x -322+y 2=94在圆C 1:(x -3)2+y 2=4内部的部分,即⎝⎛⎭⎫x -322+y 2=94⎝⎛⎭⎫53<x ≤3. (3)联立⎩⎨⎧x =53,⎝⎛⎭⎫x -322+y 2=94,解得⎩⎨⎧ x =53,y =±253. 不妨设其交点为P 1⎝⎛⎭⎫53,253,P 2⎝⎛⎭⎫53,-253, 设直线L :y =k (x -4)所过定点为P (4,0), 则kPP 1=-257,kPP 2=257. 当直线L 与圆C 相切时,⎪⎪⎪⎪32-k -4k ||k 2+1=32,解得k =±34. 故当k ∈⎩⎨⎧⎭⎬⎫-34∪⎝⎛⎭⎫-257,257∪⎩⎨⎧⎭⎬⎫34时,直线L 与曲线C 只有一个交点.。
第8讲曲线与方程一、选择题1。
方程(2x+3y-1)(错误!-1)=0表示的曲线是()A。
两条直线 B.两条射线C.两条线段D。
一条直线和一条射线解析原方程可化为错误!或错误!-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条直线和一条射线.答案D2。
(2017·衡水模拟)若方程x2+y2a=1(a是常数),则下列结论正确的是()A.任意实数a方程表示椭圆B。
存在实数a方程表示椭圆C。
任意实数a方程表示双曲线 D.存在实数a方程表示抛物线解析当a>0且a≠1时,方程表示椭圆,故选B。
答案B3。
(2017·长春模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点。
线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )A。
错误!-错误!=1 B。
错误!+错误!=1C.错误!-错误!=1 D。
错误!+错误!=1解析∵M为AQ的垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹是以定点C,A为焦点的椭圆。
∴a=52,∴c=1,则b2=a2-c2=214,∴M的轨迹方程为错误!+错误!=1。
答案D4.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是()A。
y2=2x B。
(x-1)2+y2=4C。
y2=-2x D。
(x-1)2+y2=2解析如图,设P(x,y),圆心为M(1,0),连接MA,则MA⊥PA,且|MA|=1,又∵|PA|=1,∴|PM|=|MA|2+|PA|2=2,即|PM|2=2,∴(x-1)2+y2=2.答案D5.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足错误!=λ1错误!+λ2 OB→(O为原点),其中λ,λ2∈R,且λ1+λ2=1,则点C的轨迹是()1A.直线B.椭圆C.圆D.双曲线解析设C(x,y),因为错误!=λ1错误!+λ2错误!,所以(x,y)=λ1(3,1)+λ2(-1,3),即错误!解得错误!又λ1+λ2=1,所以错误!+错误!=1,即x+2y=5 ,所以点C的轨迹为直线,故选A.答案A二、填空题6。
第2课时 范围、最值问题考点1 范围问题——综合性(2021·梅州二模)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 距离的取值范围.解:(1)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 2(c,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆:(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离d =|c +22-1|12+12=a . 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1, 所以椭圆C 的标准方程为x 24+y 23=1.(2)设B (m ,n ),设M ,N 的中点为D ,直线OD 与椭圆交于A ,B 两点. 因为O 为△BMN 的重心,则BO =2OD =OA ,所以D ⎝ ⎛⎭⎪⎫-m 2,-n 2,即B 到直线MN 的距离是原点O 到直线MN 距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时B 在长轴的端点处. 由|OB |=2,得|OD |=1,则O 到直线MN 的距离为1,B 到直线MN 的距离为3.当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y223=1,两式相减,得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0.因为D 为M ,N 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m4n, 所以直线MN 的方程为y +n 2=-3m 4n ⎝ ⎛⎭⎪⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m264n 2+36m2.因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m264n 2+36m2=12144+16n2=39+n2.因为0<n 2≤3,所以3<9+n 2≤23, 所以123≤19+n 2<13,所以332≤3d <3. 综上所述,332≤3d ≤3,即点B 到直线MN 距离的取值范围为⎣⎢⎡⎦⎥⎤332,3.圆锥曲线中的取值范围问题的解题策略(1)利用圆锥曲线的几何性质或联立方程后的判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知椭圆x 2a 2+y 2b2=1(a >b >0)上的点到右焦点F (c,0)的最大距离是2+1,且1,2a,4c成等比数列.(1)求椭圆的方程;(2)过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,线段AB 的垂直平分线交x 轴于点M (m,0),求实数m 的取值范围.解:(1)由已知可得⎩⎨⎧a +c =2+1,1×4c =2a 2,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =1,c =1,所以椭圆的方程为x 22+y 2=1.(2)由题意得F (1,0),设直线AB 的方程为y =k (x -1).与椭圆方程联立得⎩⎪⎨⎪⎧x 2+2y 2-2=0,y =k (x -1),消去y 可得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=(-4k 2)2-4(2k 2-2)(1+2k 2)=8k 2+8>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k21+2k2,y 1+y 2=k (x 1+x 2)-2k =-2k1+2k2. 可得线段AB 的中点为N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.当k =0时,直线MN 为x 轴,此时m =0;当k ≠0时,直线MN 的方程为y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 化简得ky +x -k 21+2k2=0.令y =0,得x =k 21+2k2,所以m =k 21+2k 2=11k2+2∈⎝ ⎛⎭⎪⎫0,12. 综上所述,实数m 的取值范围为⎣⎢⎡⎭⎪⎫0,12.考点2 最值问题——应用性考向1 利用几何性质求最值在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为___________.22解析:双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线间的距离d =|1-0|12+(-1)2=22,由点P 到直线x -y +1=0的距离大于c恒成立,得c ≤22,故c 的最大值为22. 考向2 利用函数、导数求最值(2022·江门市高三一模)如图,抛物线C :y 2=8x 与动圆M :(x -8)2+y 2=r 2(r >0)相交于A ,B ,C ,D 四个不同点.(1)求r 的取值范围;(2)求四边形ABCD 面积S 的最大值及相应r 的值.解:(1)联立抛物线与圆方程⎩⎪⎨⎪⎧y 2=8x ,(x -8)2+y 2=r 2,消去y ,得x 2-8x +64-r 2=0.若圆与抛物线有四个不同交点,则方程有两个不等正根.所以⎩⎪⎨⎪⎧64-r 2>0,64-4(64-r 2)>0,解得43<r <8,所以r 的取值范围为(43,8).(2)设A (x 1,22x 1),B (x 2,22x 2),其中x 2>x 1>0,则x 1+x 2=8,x 1x 2=64-r 2,S =12(42x 1+42x 2)(x 2-x 1)=(22x 1+22x 2)(x 2-x 1), S 2=8(x 1+x 2+2x 1x 2)[(x 2+x 1)2-4x 1x 2], S 2=64(4+64-r 2)[16-(64-r 2)].令x =64-r 2(0<x <4),令f (x )=(4+x )(16-x 2)(0<x <4),f ′(x )=16-8x -3x 2=(4-3x )(x +4).当0<x <43时,f ′(x )>0,f (x )单调递增;当43<x <4时,f ′(x )<0,f (x )单调递减. f (x )≤f ⎝ ⎛⎭⎪⎫43=2 04827,S =8f (x )≤25669.当x =43时,S 取得最大值,取64-r 2=43,r =4353.考向3 利用基本不等式求最值(2022·唐山三模)在直角坐标系xOy 中,A (-1,0),B (1,0),C 为动点,设△ABC的内切圆分别与边AC ,BC ,AB 相切于P ,Q ,R ,且|CP |=1,记点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)不过原点O 的直线l 与曲线E 交于M ,N ,且直线y =-12x 经过MN 的中点T ,求△OMN的面积的最大值.解:(1)依题意可知,|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线E 是以A ,B 为焦点,长轴长为4的椭圆(除去与x 轴的交点), 因此曲线E 的方程为x 24+y 23=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),直线l 的方程为y =kx +m (m ≠0),代入x 24+y 23=1整理,得(4k 2+3)x 2+8kmx +4m 2-12=0,(*)Δ=64k 2m 2-4(4k 2+3)(4m 2-12)>0.则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3,所以y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3,故MN 的中点T ⎝⎛⎭⎪⎫-4km 4k 2+3,3m 4k 2+3.而直线y =-12x 经过MN 的中点T ,得3m 4k 2+3=-12×-4km4k 2+3, 又m ≠0,所以直线l 的斜率k =32.故(*)式可化简为3x 2+3mx +m 2-3=0,故x 1+x 2=-m ,x 1x 2=m 2-33.由Δ=36-3m 2>0且m ≠0,得-23<m <23且m ≠0. 又|MN |=1+k 2|x 1-x 2|=132×36-3m 23=1323×12-m 2,而点O 到直线l 的距离d =2|m |13, 则△OMN 的面积为S =12×2|m |13×1323×12-m 2=123|m |×12-m 2≤123×m 2+12-m 22=3, 当且仅当m =±6时,等号成立,此时满足-23<m <23且m ≠0,所以△OMN 的面积的最大值为3.最值问题的2种基本解法几何法根据已知的几何量之间的相互关系,利用平面几何和解析几何知识加以解决(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等在选择题、填空题中经常考查)代数法建立求解目标关于某个(或两个)变量的函数,通过求解函数的最值解决(一般方法、基本不等式法、导数法等)已知抛物线C :x 2=2py (p >0),过点T (0,p )作两条互相垂直的直线l 1和l 2,l 1交抛物线C 于A ,B 两点,l 2交抛物线C 于E ,F 两点,当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12.(1)求抛物线C 的标准方程;(2)已知O 为坐标原点,线段AB 的中点为M ,线段EF 的中点为N ,求△OMN 面积的最小值.解:(1)因为x 2=2py 可化为y =x 22p ,所以y ′=xp.因为当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12,所以1p =12,所以p =2,所以,抛物线C 的标准方程为x 2=4y . (2)由(1)知点T 坐标为(0,2),由题意可知,直线l 1和l 2斜率都存在且均不为0. 设直线l 1方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 2=4y ,联立消去y 并整理,得x 2-4kx -8=0,Δ=(-4k )2+32=16k 2+32>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1·x 2=-8, 所以,y 1+y 2=k (x 1+x 2)+4=4k 2+4. 因为M 为AB 中点,所以M (2k,2k 2+2).因为l 1⊥l 2,N 为EF 中点,所以N ⎝ ⎛⎭⎪⎫-2k ,2k2+2,所以直线MN 的方程为y -(2k 2+2)=2k 2+2-⎝ ⎛⎭⎪⎫2k 2+22k +2k·(x -2k )=⎝ ⎛⎭⎪⎫k -1k ·(x -2k ), 整理得y =⎝⎛⎭⎪⎫k -1k x +4,所以,直线MN 恒过定点(0,4).所以△OMN 面积S =12×4×⎪⎪⎪⎪⎪⎪2k -⎝ ⎛⎭⎪⎫-2k =4⎪⎪⎪⎪⎪⎪k +1k =4⎝ ⎛⎭⎪⎫|k |+⎪⎪⎪⎪⎪⎪1k ≥4·2|k |·⎪⎪⎪⎪⎪⎪1k=8,当且仅当|k |=⎪⎪⎪⎪⎪⎪1k即k =±1时,△OMN 面积取得最小值为8.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆C 的右顶点,过原点且异于x 轴的直线与椭圆C 交于M ,N 两点,M 在x 轴的上方,直线AM 与圆O 的另一交点为P ,直线AN 与圆O 的另一交点为Q .(1)若AP →=3AM →,求直线AM 的斜率;(2)设△AMN 与△APQ 的面积分别为S 1,S 2,求S 1S 2的最大值.[四字程序]读想算思已知圆的方程和椭圆的方程,直线与圆、椭圆都相交 1.向量AP →=3AM →如何转化?2.如何表示三角形的面积把S 1S 2用直线AM 的斜率k 来表示 转化与化归求直线AM 的斜率,求△AMN 与△APQ 的面1.用A ,P ,M 的坐标表示.S 1S 2=|AM |·|AN ||AP |·|AQ |,进把面积之比的最大值转化为一个变量的不积之比2.利用公式S =12ab ·sin C 表示并转化而用基本不等式求其最大值等式思路参考:设直线AM 的方程为y =k (x -2),k <0,利用y P =3y M 求解.解:(1)设直线AM 的方程为y =k (x -2),k <0,将y =k (x -2)与椭圆方程x 24+y 2=1联立,(1+4k 2)x 2-16k 2x +16k 2-4=0,得x A +x M =16k21+4k2,求得点M 的横坐标为x M =8k 2-24k 2+1,纵坐标为y M =-4k4k 2+1.将y =k (x -2)与圆方程x 2+y 2=4联立,得(1+k 2)·x 2-4k 2x +4k 2-4=0,得x A +x P =4k21+k2, 求得点P 的横坐标为x P =2k 2-2k 2+1,纵坐标为y P =-4kk 2+1. 由AP →=3AM →得y P =3y M , 即-4k k 2+1=-12k4k 2+1. 又k <0,解得k =-2.(2)由M ,N 关于原点对称,得点N 的坐标为x N =-8k 2+24k 2+1,y N =4k4k 2+1,所以直线AN 的斜率为k AN =4k4k 2+1-8k 2+24k 2+1-2=-14k. 于是|AM ||AP |=y M y P =k 2+14k 2+1,同理|AN ||AQ |=⎝ ⎛⎭⎪⎫-14k 2+14⎝ ⎛⎭⎪⎫-14k 2+1=16k 2+116k 2+4.所以S 1S 2=|AM |·|AN ||AP |·|AQ |=k 2+14k 2+1·16k 2+116k 2+4=16k 4+17k 2+14(16k 4+8k 2+1) =14⎝ ⎛⎭⎪⎫1+9k 216k 4+8k 2+1=14⎝⎛⎭⎪⎪⎫1+916k 2+1k2+8 ≤14⎝⎛⎭⎪⎪⎫1+9216k 2·1k 2+8=2564, 当且仅当16k 2=1k 2,即k =-12时等号成立,所以S 1S 2的最大值为2564.思路参考:设直线AM 的方程为y =k (x -2),k <0,由AP →=3AM →转化为x P -x A =3(x M -x A )求解.解:(1)设直线AM 的方程为y =k (x -2),k <0,代入椭圆方程,整理得(4k 2+1)x 2-16k 2x +4(4k 2-1)=0.由根与系数的关系得x A x M =4(4k 2-1)4k 2+1,而x A =2,所以x M =2(4k 2-1)4k 2+1. 将y =k (x -2)代入圆的方程,整理得(k 2+1)x 2-4k 2x +4(k 2-1)=0.由根与系数的关系得x A x P =4(k 2-1)k 2+1,而x A =2,所以x P =2(k 2-1)k 2+1.由AP →=3AM →,得x P -x A =3(x M -x A ),即2(k 2-1)k 2+1-2=3⎣⎢⎡⎦⎥⎤2(4k 2-1)4k 2+1-2,解得k 2=2. 又k <0,所以k =-2.(2)因为MN 是椭圆的直径,直线AM ,AN 斜率均存在,所以k AM k AN =-14,即kk AN =-14,所以k AN =-14k.下同解法1(略).思路参考:设直线AM 的方程为x =my +2,利用y P =3y M 求解.解:(1)设直线AM 的方程为x =my +2(m ≠0),将其代入椭圆方程,整理得(m 2+4)y 2+4my =0,得点M 的纵坐标为y M =-4mm 2+4. 将x =my +2代入圆的方程,整理得(m 2+1)y 2+4my =0,得点P 的纵坐标为y P =-4mm 2+1. 由AP →=3AM →,得y P =3y M ,即m m 2+1=3m m 2+4.因为m ≠0,解得m 2=12,即m =±12.又直线AM 的斜率k =1m<0,所以k =-2.(2)因为MN 是椭圆的直径,直线AM ,AN 斜率均存在,又k AM k AN =-14,由(1)知k AM =1m ,所以有1m k AN =-14,则k AN =-m4.又y M =-4m m 2+4,y P =-4mm 2+1, 所以|AM ||AP |=y M y P =m 2+1m 2+4.同理|AN ||AQ |=⎝ ⎛⎭⎪⎫-m 42+14⎝ ⎛⎭⎪⎫-m 42+1=m 2+164(m 2+4).所以S 1S 2=|AM |·|AN ||AP |·|AQ |=m 2+1m 2+4·m 2+164(m 2+4).下同解法1(略).1.本题考查三角形面积之比的最大值,解法较为灵活,其基本策略是把面积的比值表示为斜率k 的函数,从而求其最大值.2.基于新课程标准,解答本题一般需要具备良好的数学阅读技能、运算求解能力.本题的解答体现了数学运算的核心素养.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求椭圆E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解:(1)设F (c,0),由题意知2c =233,解得c =3.因为e =ca =32, 所以a =2,b 2=a 2-c 2=1. 所以椭圆E 的方程为x 24+y 2=1.(2)(方法一)显然直线l 的斜率存在.设直线l :y =kx -2,P (x 1,y 1),Q (x 2,y 2),且P 在线段AQ 上.由⎩⎪⎨⎪⎧y =kx -2,x 2+4y 2-4=0得(4k 2+1)x 2-16kx +12=0,所以x 1+x 2=16k 4k 2+1,x 1x 2=124k 2+1.由Δ=(16k )2-48(4k 2+1)>0,得k 2>34.则S △OPQ =S △AOQ -S △AOP=12×2×|x 2-x 1|=(x 1+x 2)2-4x 1x 2=44k 2-34k 2+1. 令4k 2-3=t (t >0),则4k 2=t 2+3,于是S △OPQ =4t t 2+4=4t +4t≤1,当且仅当t =2,即k =±72时等号成立,所以l 的方程为y =72x -2或y =-72x -2. (方法二)依题意直线l 的斜率存在,设直线l 的方程为y =kx -2,P (x 1,y 1),Q (x 2,y 2).将直线l 的方程代入椭圆方程,整理得(4k 2+1)x 2-16kx +12=0,则Δ=(16k )2-48(4k 2+1)=16(4k 2-3)>0,即k 2>34.x 1+x 2=16k 4k 2+1,x 1x 2=124k 2+1.由弦长公式得|PQ |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·44k 2-34k 2+1.由点到直线的距离公式得点O 到直线l 的距离d =21+k2,所以S △OPQ =12|PQ |×d =121+k 2×44k 2-34k 2+1×21+k 2=44k 2-34k 2+1. 设4k 2-3=t (t >0),则4k 2=t 2+3,所以S △OPQ =4t t 2+4=4t +4t≤1,当且仅当t =2,即k =±72时等号成立.7 2x-2或y=-72x-2.故所求直线l的方程为y=。
【考纲解读】了解方程的曲线与曲线的方程的对应关系.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活.【要点梳理】1.已知曲线形状,求方程:可以用待定系数法.2.未知曲线的形状,求方程:(1)直接法:直接由条件列式,化简整理即可;(2)代入法:明确主动点与被动点;(3)定义法:利用圆或圆锥曲线的定义求轨迹方程.【例题精析】考点一求曲线方程例1.(2012年高考湖北卷文科21)设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C。
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标。
(2)过原点且斜率为K的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的K>0,都有PQ⊥PH?若存在,请说明理由.因为P,H两点在椭圆C上,所以222211222222,,m x y mm x y m⎧+=⎪⎨+=⎪⎩两式相减可得222221212()()0m x x y y -+-=. ③【名师点睛】本小题主要考查直线与圆以及圆锥曲线等基础知识,考查函数与方程思想、分类讨论思想、数形结合思想等数学思想方法,考查同学们分析问题和解决问题的能力. 【变式训练】1.(2012年高考辽宁卷文科20)(本小题满分12分)如图,动圆2221:C x y t +=,1<t<3,与椭圆2C :2219x y +=相交于A ,B ,C ,D 四点,点12,A A 分别为2C 的左,右顶点。
第8讲 曲线与方程[学生用书P192]1.曲线与方程在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎨⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解,若此方程组无解,则两曲线无交点.3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程. 常用结论1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“f(x0,y0)=0”是“点P(x0,y0)在曲线f(x,y)=0上”的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y=x与x=y2表示同一曲线.()(5)y=kx与x=1k y表示同一直线.()答案:(1)√(2)×(3)×(4)×(5)×二、易错纠偏常见误区|K(1)混淆“轨迹”与“轨迹方程”出错;(2)忽视轨迹方程的“完备性”与“纯粹性”.1.(1)平面内与两定点A(2,2),B(0,0)距离的比值为2的点的轨迹是________.(2)设动圆M与y轴相切且与圆C:x2+y2-2x=0相外切,则动圆圆心M的轨迹方程为_________________________________________________.解析:(1)设动点坐标为(x,y),则(x-2)2+(y-2)2x2+y2=2,整理得3x2+3y2+4x+4y-8=0,所以满足条件的点的轨迹是圆.(2)若动圆在y轴右侧,则动圆圆心到定点C(1,0)与到定直线x=-1的距=1,所以其方程为y2=4x(x>0);若动圆在y轴离相等,其轨迹是抛物线,且p2左侧,则圆心轨迹是x轴负半轴,其方程为y=0(x<0).故动圆圆心M的轨迹方程为y2=4x(x>0)或y=0(x<0).答案:(1)圆(2)y2=4x(x>0)或y=0(x<0)2.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是________.解析:由角的平分线性质定理得|P A|=2|PB|,设P(x,y),则(x+2)2+y2=2(x-1)2+y2,整理得(x-2)2+y2=4(y≠0).答案:(x-2)2+y2=4(y≠0)3.已知⊙O的方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,则弦AB的中点P的轨迹方程为________.解析:根据垂径定理知:OP⊥PM,所以P点的轨迹是以OM为直径的圆且在⊙O内的部分.以OM为直径的圆的方程为(x-2)2+y2=4,它与⊙O的交点为(1,±3).结合图形可知所求轨迹方程为(x-2)2+y2=4(0≤x<1).答案:(x-2)2+y2=4(0≤x<1)[学生用书P192]直接法求轨迹方程(师生共研)已知△ABC的三个顶点分别为A(-1,0),B(2,3),C(1,22),定点P (1,1).(1)求△ABC 外接圆的标准方程;(2)若过定点P 的直线与△ABC 的外接圆交于E ,F 两点,求弦EF 中点的轨迹方程.【解】 (1)由题意得AC 的中点坐标为(0,2),AB 的中点坐标为⎝ ⎛⎭⎪⎫12,32,k AC =2,k AB =1,故AC 中垂线的斜率为-22,AB 中垂线的斜率为-1,则AC的中垂线的方程为y -2=-22x ,AB 的中垂线的方程为y -32=-⎝ ⎛⎭⎪⎫x -12.由⎩⎪⎨⎪⎧y -32=-⎝ ⎛⎭⎪⎫x -12,y -2=-22x , 得⎩⎪⎨⎪⎧x =2,y =0.所以△ABC 的外接圆圆心为(2,0),半径r =2+1=3,故△ABC 外接圆的标准方程为(x -2)2+y 2=9.(2)设弦EF 的中点为M (x ,y ),△ABC 外接圆的圆心为N ,则N (2,0), 由MN ⊥MP ,得NM →·PM →=0, 所以(x -2,y )·(x -1,y -1)=0, 整理得x 2+y 2-3x -y +2=0,所以弦EF 中点的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=12.(1)若曲线上的动点满足的条件是一些几何量的等量关系,则可用直接法,其一般步骤是:设点→列式→化简→检验.求动点的轨迹方程时要注意检验,即除去多余的点,补上遗漏的点.(2)若是只求轨迹方程,则把方程求出,把变量的限制条件附加上即可;若是求轨迹,则要说明轨迹是什么图形.已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,若过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解:(1)由|MP |=5|MQ |,得(x -26)2+(y -1)2=5(x -2)2+(y -1)2,化简得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25,轨迹是以(1,1)为圆心,5为半径的圆.(2)当直线l 的斜率不存在时,l :x =-2,此时所截得的线段长度为2×52-32=8,所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 圆心(1,1)到l 的距离d =|3k +2|k 2+1,由题意,得⎝ ⎛⎭⎪⎪⎫|3k +2|k 2+12+42=52,解得k =512, 所以直线l 的方程为512x -y +236=0, 即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.定义法求轨迹方程(师生共研)已知圆C 与两圆x 2+(y +4)2=1,x 2+(y -2)2=1外切,圆C 的圆心轨迹为L ,设L 上的点与点M (x ,y )的距离的最小值为m ,点F (0,1)与点M (x ,y )的距离为n .(1)求圆C 的圆心轨迹L 的方程;(2)求满足条件m =n 的点M 的轨迹Q 的方程.【解】 (1)两圆半径都为1,两圆圆心分别为C 1(0,-4),C 2(0,2),由题意得|CC 1|=|CC 2|,可知圆心C 的轨迹是线段C 1C 2的垂直平分线,C 1C 2的中点为(0,-1),直线C 1C 2的斜率不存在,所以圆C 的圆心轨迹L 的方程为y =-1.(2)因为m =n ,所以M (x ,y )到直线y =-1的距离与到点F (0,1)的距离相等,故点M 的轨迹Q 是以y =-1为准线,点F (0,1)为焦点,顶点在原点的抛物线,而p2=1,即p =2,所以,轨迹Q 的方程是x 2=4y .定义法求轨迹方程(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.1.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________________.解析:设A (x ,y ),由题意可知D ⎝ ⎛⎭⎪⎫x 2,y 2.又因为|CD |=3,所以⎝ ⎛⎭⎪⎫x 2-52+⎝ ⎛⎭⎪⎫y 22=9,即(x -10)2+y 2=36,由于A ,B ,C 三点不共线,所以点A 不能落在x 轴上,即y ≠0,所以点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)2.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫|AB |22=3,所以曲线M 的方程为x 24+y 23=1(y ≠0).相关点法(代入法)求轨迹方程(师生共研)如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.【解】 (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px (p >0),解得p =1. (2)由(1)知抛物线E :y 2=2x .设C ⎝ ⎛⎭⎪⎫y 212,y 1,D ⎝ ⎛⎭⎪⎫y 222,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝ ⎛⎭⎪⎫x -y 212,代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1, 所以l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎪⎨⎪⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎨⎧x =y 1·y 22,y =y 1+y 22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎪⎨⎪⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x 0,代入⎩⎨⎧x =y 1·y 22,y =y 1+y 22,可得M (x ,y )满足⎩⎪⎨⎪⎧x =-8x 0,y =-y 0x 0,可得⎩⎪⎨⎪⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1,考虑到x 0∈[2,22],知x ∈[-4,-22],所以动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].1.如图,已知P 是椭圆x 24+y 2=1上一点,PM ⊥x 轴于点M .若PN →=λNM →. (1)求N 点的轨迹方程;(2)当N 点的轨迹为圆时,求λ的值.解:(1)设点P ,点N 的坐标分别为P (x 1,y 1),N (x ,y ), 则M 的坐标为(x 1,0),且x =x 1, 所以PN →=(x -x 1,y -y 1)=(0,y -y 1), NM →=(x 1-x ,-y )=(0,-y ), 由PN →=λNM →得(0,y -y 1)=λ(0,-y ). 所以y -y 1=-λy ,即y 1=(1+λ)y .因为P (x 1,y 1)在椭圆x 24+y 2=1上, 则x 214+y 21=1,所以x 24+(1+λ)2y 2=1, 故x 24+(1+λ)2y 2=1为所求的N 点的轨迹方程. (2)要使点N 的轨迹为圆,则(1+λ)2=14,解得λ=-12或λ=-32.故当λ=-12或λ=-32时,N 点的轨迹是圆.2.已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝ ⎛⎭⎪⎫33,0的直线l 与曲线E 交于点A ,B ,且MB →=-2MA →.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),因为B (0,2),M ⎝ ⎛⎭⎪⎫33,0,故MB →=⎝ ⎛⎭⎪⎫-33,2,MA →=⎝ ⎛⎭⎪⎫x 0-33,y 0.由于MB →=-2MA →,所以⎝ ⎛⎭⎪⎫-33,2=-2⎝ ⎛⎭⎪⎫x 0-33,y 0.所以x 0=32,y 0=-1,即A ⎝ ⎛⎭⎪⎫32,-1.因为A ,B 都在曲线E 上,所以⎩⎨⎧a ·02+b ·22=1,a ·⎝ ⎛⎭⎪⎫322+b ·(-1)2=1,解得⎩⎨⎧a =1,b =14. 所以曲线E 的方程为x 2+y24=1.[学生用书P407(单独成册)][A 级 基础练]1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:选C.(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.2.(2020·新高考卷Ⅰ改编)已知曲线C :mx 2+ny 2=1.以下结论正确的个数是( )①若m >n >0,则C 是椭圆,其焦点在y 轴上;②若m =n >0,则C 是圆,其半径为n ;③若mn <0,则C 是双曲线,其渐近线方程为y =± -mn x ;④若m=0,n >0,则C 是两条直线.A .1B .2C .3D .4解析:选C.对于①,因为m >n >0,所以0<1m <1n ,方程mx 2+ny 2=1可变形为x 21m +y 21n =1,所以该方程表示焦点在y 轴上的椭圆,正确;对于②,因为m=n >0,所以方程mx 2+ny 2=1可变形为x 2+y 2=1n ,该方程表示半径为1n 的圆,错误;对于③,因为mn <0,所以该方程表示双曲线,令mx 2+ny 2=0⇒y =± -mn x ,正确;对于④,因为m =0,n >0,所以方程mx 2+ny 2=1变形为ny 2=1⇒y =±1n ,该方程表示两条直线,正确.3.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D.当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 项图象所示,故选D.4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x解析:选A.设P (x ,y ).因为M (-2,0),N (2,0),所以MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ),由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理得y 2=-8x .故选A.5.动点M 在圆x 2+y 2=25上移动,过点M 作x 轴的垂线段MD ,D 为垂足,则线段MD 中点的轨迹方程是( )A.4x 225+y 225=1 B .x 225+4y 225=1 C.4x 225-y 225=1D.x 225-4y 225=1解析:选B.如图,设线段MD 的中点为P (x ,y ),M (x 0,y 0),D (x 0,0),因为P 是MD 的中点,所以⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又M 在圆x 2+y 2=25上,所以x 20+y 20=25,即x 2+4y 2=25,x 225+4y 225=1,所以线段MD 的中点P 的轨迹方程是x 225+4y 225=1.故选B.6.设D 为椭圆y 25+x 2=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为________.解析:设点P 坐标为(x ,y ).因为D 为椭圆y 25+x 2=1上任意一点,且A ,B 为椭圆的焦点,所以|DA |+|DB |=2 5.又|PD |=|BD |,所以|P A |=|PD |+|DA |=|DA |+|DB |=25,所以x 2+(y +2)2=25,所以x 2+(y +2)2=20,所以点P 的轨迹方程为x 2+(y +2)2=20.答案:x 2+(y +2)2=207.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t ,得点C 的轨迹方程为y =2x -2.答案:y =2x -28.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析:如图,△ABC 与内切圆的切点分别为G ,E ,F .则|AG |=|AE |=8,|BF |=|BG |=2,|CE |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,轨迹方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)9.如图所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).解:(1)根据题意,知|PA |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点的轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r , 因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4.因此其轨迹方程为y 2=-8x .10.已知动圆P 恒过定点⎝ ⎛⎭⎪⎫14,0,且与直线x =-14相切.(1)求动圆P 圆心的轨迹M 的方程;(2)在正方形ABCD 中,AB 边在直线y =x +4上,另外C ,D 两点在轨迹M 上,求该正方形的面积.解:(1)由题意得动圆P 的圆心到点⎝ ⎛⎭⎪⎫14,0的距离与它到直线x =-14的距离相等,所以圆心P 的轨迹是以⎝ ⎛⎭⎪⎫14,0为焦点,直线x =-14为准线的抛物线,且p =12,所以动圆P 圆心的轨迹M 的方程为y 2=x . (2)由题意设CD 边所在直线方程为y =x +t . 联立⎩⎪⎨⎪⎧y =x +t ,y 2=x ,消去y ,整理得x 2+(2t -1)x +t 2=0.因为直线CD 和抛物线交于两点,所以Δ=(2t -1)2-4t 2=1-4t >0,解得t <14. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=1-2t ,x 1x 2=t 2. 所以|CD |=2[(x 1+x 2)2-4x 1x 2]=2[(1-2t )2-4t 2]=2(1-4t ).又直线AB 与直线CD 之间的距离为|AD |=|t -4|2,|AD |=|CD |,所以2(1-4t )=|t -4|2,解得t =-2或t =-6,经检验t =-2和t =-6都满足Δ>0. 所以正方形边长|AD |=32或|AD |=52, 所以正方形ABCD 的面积S =18或S =50.[B 级 综合练]11.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)解析:选A.设A (a ,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).12.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.13.(2021·四川成都石室中学模拟)已知两定点F 1(-1,0),F 2(1,0)和一动点P ,给出下列结论:①若|PF 1|+|PF 2|=2,则点P 的轨迹是椭圆; ②若|PF 1|-|PF 2|=1,则点P 的轨迹是双曲线; ③若|PF 1||PF 2|=λ(λ>0,且λ≠1),则点P 的轨迹是圆;④若|PF 1|·|PF 2|=a 2(a ≠0),则点P 的轨迹关于原点对称;⑤若直线PF 1与PF 2的斜率之积为m (m ≠0),则点P 的轨迹是椭圆(除长轴两端点).其中正确的是________.(填序号)解析:对于①,由于|PF 1|+|PF 2|=2=|F 1F 2|,所以点P 的轨迹是线段F 1F 2,故①不正确.对于②,由于|PF 1|-|PF 2|=1,故点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,故②不正确.对于③,设P (x ,y ),由题意得(x +1)2+y 2(x -1)2+y 2=λ,整理得(1-λ2)x 2+(1-λ2)y 2+(2+2λ2)x +1-λ2=0.因为λ>0,且λ≠1,所以x 2+y 2+(2+2λ2)1-λ2x +1-λ21-λ2=0,所以点P 的轨迹是圆,故③正确.对于④,设P (x ,y ),则|PF 1|·|PF 2|=(x +1)2+y 2·(x -1)2+y 2=a 2.又点P (x ,y )关于原点的对称点为P ′(-x ,-y ),因为(-x +1)2+(-y )2·(-x -1)2+(-y )2=(x +1)2+y 2·(x -1)2+y 2=a 2,所以点P ′(-x ,-y )也在曲线(x +1)2+y 2·(x -1)2+y 2=a 2上,即点P 的轨迹关于原点对称,故④正确.对于⑤,设P (x ,y ),则k PF 1=y x +1,k PF 2=y x -1,由题意得k PF 1·k PF 2=y x +1·yx -1=y 2x 2-1=m (m ≠0),整理得x 2-y 2m =1,此方程不一定表示椭圆,故⑤不正确. 综上,正确结论的序号是③④. 答案:③④14.如图,已知椭圆C :x 218+y 29=1的短轴端点分别为B 1,B 2,点M 是椭圆C 上的动点,且不与B 1,B 2重合,点N 满足NB 1⊥MB 1,NB 2⊥MB 2.(1)求动点N 的轨迹方程;(2)求四边形MB 2NB 1面积的最大值.解:(1)方法一:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② ①×②得y 2-9=x 20y 20-9x 2.又因为x 2018+y 209=1,所以y 2-9=18⎝ ⎛⎭⎪⎫1-y 209y 20-9x 2=-2x 2,整理得动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法二:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② 联立①②,解得⎩⎪⎨⎪⎧x =y 20-9x 0,y =-y 0.又x 2018+y 209=1,所以x =-x 02,故⎩⎪⎨⎪⎧x 0=-2x ,y 0=-y ,代入x 2018+y 209=1,得y 29+x 292=1. 所以动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法三:设直线MB 1:y =kx -3(k ≠0), 则直线NB 1:y =-1k x -3,①直线MB 1与椭圆C :x 218+y 29=1的交点M 的坐标为⎝ ⎛⎭⎪⎪⎫12k 2k 2+1,6k 2-32k 2+1. 则直线MB 2的斜率为k MB 2=6k 2-32k 2+1-312k 2k 2+1=-12k .所以直线NB 2:y =2kx +3.②由①②得点N 的轨迹方程为y 29+x 292=1(x ≠0).(2)由(1)方法三得直线NB 1:y =-1k x -3,① 直线NB 2:y =2kx +3,②联立①②解得x =-6k2k 2+1,即x N =-6k2k 2+1,故四边形MB 2NB 1的面积S =12|B 1B 2|(|x M |+|x N |)=3×⎝ ⎛⎭⎪⎫12|k |2k 2+1+6|k |2k 2+1=54|k |2k 2+1=542|k |+1|k |≤2722,当且仅当|k |=22时,S 取得最大值2722.[C 级 提升练]15.在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP →=λRQ →(λ>1),求证:NF →=λFQ →.解:(1)依题意知,直线A 1N 1的方程为y =m6(x +6),①直线A 2N 2的方程为y =-n6(x -6),②设M (x ,y )是直线A 1N 1与A 2N 2的交点,①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎨⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP →=λRQ →,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF →=λFQ →,即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),只需证x 1-3x 2-3=-x 1-2x 2-2,即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6tt 2+3=0成立,得证.。