焊接数值模拟的研究和发展
- 格式:docx
- 大小:32.19 KB
- 文档页数:8
有限元数值仿真焊接有限元数值仿真是一种通过计算机数值模拟物理现象的方法,在工业生产过程中具有广泛应用。
在焊接工艺中,有限元数值仿真可以模拟焊接时的温度场、应力场、塑性应变等,从而预测焊接过程中可能出现的问题。
本文将介绍有限元数值仿真在焊接中的应用。
有限元数值仿真是一种基于数学模型的数值计算方法,用于模拟各种物理现象,包括结构力学、流体力学、热传导等。
该方法将连续体划分为有限数量的单元,在每个单元内建立数学模型进行计算,然后通过单元之间的边界条件关系,将所有单元的结果综合起来得到整体结果。
在焊接中,有限元数值仿真可以将焊接过程分为一系列的时间步骤,每个时间步骤内进行温度场、应力场、塑性应变等参数的计算,并通过不同的单元间的耦合关系完成最终的模拟,得到焊接过程中的温度场、应力场等参数。
1. 模拟焊接过程中的温度场有限元数值仿真可以模拟焊接过程中的温度场分布,对于评价焊接接头的质量和找出潜在的焊接问题非常有帮助。
通过数值仿真,可以预测焊缝的温度分布,从而避免出现焊接缺陷,如裂缝、变形等。
2. 分析焊接接头的应力场在焊接接头中,由于温度的变化,焊缝处可能存在应力集中,而应力集中部位可能会导致焊接接头的破坏。
有限元数值仿真可以模拟焊接接头的应力场分布,查找潜在的应力集中问题,并提供相应的解决方案。
3. 预测焊接接头的变形焊接过程中,由于热应力的影响,焊接接头可能会发生变形。
有限元数值仿真可以预测焊接接头的变形情况,并提供解决方案。
同时,这也可以作为指导焊接过程控制的重要依据。
焊接接头的塑性应变是评价焊接接头质量的一个重要指标。
有限元数值仿真可以模拟焊接接头的塑性应变,以评估接头的结构强度和稳定性。
三、有限元数值仿真的研究发展现状随着计算机技术的发展,有限元数值仿真在焊接领域已经取得了很大的进展。
目前,国内外多个研究机构都在进行有限元数值仿真技术的应用研究。
例如欧洲联盟已经成立了一支由11个成员组成的焊接数值分析小组,他们致力于推动有限元数值仿真技术的发展和应用。
基于ANSYS的焊接温度场和应力的数值模拟研究一、本文概述随着现代工业技术的飞速发展,焊接作为一种重要的连接工艺,在航空、汽车、船舶、石油化工等领域的应用日益广泛。
然而,焊接过程中产生的温度场和应力场对焊接结构的性能有着至关重要的影响。
为了深入理解焊接过程中的热-力行为,预测焊接结构的变形和残余应力,进而优化焊接工艺参数和提高产品质量,本文旨在利用ANSYS有限元分析软件,对焊接过程中的温度场和应力场进行数值模拟研究。
本文首先简要介绍了焊接数值模拟的意义和现状,包括焊接数值模拟的重要性、国内外研究现状和存在的问题等。
随后,详细阐述了ANSYS 软件在焊接数值模拟中的应用,包括其基本原理、分析流程、模型建立、参数设置等方面。
在此基础上,本文以某典型焊接结构为例,详细阐述了焊接温度场和应力场的数值模拟过程,包括模型的建立、边界条件的设定、求解参数的选择、结果的后处理等。
对模拟结果进行了详细的分析和讨论,验证了数值模拟方法的准确性和可靠性,为实际工程应用提供了有益的参考。
本文的研究不仅有助于深入理解焊接过程中的热-力行为,为优化焊接工艺参数和提高产品质量提供理论支持,同时也为ANSYS软件在焊接数值模拟领域的应用推广和进一步发展奠定了基础。
二、焊接理论基础焊接是一种通过加热、加压或两者并用,使两块或多块金属在原子层面结合形成永久性连接的工艺过程。
焊接过程涉及复杂的物理和化学变化,包括金属的熔化、凝固、相变以及应力和变形的产生等。
因此,深入了解焊接过程的理论基础对于准确模拟焊接过程中的温度场和应力分布至关重要。
焊接过程中,热源将能量传递给工件,导致工件局部快速升温并熔化。
熔池形成后,随着热源的移动,熔池中的液态金属逐渐凝固形成焊缝。
焊接热源的类型和移动速度、工件的材质和厚度等因素都会影响焊接过程的温度场分布。
为了准确模拟这一过程,需要了解各种热源模型(如移动热源模型、体积热源模型等)及其适用范围,并选择合适的模型进行数值模拟。
焊接过程的数值模拟与优化一、引言焊接是一种常用的工业加工方法,可用于连接和修复金属、塑料、玻璃等各种材料。
然而,由于焊接过程中涉及到高温、气体、化学反应等多种复杂因素,使得焊接工艺参数的选择与优化具有一定的难度。
因此,为了提高焊接效率和质量,数值模拟和优化技术近些年来得到了广泛的应用。
二、数值模拟技术数值模拟技术是利用计算机运算模拟实际物理过程的一种方法。
在焊接过程中,数值模拟技术主要用于预测温度场、扭矩场、应力场、位移场等物理参量,以便优化焊接工艺参数以达到最佳的焊接效果。
1. 焊接过程模拟在焊接过程模拟中,主要涉及到热传递方程、能量守恒方程、动量守恒方程等基本模型。
通过数值求解这些模型,可以得到焊接过程中的温度场、熔池形状、焊缝形状等重要的参量。
2. 焊接残余应力模拟焊接残余应力是指焊接后焊件内部残留的应力状态。
焊接残余应力模拟主要涉及到材料本构关系、应力平衡方程等模型。
通过数值求解这些模型,可以得到焊接后的残余应力分布,进一步判断焊接件的稳定性和持久性等。
三、优化技术对于焊接加工过程而言,焊接质量和性能的优化是关键。
因此,针对焊接工艺参数进行优化是必不可少的。
1. 优化算法在焊接优化过程中,优化算法的选择对结果影响非常大。
常见的优化算法包括模拟退火、遗传算法、粒子群算法等。
这些算法可以根据不同的目标函数进行参数优化,以获得最优的焊接参数设置。
2. 优化目标焊接优化的目标参数有很多,通常包括焊接强度、裂纹敏感性、金属熔池尺寸、焊接速度、温度均匀性等方面。
这些目标量可以通过实验或数值模拟得到,然后通过优化算法进行校准。
四、实例以氩弧焊为例,通过焊接数值模拟和优化技术,得出最佳的焊接参数设置。
1. 模型建立在ANSYS软件中,建立了氩弧焊的热传递和流体模型,计算焊接过程中的热传递和气体流动。
2. 优化参数通过实验和数值模拟,优化了电流、电压、焊接速度和气体流量等参数,以获得最佳的焊接效果。
3. 优化结果最终的优化结果表明,当电流设置为85A、电压设置为20V、焊接速度设置为3mm/s、氩气流量设置为10L/min时,可以获得最优的焊接结果,焊缝质量和机械性能都得到了明显的提升。
《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言焊接作为一种重要的工艺方法,广泛应用于各种工程结构中。
然而,焊接过程中产生的温度场和应力分布对焊接结构的质量、性能和使用寿命有着重要的影响。
因此,对焊接温度场和应力的研究具有非常重要的意义。
本文将通过ANSYS软件进行焊接温度场和应力的数值模拟研究,以期为焊接工艺的优化提供理论依据。
二、焊接温度场的数值模拟1. 建模与材料属性设定在ANSYS中建立焊接结构的几何模型,设定材料的热学性能参数,如热导率、比热容等。
同时,设定焊接过程中的热源模型,如高斯热源模型等。
2. 网格划分与边界条件设定对模型进行合理的网格划分,以便更好地捕捉温度场的分布情况。
设定边界条件,包括环境温度、对流换热系数等。
3. 求解与结果分析通过ANSYS的瞬态热分析模块进行求解,得到焊接过程中的温度场分布情况。
分析温度场的变化规律,研究焊接过程中的热循环行为。
三、焊接应力的数值模拟1. 建模与材料属性设定在ANSYS中建立与温度场分析相同的几何模型,设定材料的力学性能参数,如弹性模量、泊松比等。
同时,导入温度场分析的结果作为应力分析的初始条件。
2. 网格划分与约束条件设定对应力分析模型进行网格划分,并设定约束条件,如固定支座等。
这些约束条件将影响应力的分布情况。
3. 求解与结果分析通过ANSYS的结构分析模块进行求解,得到焊接过程中的应力分布情况。
分析应力的变化规律,研究焊接过程中的残余应力分布情况。
同时,结合温度场分析结果,研究温度与应力之间的关系。
四、结果与讨论1. 温度场分析结果通过ANSYS的数值模拟,得到了焊接过程中的温度场分布情况。
结果表明,在焊接过程中,焊缝处的温度较高,随着距离焊缝的增大,温度逐渐降低。
同时,随着时间的变化,温度场呈现出明显的热循环行为。
2. 应力分析结果在应力分析中,我们发现焊接过程中会产生较大的残余应力。
这些残余应力主要分布在焊缝及其附近区域,并呈现出一定的规律性。
焊接过程中的数值模拟与仿真技术引言焊接是一种常见的金属加工方法,广泛应用于制造业领域。
然而,在焊接过程中,由于高温、高压和复杂的热力学环境,焊接工艺参数的选择和优化往往存在一定的挑战。
因此,借助数值模拟与仿真技术来模拟、预测和改善焊接过程已经成为焊接工程师的重要工具。
本文将介绍焊接过程中的数值模拟与仿真技术及其应用。
数值模拟与仿真技术的原理和方法数值模拟与仿真技术是利用数学方法和计算机技术对焊接过程进行模拟和预测的一种手段。
它基于物理学原理和数学方程,将焊接过程分解为多个离散的时间和空间步骤,并通过建立数学模型来描述焊接过程中的各种物理现象。
数值模拟与仿真技术的主要原理和方法包括:1. 热传导方程模型热传导方程模型是数值模拟与仿真技术中最基本的模型之一。
它基于热传导原理,通过建立热传导方程来描述焊接过程中热量的传递和分布。
该模型可以准确地预测焊接过程中的温度场分布和热应力分布,为焊接工艺参数的优化提供重要参考。
2. 流固耦合模型焊接过程中存在流体流动和固体熔化的复杂耦合现象。
为了更准确地模拟焊接过程,可以建立流固耦合模型。
该模型基于流体力学和固体力学原理,同时考虑熔化金属的流动和固体材料的变形。
通过该模型,可以分析焊接过程中的速度场、应力场和变形场等关键参数,为焊接过程的优化提供依据。
3. 相变模型焊接过程中熔化金属会发生相变,而相变过程对焊接接头的性能和质量具有重要影响。
为了准确预测焊接接头的相变行为,可以建立相变模型。
相变模型基于热力学和相变动力学原理,通过数学方程描述金属的熔化和凝固过程。
利用相变模型,可以研究焊接接头的晶体结构和应力分布,从而提高焊接接头的强度和可靠性。
4. 材料性能模型焊接过程中材料的热物理性质和机械性能会发生变化,对焊接接头的质量和性能产生重要影响。
为了更好地预测焊接接头的材料性能,可以建立材料性能模型。
材料性能模型基于材料力学和热学理论,通过数学方程描述材料在焊接过程中的变化规律。
焊接热过程数值模拟的主要任务及其意义一、引言焊接技术在现代工业中具有重要的地位,但是焊接过程中存在着许多问题,如焊缝质量不稳定、变形过大等。
为了解决这些问题,研究人员利用数值模拟技术对焊接热过程进行了模拟分析。
本文将介绍焊接热过程数值模拟的主要任务及其意义。
二、任务1. 焊接热源建模在焊接过程中,热源是产生温度场和应力场的主要因素之一。
因此,建立准确的热源模型对于预测温度和应力场分布非常重要。
目前常用的热源模型有高斯函数、双高斯函数和移动点源等。
2. 材料性能建模材料性能是影响焊缝质量和变形度的重要因素之一。
材料性能建模包括材料塑性行为、导热系数、比热容等参数的确定。
通过这些参数的确定可以更准确地预测温度场和应力场分布。
3. 焊接过程仿真根据上述两个步骤得到的数据进行计算机仿真,预测出焊接过程中的温度场和应力场分布。
通过仿真结果可以预测焊缝质量和变形度,并且可以为实际焊接工艺提供参考。
三、意义1. 优化焊接工艺通过数值模拟技术,可以预测出焊接过程中的温度场和应力场分布,从而优化焊接工艺,提高焊缝质量和减小变形度。
2. 减少试验成本传统的焊接工艺设计需要进行大量的试验才能确定最佳方案,这不仅耗费时间而且成本高昂。
而通过数值模拟技术可以在计算机上进行仿真实验,避免了试验成本的浪费。
3. 提高生产效率采用数值模拟技术可以快速地评估不同的焊接工艺方案,从而选择最优方案并加以应用。
这样可以大大提高生产效率。
4. 推动科学研究数值模拟技术在研究领域中有着广泛的应用。
通过对焊接热过程进行数值模拟,可以深入了解材料行为、热传递规律等基础知识,并且为新材料的研究提供了参考。
四、总结焊接热过程数值模拟技术在现代工业中具有重要的地位。
通过建立准确的热源模型和材料性能模型,进行计算机仿真,可以预测出焊接过程中的温度场和应力场分布,优化焊接工艺,减少试验成本,提高生产效率,并且推动科学研究的发展。
焊接接头复杂结构的数值模拟研究随着工业的发展和技术的进步,复杂结构的焊接接头逐渐成为了重要的焊接研究领域。
在实际工程中,焊接接头的尺寸、形状和材质都非常复杂,而且通常会有多种不同类型的焊接工艺被应用。
要想获得高质量的焊接接头,并且保证其在使用过程中稳定可靠,需要进行精确的数值模拟和仿真研究。
一、焊接接头的结构特点焊接接头是由多个零件通过焊接形成的结构,它通常具有以下几个特点:1. 复杂的结构形式。
焊接接头可以是各种各样的图形和形状,在实际工程中通常需要根据需要量身定制。
2. 多种不同类型的焊接工艺。
为了满足工程需求,通常会采用多种不同类型的焊接工艺,如TIG焊、MIG焊、等离子焊等。
3. 大量的热量输入。
在焊接过程中,需要对工件进行加热和冷却,这会导致接头产生大量的热应力和形变。
4. 高度的焊接质量要求。
焊接接头是整个结构的重要组成部分,其质量直接影响到结构的性能和使用寿命。
二、数值模拟的作用数值模拟是一种通过计算机软件对物理过程进行预测和分析的方法,对焊接接头的研究和分析具有重要的作用:1. 优化设计。
通过数值模拟,可以确定最佳的焊接参数和工艺流程,优化设计方案。
2. 降低成本。
通过数值模拟,可以预测焊接接头的性能和疲劳寿命,从而降低成本和提高效率。
3. 提高精度。
数值模拟可以对焊接接头的热传导、应力分布、形变和变形等各种物理现象进行精确的计算和仿真分析。
4. 加速研发。
数值模拟在焊接接头研发过程中可以提高效率和速度,并且可以减少实验设备和测试材料的使用。
三、数值模拟的方法现代数值模拟方法通常可以分为以下几个步骤:1. 建模。
将实际焊接接头的几何模型转化为计算机可以处理的形式。
2. 区域划分。
将建模后的模型划分为数个小的网格或单元。
3. 设置边界条件。
设置边界条件,在模型中定义各种物理参数,如热源、工艺参数、材料特性等。
4. 解方程。
采用求解器或计算机算法,计算模型在给定条件下的物理现象。
5. 分析结果。
焊接工艺中的数值模拟与仿真优化焊接是一种常见的金属连接方法,广泛应用于制造业的各个领域。
然而,传统的试错方法在焊接工艺的优化中存在一些困难和不足。
为了提高焊接工艺的效率和质量,数值模拟与仿真技术成为了焊接工艺优化的重要手段。
数值模拟是利用计算机模拟焊接过程中的热传导、相变、应力和变形等物理现象的方法。
通过建立数学模型和采用数值计算方法,可以预测焊接过程中的温度场、应力场和变形情况,从而为优化焊接工艺提供理论依据。
数值模拟不仅可以减少试验成本和时间,还可以提高焊接工艺的稳定性和可靠性。
在数值模拟中,材料的热物性参数是一个重要的输入参数。
通过实验和理论计算,可以获得材料的热导率、比热容和熔点等参数。
同时,焊接过程中的热源也需要进行建模。
根据焊接方式和焊接材料的不同,可以采用点源模型、线源模型或面源模型来描述热源的分布和功率。
除了热传导,相变也是焊接过程中的一个重要现象。
在焊接过程中,金属经历了固态、液态和气态三个相态的转变。
相变过程会引起温度的变化,从而影响焊缝的形成和性能。
数值模拟中,可以采用相变模型来描述相变过程,并通过计算相变潜热和相变温度来确定相变的位置和时间。
焊接过程中产生的应力和变形对焊缝的质量和性能也有重要影响。
应力和变形的产生主要是由于焊接过程中的热膨胀和材料的塑性变形。
数值模拟中,可以采用有限元方法来计算焊接过程中的应力和变形。
通过调整焊接参数和优化焊接序列,可以减少应力和变形的产生,提高焊接工艺的稳定性和可靠性。
数值模拟不仅可以用于焊接过程的优化,还可以用于焊接接头的设计和评估。
通过数值模拟,可以预测焊接接头的强度、疲劳寿命和断裂行为。
同时,还可以优化焊接接头的几何形状和尺寸,提高焊接接头的性能和可靠性。
除了数值模拟,仿真优化也是焊接工艺优化的重要手段之一。
仿真优化是利用计算机模拟和优化算法来寻找最优的焊接参数和工艺条件。
通过建立数学模型和采用优化算法,可以在设计空间中搜索最优解。
焊接变形的数值模拟及优化一、引言焊接是工程中常用的连接方式,但焊接过程中容易产生焊接变形。
焊接变形会影响构件的几何形状和尺寸精度,影响构件的力学性能和使用寿命,甚至会导致构件的失效。
因此,焊接变形的研究和控制对于保证构件的质量和可靠性至关重要。
二、焊接变形的成因焊接变形是由于热量作用引起的,主要有以下几个因素:1. 热应力:焊接时产生的热应力是导致焊接变形的主要因素。
焊接过程中,被加热区域与周围冷却区域温度差异大,会产生热应力,导致构件产生变形。
2. 材料的吸收和释放热量不均:焊接材料吸收和释放热量不均,也会导致构件产生变形。
3. 组合焊接:组合焊接中,不同材料的热膨胀系数不同,会导致构件产生变形。
4. 焊接接头的约束:未进行约束的焊接件,由于热应力作用,会产生变形。
三、焊接变形的数值模拟方法模拟法是预测焊接变形的主要方法。
常用的数值模拟方法有:1. 有限元模拟法:有限元模拟法是目前应用最广泛的一种方法。
它将焊接过程分成多个时间步骤,通过求解膨胀系数、界面温度、应力和变形加以模拟。
有限元模拟法的优点是可以精确计算各个变形量,可以对构件进行优化 design,但是计算复杂度较高,需要耗费大量时间和计算资源。
2. 数值解法:数值解法将焊接过程离散成若干网格,利用求解热传导方程和力学方程来计算温度场、应力和变形。
数值解法计算速度较快,计算过程较为简单,但是精度可能不如有限元模拟法。
3. 改进边界元法:改进边界元法是一种适用于模拟大型结构的方法。
它通过界面条件和位移边界条件来计算温度场、应力和变形。
改进边界元法计算速度快,而且计算精度较高,但是限于模型的准确性,只适用于特定结构的模拟。
四、焊接变形的优化方法为了降低焊接变形,常用的优化方法有:1. 焊接参数的合理选择:选取合适的焊接参数(如焊接速度、电弧电流、电压等)可以保证焊缝的质量,减小变形量。
2. 焊接布局的合理设计:合理布局焊缝可以减小变形量。
例如,直角焊缝变形量较小,可以作为焊接连接点;而纵向焊缝容易产生变形,尽量避免使用。
焊接数值模拟文献综述摘要焊接作为现代制造业必不可少的工艺,在材料加工领域一直占有重要地位。
焊接是一个涉及到电弧物理、传热、冶金和力学的复杂过程,焊接现象包括焊接时的电磁、传热过程、金属的熔化和凝固、冷却时的相变、焊接应力和变形等。
焊接过程产生的焊接应力和变形,不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。
这些缺陷的产生主要是焊接时不合理的热过程引起的。
由于高集中的瞬时热输入,在焊接过程中和焊后将产生相当大的残余应力(焊接残余应力)和变形(焊接残余变形、焊接收缩、焊接翘曲) ,而且焊接过程中产生的动态应力和焊后残余应力影响构件的变形和焊接缺陷,而且在一定程度还影响结构的加工精度和尺寸的稳定性。
因此,在设计和施工时必须充分考虑焊接应力和变形的特点。
焊接应力和变形是影响焊接结构质量和生产率的主要问题之一,焊接变形的存在不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。
因此对焊接温度场和应力场的定量分析、预测、模拟具有重要意义。
传统的焊接温度场和应力预测依赖于试验和统计基础上的经验曲线或经验公式。
但仅从实验角度研究焊接热应力和焊后残余应力和变形问题难度很大,无前瞻性,不能全面预测和分析焊接对整个结构的力学特性影响,客观评价焊接质量。
在研究焊接生产技术时,往往采用试验手段作为基本方法,但大量的试验增加了生产成本,耗费人力物力,尤其在军工、航天、潜艇、核反应堆等大型重要焊接结构制造过程中,任何尝试和失败都将造成重大经济损失,而数值模拟将发挥其独特的能力和优势。
随着有限元技术和计算机技术的飞速发展,为数值模拟技术提供了有力的工具,很多焊接过程可以采用计算机数值模拟。
随着差分法、有限元法的不断完善,焊接热应力和残余应力模拟分析技术相应的发展起来。
随着计算机技术发展,20世纪末提出了计算机模拟的手段,为热加工包括焊接技术的发展创造了有力的条件。
焊接过程数值模拟可包括以下几个方面:(1) 焊接热过程;(2) 焊缝金属凝固和焊接接头相变过程;(3) 焊接应力和应变发展过程;(4) 非均质焊接接头的力学行为;(5) 焊接熔池液体流动及形状尺寸;(6) 重大结构及其部件的应力分析。
利用这种方法可以展望21世纪热加工的研究模式将转变为“理论——计算机模拟——生产” ,从而大大提高焊接和材料热加工的科学水平,节约用于实验研究的人力、财力。
焊接变形预测方法大多基于有限元分析。
近年来,随着计算机软、硬件和有限元法的发展,焊接三维数值模拟的研究成为该领域的前沿,三维焊接热应力和残余应力演化虚拟分析技术也逐渐发展起来。
计算机硬件的发展为焊接过程的模拟和工程预测创造了条件,现在Pc B的性能己和十几年前的小型机、中型机性能相差无几,对于简单的、结构不是很复杂的焊接结构可以在PC机上实现其模拟过程。
1. 焊接温度场的分析国内外发展状况焊接温度场的准确计算或测量,是焊接冶金分析和焊接应力、应变热弹塑性动态分析的前提。
关于焊接热过程的分析,苏联科学院的Kalin 院士对焊接过程传热问题进行了系统的研究,建立了焊接传热学的理论基础。
为了求热传导的微分方程的解,他把焊接热源简化为点、线、面三种形式的理想热源,且不考虑材料热物理性质随温度的变化以及有限尺寸对解的影响。
实际上焊接过程中除了包含由于温度变化和高温引起的材料热物理性能和变化而导致传热过程严重的非线性外,还涉及到金属的熔化、凝固以及液固相传热等复杂现象,因此是非常复杂的。
由于这些假定不符合焊接的实际情况,因此所得到的解与实际测定有一定的偏差,尤其是在焊接熔池附近的区域,误差很大,而这里又恰恰是研究者最为关心的部位。
Adames木原博和稻埂道夫等人根据热传导微分方程,以大量的实验为基础,积累了不同材料、不同厚度、不同焊接线能量以及不同预热温度等测量数据,然后从传热理论的有关规律出发,经过整理、归纳和验证,最后建立了不同情况下的焊接传热公式。
这种方法比前者采用数学解析法要准确,但实验的工作量很大,有确定的应用条件和范围,且可靠性取决于测试手段的精度。
1966年wilson和Nicken首次把有限元法用于固体热传导的分析计算中。
70年代。
有限元法才逐渐在焊接温度场的分析计算中使用。
1975年,加拿大的Poley和Hibbert在发表的文章中,介绍了利用有限元法研究焊接温度场的工作,编制了可以分析非矩形截面以及常见的单层、双层U V型坡口的焊接温度场计算程序,证实了有限元法研究焊接温度场的可行性。
之后国内外众多学者进行了这方面的研究工作。
Krmz在1976年的博士论文中专门研究了利用焊接温度场预测接头强度问题,其中分析了非线性温度场,在二维分析模型中,假定电弧运动速度比材料热扩散率高,因此传到电弧前面的热量输出量相对比较小,从而忽略了在电弧运动方向的传热,这实际上与Rykalin 高速移动热源公式的处理方法是一致的。
西安交通大学唐慕尧等人于1981年编制了有限元热传导分析程序,进行了薄板焊接准稳态温度场的线性计算,其结果与实验值吻合。
随后上海交通大学的陈楚等人对非线性的热传导问题进行了有限元分析,建立了焊接温度场的计算模型,编制了相应的程序,程序中考虑了材料热物理性能参数随温度的变化以及表面散热的情况,能进行固定热源或移动热源、薄板或厚板、准稳态或非准稳态二维温度场的有限元分析。
并在脉冲TIG焊接温度场以及局部干法水下焊接温度场等方面进行了实例分析。
对于三维问题,国内外也是近十年来才刚开始研究。
其原因是焊接过程温度梯度很大,在空间域内,大的温度梯度导致严重材料非线性,产生求解过程的收敛困难的和解的不稳定性;在时间域内,大的温度梯度决定了必须在瞬态分析时在时间域内的离散度加大,导致求解时间步的增加。
国内上海交通大学汪建华等人和日本大阪大学合作对三维焊接温度场问题进行了一系列的有限元研究,探究了焊接温度场的特点和提高精度的若干途径,并对几个实际焊接问题进行了三维焊接热传导的有限元分析。
蔡洪能等人建立了运动电弧作用下的表面双椭圆分布模型基础上研制了三维瞬态非线性热传导问题的有限元程序,程序中利用分析节点热焓的方法对低碳钢(A3钢)板的焊接温度场进行了计算,计算结果和实验值吻合得很好2. 焊接应力场的研究历史和发展焊接过程中应力应变的研究工作始于二十世纪三十年代,但是研究工作只能是定性的和实测性的。
五十年代,前苏联学者奥凯尔布洛母等人在考虑材料机械性能与温度之间的相互依赖关系的情况下,用图解的形式分析了焊接过程的热弹塑性性质及其动态过程,并分析了一维条件下对焊接应力应变的影响。
六十年代,由于计算机的推广应用,对焊接应力应变的数值模拟才发展起来。
1961年,Tall 等人首先利用计算机对焊接热应力进行计算,编制了一套沿板条中线进行堆焊的热应力一维分析程序。
1971年,1waki 编制了可用于分析板平面堆焊热应力的二维有限元程序,后来Muraki 对它做了重大改进,扩大了这个二维程序的功能,使之可用于对接焊和平板焊过程的热应力分析。
日本的上田幸雄等人以有限元为基础,应用材料性能与温度相关的热弹塑性理论,导出了分析焊接热应力所需的各表达式。
此后美国的H. D. Hibbert,E. F. Rvblicki , Y. lamuk以及美国MIT的K. Masubuchil 等在焊接残余应力和变形的预测和控制方面进行了许多研究工作。
An derson分析了平板埋弧焊时的热应力,并考虑了相变的影响。
进入八十年代,有限元技术日益成熟,人们对焊接应力应变过程及残余应力的分布规律的认识不断深入,1985年Jon son等人通过大量的数值计算,进一步提高了预测焊缝周围残余应力分布的精度,同时考虑了定位对焊接残余应力分布的影响。
Josefcn 对薄壁管件焊接残余应力以及回火去应力过程的应力分布情况进行了研究,并探讨了一些调整焊接残余应力的措施。
进入九十年代,随着计算机性能的进一步提高,对焊接应力应变的研究更深入。
1991年Mahin等人在研究中考虑了耦合的热应力问题,其中热源分布采用实验矫正的方法进行处理,同时考虑熔池对流、辐射及传热对温度分布的影响,其残余应力的计算结果与采用中子衍射测得的结果吻合很好。
T. Inoue等研究了伴有相变的温度变化过程中,温度、相变、热应力三者之问的藕合效应,并提出了在考虑藕合效应的条件下本构方程的一般形式。
1992年加拿大的chen等人对厚板表面重熔时的应力应变进行了有限元计算,其中考虑了熔化潜热及凝固过程中固液相转变过渡区应力的变化,其残余应力计算值和实验值相当吻合。
美国的shim等人利用平面应变热弹塑性有限元计算了厚板多层焊的残余应力,并对不同坡口形状的焊接残余应力进行了比较,揭示了厚板残余应力分布的规律。
1993年,加拿大的chidiac 等人研究了厚板焊接过程的应力应变及残余应力的分布,其中涉及了三维加热模型,并考虑了显微组织的变化和晶体生长等情况。
加拿大的J . Goldak等对从室温到熔点的焊接热应力进行了研究,提出了各温度段的本构方程。
另外,与焊接温度场的有限元分析类似,焊接热弹塑性有限元分析过去大都局限于二维,三维问题的研究是九十年代才开始的。
瑞典的L.Karlsson 等对大板拼接的焊接应力和变形进行了研究,还提出了采用辅助热源防止单面焊终端裂纹的有效方法;90年代则对板壳结合的焊接模型进行了研究。
近来英国焊接研究所开发了一个“结构变形预测系统” ,可以用来预测复杂结构的焊接变形。
国内对焊接应力应变数值分析起步于二十世纪七十年代,首先是西安交通大学的楼志文等人把数值分析应用到焊接温度场和热弹塑性应力场的分析中,编制了热弹塑性有限元分析程序并对两个简单的焊接问题进行了分析。
接热传导的数值分析方面做了许多工作。
进入八十年代,编制了热弹塑性有限元分析程序。
上海交通大学焊接教研室在焊特别是对非线性瞬态温度场进行了有限元分析,提出了求解非线性热传导方程的变步长外推法,并编制了二维热弹塑性有限元分析程序,计算了平板对接焊时应力应变发展过程及残余应力分布。
关桥等人编制了用于进行平板轴对称焊接应力应变分析的有限元程序,对薄板氢弧点状热源的应力应变过程进行了计算,该分析仅限于点状热源。
孟繁森等人利用迭代解法研制了计算焊接过程应力应变发展程序和图形显示程序,分析了板条边沿堆焊时的应力应变发展过程。
陈楚等人利用平截面的假设分析了厚板焊接时的瞬态拉应力以及厚板补焊时的残余应力。
刘敏等人研制了三角差分温度场和轴对称热弹塑性有限元程序,计算了1Crl8Ni9Ti 和20#钢圆管对接多层焊接时的应力应变过程。
汪建华把三维问题转化为二维问题利用平面变形热弹塑性有限元法对厚板的应力问题进行了分析。
西安交通大学的汤小牛等人针对工程中大量壳体部件的弹塑性问题,编制了稳定温度场和蓝壳单元热弹塑性应力分析程序,计算了异种钢管(铁素体102钢和奥氏体304钢)焊接残余应力的分布以及焊缝宽度对残余应力的影响。