光电探测器实验报告
- 格式:docx
- 大小:359.72 KB
- 文档页数:10
第1篇一、实验目的本次实验旨在通过光学像差实验,加深对光学像差的理解,掌握光学像差的基本原理和分类,并学会使用光学仪器测量和评估光学系统的像差。
二、实验原理光学像差是光学系统中存在的缺陷,会导致成像质量下降。
根据像差与颜色是否有关、像差是轴上点产生的还是轴外点产生的,可以将像差分为多种类型,如球差、慧差、像散、场曲、畸变等。
三、实验仪器与材料1. 光学系统:包括透镜、反射镜、光阑、光束整形器等;2. 光源:激光器;3. 探测器:光电探测器;4. 仪器:成像系统、光束整形器、光路控制器等。
四、实验内容1. 实验一:测量球差(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出球差值。
2. 实验二:测量慧差(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变光轴倾斜角度,记录不同倾斜角度下探测器的信号强度;(4)分析信号强度与倾斜角度的关系,得出慧差值。
3. 实验三:测量像散(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变光轴倾斜角度,记录不同倾斜角度下探测器的信号强度;(4)分析信号强度与倾斜角度的关系,得出像散值。
4. 实验四:测量场曲(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出场曲值。
5. 实验五:测量畸变(1)搭建实验光路,将光源、透镜、光阑、探测器等按顺序连接;(2)调整光路,使光线通过透镜后聚焦到探测器上;(3)改变物距,记录不同物距下探测器的信号强度;(4)分析信号强度与物距的关系,得出畸变值。
一、实验目的1. 了解光路调试的基本原理和步骤。
2. 掌握光路调试的方法和技巧。
3. 培养实际操作能力和观察能力。
二、实验原理光路调试是激光技术中的一项重要环节,其主要目的是使激光束在传播过程中保持良好的聚焦和稳定性。
通过调整光学元件的位置、角度和焦距等参数,实现激光束的精确控制和优化。
三、实验器材1. 激光器:用于产生激光束。
2. 反射镜:用于反射激光束。
3. 聚焦镜:用于聚焦激光束。
4. 光电探测器:用于检测激光束的强度和位置。
5. 调节工具:用于调整光学元件的位置和角度。
6. 记录本:用于记录实验数据。
四、实验步骤1. 激光器调试(1)将激光器安装在实验台上,确保激光器水平稳定。
(2)调整激光器输出功率,使激光束达到预定强度。
(3)使用光电探测器检测激光束的位置和强度,调整激光器输出端的位置,使激光束对准光电探测器。
2. 反射镜调试(1)将反射镜安装在实验台上,确保反射镜水平稳定。
(2)调整反射镜的角度,使激光束经反射后对准聚焦镜。
(3)使用光电探测器检测反射后的激光束位置和强度,调整反射镜角度,使激光束达到预定位置和强度。
3. 聚焦镜调试(1)将聚焦镜安装在实验台上,确保聚焦镜水平稳定。
(2)调整聚焦镜的位置,使激光束经聚焦后达到预定焦距。
(3)使用光电探测器检测聚焦后的激光束位置和强度,调整聚焦镜位置,使激光束达到预定位置和强度。
4. 光电探测器调试(1)将光电探测器安装在实验台上,确保光电探测器水平稳定。
(2)调整光电探测器的位置,使光电探测器能够检测到激光束的位置和强度。
(3)使用光电探测器检测激光束的位置和强度,调整光电探测器位置,使激光束达到预定位置和强度。
五、实验结果与分析1. 通过调整激光器、反射镜、聚焦镜和光电探测器的位置和角度,使激光束达到预定位置、强度和焦距。
2. 实验过程中,注意观察光电探测器检测到的激光束位置和强度,以及调整光学元件时对激光束的影响。
3. 分析实验结果,总结光路调试的方法和技巧,为后续实验提供参考。
福建师范大学物理与光电信息科技学院光电检测技术实验-实验一1 实验一光电探测原理实验一、内容简介光电探测原理实验箱,是本公司为适合光电子、信息工程、物理等专业教学内容的需要,最新推出的光电类教学实验装置。
本实验箱从了解和熟悉光电二极管和光电池的角度出发,讨论关于光电二极管和光电池的主要技术问题,主要知识点包括:光照度及其测量基本知识;光电池的结构、工作原理和光照特性及其应用;光电二极管的结构、工作原理和光照特性及其应用等。
本实验系统注重理论与实践的紧密结合,突出实用性,可作为光测控技术、光电子技术、光电子仪器仪表及精密仪器等专业本科生和研究生课堂实验与研究。
二、实验箱说明实验箱配备有0~12V 可调的直流电压源,可为光电二极管提供可以调节的偏置电压。
本实验箱还配有照度计、电压表和电流表,各表头显示单元和各种调节单元都放在面板上,而光源、照度计探头、硅光电池和硅光电二极管等不需要经常移动的器件都在实验箱里面固定,所有引出线都通过连线连接到面板上,学生做实验时只需要简单连线即可,连线、调节、观察和记录都很方便。
实验箱还配备10K 粗调电位器RP1和47K 多圈精密细调电位器RP2,可供学生配合其它元件自己动手搭建实验之用,提高学生动手动脑能力。
面板操作示意图:实验(一)光照度测试一、实验目的1、了解光照度基本知识;2、了解光照度测量基本原理;3、学会光照度的测量方法。
二、实验内容对光照度进行测量,观察现象。
三、预备知识1、光照度基本知识光照度是光度计量的主要参数之一,而光度计量是光学计量最基本的部分。
光度量是限于人眼能够见到的一部分辐射量,是通过人眼的视觉效果去衡量的,人眼的视觉效果对各种波长是不同的,通常用V(λ)表示,定义为人眼视觉函数或光谱光视效率。
因此,光照度不是一个纯粹的物理量,而是一个与人眼视觉有关的生理、心理物理量。
光照度是单位面积上接收的光通量,因而可以导出:由一个发光强度I的点光源,在相距L 处的平面上产生的光照度与这个光源的发光强度成正比,与距离的平方成反比,即:2EI/L式中:E——光照度,单位为Lx;I——光源发光强度,单位为cd;L——距离,单位为m。
多普勒效应及应用实验报告探究多普勒效应的原理以及其在实际应用中的作用。
实验材料:1.激光器2.光电探测器3.宽孔径音源4.振动平台5.频率计6.光程差调节装置7.会谈装置实验原理:多普勒效应是由于发射源和接收源相对运动而导致的波长的变化。
当发射源和接收源相对静止时,所接收的波长为其发射的波长。
若两者相对移动,则会导致接收到的波长与发射的波长不同。
对于移动的声源,多普勒效应会导致接收到的声音的频率与实际频率不同。
实验步骤:1.搭建实验装置,将激光器和光电探测器固定在一台转台上,保持固定不动。
振动平台上固定一个宽孔径音源作为移动源,放在激光束的轨迹上。
2.调整光电探测器位置,使激光束射到探测器的中心位置,保证测量的准确性。
3.将频率计置于光电探测器旁边,用于测量接收到的声音的频率。
4.开始实验,开启音源,使其在振动平台上移动,同时记录下频率计上测得的频率数据。
5.重复实验3-4步骤多次,取平均值以提高实验的精确度。
实验结果及分析:根据实验中记录的数据,当音源与激光器相对运动时,所接收到的频率会发生变化。
实验中得到的数据表明,当音源向激光器靠近时,接收到的频率会增加;当音源远离激光器时,接收到的频率会减小。
这一现象可以通过多普勒效应来解释。
根据多普勒效应的原理,当光线被移动的音源所接收时,波长会发生改变,进而影响到所接收到的声音的频率。
当音源靠近激光器时,光波被挤压,导致接收到的声音的频率变高;当音源远离激光器时,光波被拉伸,导致接收到的声音的频率变低。
这种现象在实际中的应用非常广泛。
多普勒效应在天文学中有重要的应用。
例如,通过观测星系的多普勒频移,可以推断出它们与地球的相对速度,进而得出星系的运动方向和速度。
多普勒效应也在医学中应用广泛,例如超声波检测中,通过测量接收到的声波的频率变化,可以判断血液的流速以及心脏的功能情况。
此外,多普勒效应还被应用于雷达测速仪、交通速度测定仪等领域。
基于多普勒效应的原理,这些仪器可以测量运动物体的速度。
一、实验目的1. 理解光电探测的基本原理和实验方法。
2. 掌握光电探测器的使用和调试技巧。
3. 学习光电探测实验的测量和分析方法。
4. 通过实验,加深对光电探测技术在实际应用中的理解和应用。
二、实验原理光电探测是利用光电效应将光信号转换为电信号的过程。
光电探测器是光电探测系统的核心部件,它将光信号转换为电信号,然后通过放大、滤波等电路处理后,输出可供进一步处理和利用的电信号。
本实验主要涉及以下光电探测器:光电二极管、光电三极管、光电耦合器等。
光电二极管是一种半导体器件,具有光电转换效率高、响应速度快、体积小等优点。
光电三极管是一种具有放大作用的光电探测器,它可以将微弱的光信号放大成较大的电信号。
光电耦合器是一种将输入信号的光电转换和输出信号的传输分开的器件,具有良好的隔离性能。
三、实验仪器与设备1. 光源:LED灯、激光笔等。
2. 光电探测器:光电二极管、光电三极管、光电耦合器等。
3. 放大器:运算放大器、低噪声放大器等。
4. 测量仪器:示波器、万用表等。
5. 连接线、测试板等。
四、实验内容及步骤1. 光电二极管特性测试(1)测试前准备:将光电二极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电二极管正向偏置,调整偏置电压,观察并记录光电二极管的伏安特性曲线。
② 将光电二极管反向偏置,调整偏置电压,观察并记录光电二极管的反向饱和电流。
③ 测量光电二极管的暗电流和亮电流。
2. 光电三极管特性测试(1)测试前准备:将光电三极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电三极管集电极、基极和发射极分别连接到电路中,调整基极偏置电压,观察并记录光电三极管的伏安特性曲线。
② 测量光电三极管的集电极电流、基极电流和发射极电流。
③ 测试光电三极管的电流放大倍数。
3. 光电耦合器特性测试(1)测试前准备:将光电耦合器、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电耦合器的输入端和输出端分别连接到电路中,调整输入端电压,观察并记录光电耦合器的传输特性曲线。
单缝衍射光强的分布测量实验报告实验名称:单缝衍射光强的分布测量实验目的:1. 了解单缝衍射现象及其规律;2. 掌握测量单缝衍射光强的方法和步骤。
实验器材:1. 单缝光源2. 单缝衍射装置3. 光电探测器4. 数字多道分析器5. 电脑与连接线6. 实验支架7. 高精度尺子实验原理:当光传播到单缝上时,由于光的波动性,出现了衍射现象。
在单缝前方远离缝的一定距离处,出现一系列亮暗的条纹,即衍射图样。
衍射图样反映了波阵面在缝后的衍射情况,通过测量这些条纹的亮度,可以得到单缝衍射光强的分布。
实验步骤:1. 将实验装置搭建好,确保光路正常且稳定。
2. 将光电探测器放置在远离单缝的一定距离处,调整其位置使其刚好能接收到衍射光。
3. 将电脑与数字多道分析器连接。
4. 打开数据采集软件,设置好采集参数。
5. 开始采集数据,持续一段时间,确保得到足够多的数据点。
6. 关闭数据采集软件,保存数据并进行数据分析。
7. 根据采集到的数据绘制单缝衍射光强分布图。
实验结果分析:根据采集到的数据,可以得到每个位置上的光强数值。
通过绘制光强与位置的关系图,可以观察到一系列亮暗条纹的分布。
根据衍射理论可以推导出单缝衍射的光强分布公式:I(x) = (I_0 * sin(β)/β)^2 * (sin(α)/α)^2其中,I(x)为位置x处的光强,I_0为中央最大光强,β为sin(β) = (π* b * sin(α))/λ,b为单缝宽度,α为入射光与垂直方向的夹角,λ为入射光波长。
实验误差分析:1. 由于实验器材和环境的限制,实际测量中可能会存在一定的误差。
2. 光电探测器的位置调整可能不够精确,导致实际测量的位置与理论位置存在偏差。
3. 光源的稳定性对实验结果也有一定影响,光源的波动性会导致实际测量的数值偏差。
4. 数据采集时的误差也需要注意,包括噪声、干扰等。
实验结论:通过实验测量单缝衍射光强的分布,可以得到一系列亮暗条纹的分布情况。
光电探测器特性测量实验报告实验目的:1.了解光电探测器的基本原理和工作方式;2.掌握光电探测器的特性测量方法;3.分析光电探测器的特性曲线。
实验仪器:1.光电探测器:用于将光信号转换为电信号,并测量光电流的大小。
2.光源:用于提供光信号,可以调节光强度。
3.测量设备:包括电流表、电压表和电阻箱,用于测量和调节光电流、光电压和负载电阻。
实验原理:光电探测器是一种能够将光信号转换为电信号的器件,其基本原理是利用光电效应。
当光照射到光电探测器的光敏面时,光子的能量会使光敏物质中的电子获得足够的能量而逸出,形成电子空穴对。
通过施加电场,将电子和空穴分离,形成电流,即光电流。
光电探测器的输出信号主要有光电流和光电压两种形式。
实验步骤:1.将光电探测器连接到电流表,将电阻箱调节到最大电阻,打开光源,并调节光强度到合适的数值。
2.记录电流表的读数,即为光电流的大小。
3.将光电探测器连接到电压表和负载电阻,调节电阻箱的电阻,使光电压维持一定的数值。
4.记录电压表和电流表的读数,并计算光电阻和负载电阻之间的电流。
5.将光电压和光电流绘制成特性曲线。
实验结果:根据记录的数据,得到了光电流和光电压的大小,并绘制了光电流-光电压特性曲线。
实验讨论:通过特性曲线的分析,可以看出光电探测器的工作特性。
在一定范围内,光电流随光电压的增加而增加,并呈线性关系。
当光电压达到一定值时,光电流趋于饱和,不再随光电压的增加而增加。
这是因为在较低的光电压下,光电子所带的能量与光电子轰击表面所需的能量相差较大,导致轰击效率较低。
而当光电压增加到一定值时,光电子所带的能量与光电子轰击表面所需的能量相差较小,导致轰击效率接近极限,几乎所有的光电子都能够轰击表面,所以光电流趋于饱和。
实验结论:本实验中,我们通过测量光电流和光电压的大小,得到了光电探测器的特性曲线,并根据曲线分析得出了光电探测器的工作特性。
实验结果与理论相符合,证明了光电探测器的基本原理和工作方式。
光电综合实验报告
实验目的:通过光电综合实验,了解光电效应在光电器件中的应用,掌握光电检测技术和光电器件的使用方法。
实验仪器:光电综合实验箱、光电二极管、光电三极管、光电开关等光电器件。
实验原理:光电效应是指当光照射在半导体材料上时,电子受到能量激发而跃迁至导带,从而产生电流或电压的现象。
光电器件是利用光电效应制成的电子器件,如光电二极管、光电三极管和光电开关等。
实验步骤:
1.将光电二极管插入实验箱中,并连接好电路。
2.调节实验箱上的光强度调节钮,观察光电二极管的输出信号。
3.更换光电三极管,并重复步骤2。
4.使用光电开关进行实验,观察其在光照和无光照状态下的输出信号变化。
实验结果:
通过实验,我们观察到光电二极管在光照射下产生了电流信号,光照强度越大,输出信号越强。
光电三极管的输出信号也随着光照强度的变化而变化,但其灵敏度比光电二极管更高。
而光电开关在有光照时输出高电平,在无光照时输出低电平,可以用于光控开关等应用。
实验结论:
光电器件是利用光电效应制成的电子器件,能够将光信号转换为电信号,具有灵敏度高、响应速度快等优点,并且在光控开关、光电传感器等领域有着广泛的应用。
通过本次实验,我们成功掌握了光电器件的使用方法及其在光电检测技术中的应用。
总结:
光电综合实验让我们更加深入地了解了光电效应在光电器件中的应用,通过实验操作,我们掌握了光电器件的使用方法,为今后在光电检测技术领域的应用奠定了基础。
希望能够通过不断地实践和学习,进一步提高自己的实验技能和理论水平。
光电探测器实验报告光电探测器实验报告引言:光电探测器是一种能够将光信号转换为电信号的装置,广泛应用于光学通信、光电测量等领域。
本实验旨在通过实际操作,了解光电探测器的工作原理、特性以及应用。
一、实验目的本实验的目的是通过搭建实验电路,测量光电探测器的电流-电压特性曲线,了解其灵敏度、响应速度等参数,并探究不同波长光对光电探测器的影响。
二、实验装置与方法本实验所用的主要装置有光电探测器、光源、电流电压源、示波器等。
首先,将光电探测器与电流电压源相连接,然后将示波器与光电探测器并联,最后将光源对准光电探测器。
在实验过程中,我们将改变电流电压源的输出电压,记录光电探测器的输出电流,并观察示波器上的波形。
三、实验结果与分析通过实验测量,我们得到了光电探测器的电流-电压特性曲线,如图1所示。
从图中可以看出,当电压较小时,光电探测器的输出电流较小,随着电压的增加,输出电流逐渐增大。
当电压达到一定值后,输出电流基本保持稳定。
这是因为在低电压下,光电探测器的内部电场较弱,电子-空穴对的产生较少,因此输出电流较小。
随着电压的增加,内部电场增强,电子-空穴对的产生增多,导致输出电流增大。
当电压达到一定值后,内部电场已经达到饱和,此时输出电流基本保持稳定。
图1 光电探测器的电流-电压特性曲线另外,我们还对不同波长光对光电探测器的影响进行了实验。
通过改变光源的波长,我们测量了不同波长下光电探测器的输出电流。
实验结果显示,当光源的波长与光电探测器的工作波长匹配时,输出电流最大。
这是因为光电探测器对特定波长的光敏感度最高,其他波长的光则会引起较小的输出电流。
这一特性使得光电探测器在光学通信等领域中具有重要的应用价值。
四、实验总结通过本次实验,我们深入了解了光电探测器的工作原理和特性。
光电探测器的电流-电压特性曲线反映了其灵敏度、响应速度等重要参数。
同时,不同波长光对光电探测器的影响也得到了验证。
这些实验结果有助于我们更好地理解光电探测器的应用和优化设计。
东南大学物理实验报告姓名学号指导教师日期报告成绩实验名称光敏传感器的光电特性研究目录实验一光敏电阻特性实验实验二光敏二极管特性实验一、实验目的:1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线;2、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线;3、了解硅光敏二极管的基本特性,测出它的伏安特性和光照特性曲线;4、了解硅光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。
二、实验原理:光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
1、光电效应光敏传感器的物理基础是光电效应,在光辐射作用下电子逸出材料的表面,产生光电子发射称为外光电效应,或光电子发射效应,基于这种效应的光电器件有光电管、光电倍增管等。
电子并不逸出材料表面的则是内光电效应。
光电导效应、光生伏特效应则属于内光电效应。
即半导体材料的许多电学特性都因受到光的照射而发生变化。
光电效应通常分为外光电效应和内光电效应两大类,几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。
(1)光电导效应若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
光电探测器特性测量实验摘 要:本实验中探测并绘制了光电二极管的光谱响应曲线。
分别运用脉冲法,幅频特性法和截止频率法对二极管和光敏电阻的响应时间进行了测量,并分析比较了这三种方法的利弊。
最后自己设计连接电路测量光敏电阻的响应时间,更深入地理解了响应时间及测量原理。
一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。
通常,光电探测器的光电转换特性用响应度表示。
响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。
主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。
本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。
二、 实验原理1. 光电探测器光谱响应度的测量光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,即()()()λλλP V Rv =;同理,电流光谱响应度()()()λλλP I R i =式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。
实验中用响应度和波长无关的热释电探测器作参考探测器,测得入射光功率为()λP 时的输出电压为()λf V 。
若用f R 表示热释电探测器的响应度,则()()ff f K R V P λλ=(f K 为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。
在本实验中,K f =100×300,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,f R =900V/W )。
然后在相同的光功率()λP 下,用硅光电二极管测量相应的单色光,得到输出电压()λb V ,从而得到光电二极管的光谱响应度()()()()()ff f b bK R V K V P V R //λλλλλ==式中K b 为硅光电二极管测量时总的放大倍数,这里K b =150×300。
2. 光电探测器响应时间的测试表示时间响应特性的方法主要有脉冲响应特性法和幅频特性法。
1) 脉冲响应响应落后于作用信号的现象称为弛豫。
对于信号开始作用时产弛豫称为上升弛豫或起始弛豫;信号停止作用时的弛豫称为衰减弛豫。
弛豫时间的具体定义如下:如用阶跃信号作用于器件,则起始弛豫定义为探测器的响应从零上升为稳定值的(1-1/e )(即63%)时所需的时间。
衰减弛豫定义为信号撤去后,探测器的响应下降到稳定值的1/e (即37%)所需的时间。
这类探测器有光电池、光敏电阻及热电探测器等。
另一种定义弛豫时间的方法是:起始弛豫为响应值从稳态值的10%上升到90%所用的时间;衰减弛豫为响应从稳态值的90%下降到10%所用的时间。
这种定义多用于响应速度很快的器件,如光电二极管、雪崩光电二极管和光电倍增管等。
若光电探测器在单位阶跃信号作用下的起始阶跃响应函数为[1-exp(-t/τ1)],衰减响应函数为exp(-t/τ2),则根据第一种定义,起始弛豫时间为τ1,衷减弛豫时间性为τ2。
此外,如果测出了光电探测器的单位脉冲响应函数,则可直接用其半值宽度来表示时间特性。
为了得到具有单位冲激函数形式的信号光源,即δ函数光源,可以采用脉冲式发光二极管、锁模激光器以及火花源等光源来近似。
在通常测试中,更方便的是采用具有单位阶跃函数形式亮度分布的光源。
从而得到单位阶跃响应函数,进而确定响应时间。
2) 幅频特性由于光电探测器惰性的存在,使得其响应度不仅与入射辐射的波长有关,而且还是入射辐射调制频率的函数。
这种函数关系还与入射光强信号的波形有关。
通常定义光电探测器对正弦光信号的响应值和调制频率间的关系为它的幅频特性。
许多光电探测器的幅频特性具有如下形式。
A(ω)=()2/12211τω+式中,A 表示归一化后幅频特性;ω=2Πf 为调制圆频率;f 为调制频率;τ为响应时间。
在实验中可以测得探测器输出电压V(ω)为 V(ω)=()2/1221τω+V式中V 0为探测器在入射光调制频率为零时的输出电压。
这样,如果测得调制频率为f 1时的输出信号电压V 1和调制频率为f 2时为输出信号电压V 2,就可由下式确定响应时间τ=()()2112222212121f V f V V V --∏截止频率法由于许多光电探测器的幅频特性都可由式(2-1)描述,人们为了更方便地表示这种特性,引出截止频率。
它的定义是当输出信号功率降至超低频信号功率一半时,即信号电压降至超低频信号电压的70.7%时的调制频率。
故f c 频率点又称为三分贝点或拐点。
由式(2-1)可知πτ21=e f ,由此可求出响应时间。
三、 实验装置及过程实验装置:WD30光栅单色仪、热释电探测器、硅光电二极管、选频放大器、调制盘、卤素灯、双踪示波器、光电探测器时间常数测试实验箱(峰值波长为900nm 的光电二极管和可见光波段的光敏电阻以及峰值波长为900nm 的红外发光管和可见光(红)发光管)、光敏电阻、LED 灯。
实验步骤:(一)用脉冲法测量光电二极管的响应时间1. 探测器选择光电二极管,选定偏压为15V 和负载10K ,波形为方波。
2. 在反向偏压为15V 时,改变探测器的偏置电阻,观察探测器在不同偏置电阻时的脉冲响应时间。
3. 选定负载为l0k Ω,改变其偏压分别为5V ,10V 和15V 。
观察并记录不同反偏下光电二极管的响应时间。
(二)用幅频特性法测量CdSe 光敏电阻的响应时间1. 探测器选择CdSe 光敏电阻,偏压为15V ,负载10K ,波形为正弦波。
2. 改变光波信号频率,记录不同频率下CdSe 相应的的输出电压。
3. 以V 2为y 轴,以(Vf )2为x 轴进行直线拟合,由τ=可知拟合所得直线斜率k=−(2πτ)2,截距ρ=V 02。
(三)用截止频率法测量CdSe 光敏电阻的响应时间将正弦波的频率调到超低频(最低频),测量此时CdSe 的输出电压,近似等于V 0,逐渐调高正弦波的频率,当CdSe 的输出衰减到V 0的70.7%时记录此时的调制频率f c ,并由式πτ21=e f 确定响应时间τ。
(四)光谱响应度的测量1.打开光源开关,调整光源位置,使之成像在单色仪入射狭缝上,选择最宽的入射狭缝以及最窄的出射狭缝。
把热释电器件光敏面对准出射狭缝,并连接好与放大器和数字示波器,打开选频放大器的开关。
2.转动光谱手轮,记下探测器的入射波长及数字示波器上相应波长的输出电压值,每隔约0.25mm 测量一次输出电压,记录刻度与对应的输出电压。
3.用光电二极管换下热释电器件,重复步骤2,刻度与步骤2中的选取一致。
4.利用刻度与波长的线性关系算出刻度对应的波长,由公式算出光电二极管的光谱响应度并作图。
()()2112222212121f V f V V V --∏()()()()()ff f b bK R V K V P V R //λλλλλ==四、实验结果及分析(一) 脉冲法测光电二极管响应时间1) 偏压为15V 时不同负载下的响应时间:由右图可知负载越大,上升时间和下降时间都增大,其平均时间与负载呈线性关系。
2) 负载为10k Ω时不同偏压下的响应时间:由右图可知负载一定时,偏压越大,上升时间和下降时间都减小,且上升时间大于下降时间。
对光电二极管响应时间随负载增大而增大现象的解释:光电二极管是由一个 PN结组成的半导体器件。
当 PN 结加正向偏压时,势垒区的电场随正向偏压的增加而减弱,势垒区宽度变窄,空间电荷数量减少。
因为空间电荷是由不能移动的杂质离子组成的,所以空间电荷的减小是由于 n 区和 p 区的空穴过来中和了势垒区中一部分电离施主和电离受主。
这就是说,再外加正向偏压增强时,将有一部分电子和空穴“存入”势垒区。
反之,当正向偏压减小时,势垒区的电场增强,势垒区宽度增加,空间电荷数量增多,这就是有一部分电子和空穴从势垒中“取出”。
对于加反向偏压的情况,可作类似分析。
总之,PN 结上外加电压的变化,引起了电子和空穴在势垒区“存入”和“取出”作用,导致势垒区的空间电荷数量随外加电压而变化,这和一个电容器的充放电作用相似。
这种 PN 结的电容效应称为势垒电容。
于是可以将光电二极管当作电容器考虑。
根据 RC 电路的特性,有 τ =t 1At 1ARC ,即在不考虑电容变化的情况下弛豫时间和电路中的总负载成正比,取 15V 偏压下衰减弛豫τ−R 关系进行直线拟合如下图所示,得R2 = 0.994.基本已呈现线性,截距基本为零,可能由于信号源本身或电路中其它元件有不可忽略的电阻。
于是有光电二极管响应时间随负载增大而增大。
t 1R(二) 幅频特性法测光敏电阻响应时间由τ=12π√V 12−V 22(V 2f 2)2−(V 1f 1)2,令f 1=0,V 1=V 0得:1V 2=(2πτV 0)2f 2+1V 02以V^2为y 轴,以(V*f )^2为x 轴进行直线拟合如右图所示:截距ρ=1V 02=(2.3±0.3)∗10^(−6) 不确定度u (V 0)=dV 0dρ∗u (ρ)=2√ρ3=−2∗√12.167=−40所以V 0=1/√ρ±u (V 0)=(6.6±0.4)∗102mV 斜率k=(2πτV 0)2=(3.79±0.04)∗10^(−9)不确定度u (τ)=dτdk ∗u (k )=04π√k=−94π∗√3.79∗10−9=−0.03∗10^(−3)所以τ=(3.23±0.03)∗10^(−3)s由图可看出,高频段频率不太稳定,故取100Hz 以下的数据重新拟合:1/V 2f21/V 2f2(三) 截止频率法测光敏电阻响应时间实验仪器所能调节到的最小的频率为7.37Hz ,对应的输出电压为1.14V ,以此作为近似的V 0,调节频率至V=V 0∗0.707=805.98mV (实际调节至800mV )时,得截止频率f c =13.5Hz ,响应时间τ=12πf c=11.8ms分析:由1V 2=(2πτV 0)2f 2+1V 02可知,f 若继续减小V 将增大,所以V 0偏小,所得截止频率偏大,响应时间偏小。
再观察之前幅频特性法得出的结果,取频率较低的数据时,所得V 0和响应时间均增大,但还是小于截止频率法测得的结果,说明幅频特性法在低频时更准确。
(四) 光电二极管响应度测量由单色仪刻度与波长已知的四组数据算出刻度与波长的对应关系:得:λ=(100.10±0.11)x +(−2.0±0.8)利用此关系式算出其它刻度对应的波长,作光谱响应度与波长的曲线如右图所示: A .实验结果:约在波长为974nm 处有最大的响应度。