七年级下册数学几何证明题
- 格式:docx
- 大小:36.96 KB
- 文档页数:4
苏科版七年级下册数学第12章证明含答案一、单选题(共15题,共计45分)1、已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.42、下列定理有逆定理的是()A.直角都相等B.同旁内角互补,两直线平行C.对顶角相等D.全等三角形的对应角相等3、下列语句中,属于定义的是( )A.两点确定一条直线B.同角或等角的余角相等C.两直线平行,内错角相等D.点到直线的距离是该点到这条直线的垂线段的长度4、下列命题中真命题的是()A.同旁内角互补B.三角形的一个外角等于两个内角的和C.若,则 D.同角的余角相等5、下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形 C.一组对边平行且相等的四边形是平行四边形 D.一组对边相等且有一个角是直角的四边形是矩形6、如图是一个长为2m,宽为2n(m>n)的长方形,用剪刀剪成四个一样的小长方形拼成一个正方形,则正方形中空白的面积为()A.(m﹣n)2B.(m+n)2C.m 2﹣n 2D.2mn7、下列命题是真命题的是()A.相等的角是对顶角B.在同一平面内,如果,,则C.内错角相等D.如果,,则8、下列各运算中,计算正确的是()A. B. C. D.9、如图,直线a、b被直线c所截,给出的下列条件中不能得出结论a∥b的是()A.∠1=∠3B.∠1=∠4C.∠1=∠2D.∠1+∠2=180°10、等腰三角形的一外角是130°,则其底角是 ( )A.65°B.50°C.80°D.50°或65°11、已知x+y=7,xy=﹣8,则x2+y2=()A.49B.65C.33D.57为12、已知Rt△ABC中,∠C=90°,若cm,cm,则S△ABC ().A.24cm 2B.36cm 2C.48cm 2D.60cm 213、多项式4x2+mxy+25y2是完全平方式,则m的值是()A.20B.10C.10或﹣10D.20或﹣2014、下列命题中是真命题的是()A.“面积相等的两个三角形全等”是必然事件B.“任意画一个等边三角形,它是轴对称图形”是随机事件C.“同位角相等”这一事件是不可能事件D.“三角形三条高所在直线的交点在三角形的外部”这一事件是随机事件15、如图,∠1=∠2,∠B=∠D,下列四个结论中,错误的是()A.∠DCA=∠DACB.AD∥BCC.AB∥CDD.∠DAC=∠BCA二、填空题(共10题,共计30分)16、三角形中三个角的度数之比为3:2:5,那么最大的角是________度,这个三角形是________三角形.17、一大门的栏杆如图所示,BA垂直地面AE于A,CD平行于地面AE,则________度.18、如图,线段AB,BC的垂直平分线l1, l2相交于点O,若∠B=50°,则∠AOC=________.19、等边三角形ABC的边长为6,在AC,BC边上各取一点E、F,连接AF,BE 相交于点P,若AE=CF,则∠APB= ________ .20、如图所示,△ABC中,点D,E分别是AC,BD上的点,且∠A=65°,∠ABD=∠DCE=30°,则∠BEC的度数是________.21、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是________22、如图,⊙O与AC相切于点A,BC过圆心O,圆周角∠B=25°,则∠C的度数为________.23、若 x2+y2=3,xy=1,则 x−y=________.24、命题“对角线相等”的逆命题是________.25、如图,在中,点是边上一点,,,,则的度数为________.三、解答题(共5题,共计25分)26、简便运算:20142﹣2018×2010.27、问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或 a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:①请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:②请你类比上述推导过程,利用图形的几何意义确定:13+23+33= ▲.(要求写出结论并构造图形写出推证过程).问题拓广:③请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= ▲.(直接写出结论即可,不必写出解题过程)28、如图,AD为△ABC的高,BE为△ABC 的角平分线,若∠EBA=35°,∠AEB=80°,求∠CAD的度数.29、20152﹣2014×2016(利用整式的乘法公式计算)30、如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE ∥AB,交AC于E,则∠ADE的大小是多少?参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、D5、D7、D8、D9、C10、D11、B12、A13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
2018年春七年级数学下册相交线与平行线几何证明题1.如图,已知AD//BE,∠1=∠2.求证:∠A=∠E.2.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.3.如图,已知AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.4.如图,AB∥CD,BE,DE分别平分∠ABF,∠FDC,试问∠E与∠F之间的数量关系如何?请说明理由.5.如图,已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:CD⊥AB.6.如图,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么?7.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:8.如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.9.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.10.(1)如图1,已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图1,求证:三角形ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(3)如图2,求证:∠AGF=∠AEF+∠F;(4)如图3,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.11.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(3)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(4)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?12.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E = 140º,求∠BFD的度数.13.如图,已知∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED∥FB.14.如图,已知∠BAP+∠APD=180°,∠1 =∠2.求证:∠E =∠F.15.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图-2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.16.如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,(1)若∠AEF=50°,求∠EFG的度数.(2)判断EG与FG的位置关系,并说明理由.17.(1)如图(1),已知任意三角形ABC,过点C作DE∥AB.求证:∠DCA=∠A;(2)如图(1),求证:三角形ABC的三个内角(即∠A.∠B、∠ACB)之和等于180°;(3)如图(2),求证:∠AGF=∠AEF+∠F;(4)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°.求∠F.18.如图,已知∠1=250,∠2=450, ∠3=300,∠4=100.求证:AB//CD.19.如图,已知AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD之间的关系,请你从所得到的关系中任选一个加以证明。
七年级数学几何证明题1. 如图,在ABC中,D在AB上,且△ CAD^P A CBE都是等边三角形, 求证:(1)DE=AB(2)Z EDB=602. 如图,在A ABC中, AD平分/ BAC DE||AC,EF丄AD交BC延长线于F。
求证:/ FAC" B3. 已知,如图,在厶ABC中,AD,AE分别是△ ABC的高和角平分线,若/ B=30/ C=50°求:(1),求/ DAE的度数。
(2)试写出 / DAE与 / C - / B 有何关系?(不必证明)B D C4、一个零件的形状如图,按规定/ A=9Oo,/ C=25o,Z B=25o,检验已量得/运用三角形的有关知识说明零件不合格的理BDC=150,就判断这个零件不合格,由。
5、如图,已知DF // AC, / C=Z D,你能否判断CE // BD?试说明你的理由6、如图,△ ABC中,D在BC的延长线上,过D作DE丄AB于E,交AC于F.已知/ A=30 ° ,Z FCD=80° ,求/D。
7、如图,BE平分/ ABD , CF平分/ ACD , BE、CF交于G, 若/ BDC = 140。
,/ BGC = 110。
,则 / A ?C 8、如图,AD丄BC于D, EG丄BC于G,Z E =Z 1,求证AD 平分/ BAC9、如图,直线。
丘交厶ABC的边AB AC于D E,交BC延长线于F, 若/ B= 67°,/ ACB= 74°,/ AED= 48°,求/ BDF的度数•10、如图,将一副三角板叠放在一起,使直角的顶点重合于O,贝U/ AOC/ DOB11、如图,将两块直角三角尺的直角顶点C叠放在一起•(1)若/ DCE=35,求/ ACB的度数;(2)若/ ACB=140,求/ DCE的度数;(3)猜想:/ ACB与/ DCE有怎样的数量关系,并说明理由12、已知:直线AB与直线CD相交于点0,/ BOC= 45°,(1) 如图1,若EO丄AB,求/ DOE的度数;(2) 如图2,若EO平分/ AOC,求/ DOE的度数.13、已知AOB , P为OA上一点.(1)过点P画一条直线PQ,使PQ // OB ;(2)过点P画一条直线PM,使PM丄OA交0B于点M ;(3)若AOB 40 ,贝U PMO ?14、如图。
图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。
练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。
初中数学-⼏何证明经典试题(含答案)初中⼏何证明题已知:如图,O 是半圆的圆⼼,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF 已知:如图,P 是正⽅形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三⾓形.3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正⽅形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正⽅形.4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(⼆)A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF 1、已知:△ABC 中,H 为垂⼼(各边⾼线的交点),O(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初⼆)2、设MN 是圆O 外⼀直线,过O 作OA ⊥MN 于A ,⾃A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初⼆)3、如果上题把直线MN 由圆外平移⾄圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初⼆)4、如图,分别以△ABC 的AC 和BC 为⼀边,在△ABC 的外侧作正⽅形ACDE 和正⽅形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的⼀半.经典题(三)1、如图,四边形ABCD 为正⽅形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初⼆)2、如图,四边形ABCD 为正⽅形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初⼆)3、设P 是正⽅形ABCD ⼀边求证:PA =PF .(初⼆)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典题(四)E1、已知:△ABC 是正三⾓形,P 是三⾓形内⼀点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初⼆)2、设P 是平⾏四边形ABCD 内部的⼀点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初⼆)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平⾏四边形ABCD 中,设E 、F 分别是BC 、AB 上的⼀点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初⼆)经典难题(五)1、设P 是边长为1的正△ABC 内任⼀点,L =PA +PB +PC ,D求证:≤L<2.2、已知:P是边长为1的正⽅形ABCD内的⼀点,求PA+PB+PC的最⼩值.3、P为正⽅形ABCD内的⼀点,并且PA=a,PB=2a,PC=3a,求正⽅形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(⼀)1.如下图做GH⊥AB,连接EO。
专题5.25 平行线几何模型(铅笔头模型)(知识讲解) 几何模型1:铅笔头模型图二0//==360MA NC A B ⇒∠+∠∠条件:ABC 000////P ////PQ ,180,180360MA NC BMA NC A C C A C ∴∠∠=∠∠=∴∠+∠+∠=证明:过点B 作BP//MA.则,ABP+BP+,ABC几何模型2:多个铅笔头模型12121//......n n MA NB P P P A Q Q Q B-⇒∠+∠++∠=∠+∠+∠++∠条件:证明思路参考几何模型1【典型例题】类型一、平行线几何模型➽➼铅笔头模型➻➸求解✬✬证明1.阅读下面材料,完成(1)~(3)题.数学课上,老师出示了这样—道题:如图1,已知//,AB CD 点,E F 分别在,AB CD 上,,160EP FP ⊥∠=︒.求2∠的度数.同学们经过思考后,小明、小伟、小华三位同学用不同的方法添加辅助线,交流了自己的想法:小明:“如图2,通过作平行线,发现13,24∠=∠∠=∠,由已知,EP FP ⊥可以求出2∠的度数.”小伟:“如图3这样作平行线,经过推理,得234,∠=∠=∠也能求出2∠的度数.”小华:∵如图4,也能求出2∠的度数.”(1) 请你根据小明同学所画的图形(图2),描述小明同学辅助线的做法,辅助线:______; (2) 请你根据以上同学所画的图形,直接写出2∠的度数为_________°;老师:“这三位同学解法的共同点,都是过一点作平行线来解决问题,这个方法可以推广.”请大家参考这三位同学的方法,使用与他们类似的方法,解决下面的问题:(3) 如图,//AB CD ,点,E F 分别在AB CD ,上,FP 平分,,EFD PEF PDF ∠∠=∠若,EPD a ∠=请探究CFE ∠与PEF ∠的数量关系((用含α的式子表示),并验证你的结论.【答案】(1)过点Р作//PQ AC ;(2)30;(3)2180CFE PEF a ∠-∠=-.【分析】(1)根据图中所画虚线的位置解答即可;(2)过点Р作//PQ AC ,根据平行线的性质可得∵1=∵3,∵2=∵4,由EP∵FP 可得∵3+∵4=90°,即可得出∵1+∵2=90°,进而可得答案;(3)设,CFE x PEF PDF y ∠=∠=∠=,过点P 作//PQ AB ,根据平行线的性质可得180,BEP EPQ CFE FEB x ∠+∠=︒∠=∠=,PDF DPQ ∠=∠,进而根据角的和差关系即可得答案.解:(1)由图中虚线可知PQ//AC ,∵小明同学辅助线的做法为过点Р作//PQ AC ,故答案为:过点Р作//PQ AC(2)如图2,过点Р作//PQ AC ,∵AB//CD ,∵PQ//AB//CD ,∵∵1=∵3,∵2=∵4,∵EP∵FP ,∵∵EPF=∵3+∵4=90°,∵∵1+∵2=90°,∵∵1=60°,∵∵2=30°,故答案为:30(3)如图,设,CFE x PEF PDF y ∠=∠=∠=,过点P 作//PQ AB ,180,BEP EPQ CFE FEB x ∴∠+∠=︒∠=∠=//,AB CD//,PQ CD ∴PDF DPQ ∴∠=∠DPQ EHF PDF y ∴∠=∠=∠=∵CFE FEB x FEP BEP ∠=∠==∠+∠()180x y a y ∴=+-+2180x y α∴-=-,即2180CFE PEF a ∠-∠=-.【点拨】本题考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;正确作出辅助线,熟练掌握平行线的性质是解题关键.举一反三:【变式】问题情境:如图1,AB ∵CD ,∵P AB =130°,∵PCD =120°,求∵APC 度数.思路点拨:小明的思路是:如图2,过P作PE∵AB,通过平行线性质,可分别求出∵APE、∵CPE 的度数,从而可求出∵APC的度数;小丽的思路是:如图3,连接AC,通过平行线性质以及三角形内角和的知识可求出∵APC 的度数;小芳的思路是:如图4,延长AP交DC的延长线于E,通过平行线性质以及三角形外角的相关知识可求出∵APC的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的∵APC 的度数为°;问题迁移:(1)如图5,AD∵BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∵ADP=∵α,∵BCP=∵β.∵CPD、∵α、∵β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∵CPD、∵α、∵β间的数量关系.【答案】问题解决:110°;问题迁移:(1)∵CPD=∵α+∵β,理由见分析;(2)∵CPD =∵β﹣∵α,理由见分析【分析】小明的思路是:过P作PE∵AB,构造同旁内角,利用平行线性质,可得∵APC =110°.(1)过P作PE∵AD交CD于E,推出AD∵PE∵BC,根据平行线的性质得出∵α=∵DPE,∵β=∵CPE,即可得出答案;(2)画出图形(分两种情况:∵点P在BA的延长线上,∵点P在AB的延长线上),根据平行线的性质得出∵α=∵DPE,∵β=∵CPE,即可得出答案.解:小明的思路:如图2,过P作PE∵AB,∵AB∵CD,∵PE∵AB∵CD,∵∵APE=180°﹣∵A=50°,∵CPE=180°﹣∵C=60°,∵∵APC=50°+60°=110°,故答案为:110;(1)∵CPD=∵α+∵β,理由如下:如图5,过P作PE∵AD交CD于E,∵AD∵BC,∵AD∵PE∵BC,∵∵α=∵DPE,∵β=∵CPE,∵∵CPD=∵DPE+∵CPE=∵α+∵β;(2)当P在BA延长线时,∵CPD=∵β﹣∵α;理由:如图6,过P作PE∵AD交CD于E,∵AD∵BC,∵AD∵PE∵BC,∵∵α=∵DPE,∵β=∵CPE,∵∵CPD=∵CPE﹣∵DPE=∵β﹣∵α;当P在BO之间时,∵CPD=∵α﹣∵β.理由:如图7,过P作PE∵AD交CD于E,∵AD∵BC,∵AD∵PE∵BC,∵∵α=∵DPE,∵β=∵CPE,∵∵CPD=∵DPE﹣∵CPE=∵α﹣∵β.【点拨】本题考查了三角形的内角和定理,平行线的性质,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.类型二、平行线几何模型➽➼多铅笔头模型➻➸求解✬✬证明2.(1)如图1,AM∵CN,求证:∵∵MAB+∵ABC+∵BCN=360°;∵∵MAE+∵AEF+∵EFC+∵FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.【答案】(1)∵详见分析;∵详见分析;(2)猜想:若平行线间有n个点,则所有角的和为(n+1)•180°,证明详见分析【分析】(1)∵过点作BG∵AM,则AM∵CN∵BG,依据平行线的性质,即可得到∵ABG+∵BAM=180°,∵CBG+∵BCN=180°,即可得到结论;∵过E作EP∵AM,过F作FQ∵CN,依据平行线的性质,即可得到∵MAE+∵AEP=180°,∵FEP+∵EFQ=180°,∵CFQ+∵FCN=180°,即可得到结论;(2)过n个点作AM的平行线,则这些直线互相平行且与CN平行,即可得出所有角的和为(n+1)•180°.解:(1)∵证明:如图1,过点作BG∵AM,则AM∵CN∵BG∵∵ABG+∵BAM=180°,∵CBG+∵BCN=180°∵∵ABG+∵BAM+∵CBG+∵BCN=360°∵∵MAB+∵ABC+∵BCN=360°∵如图,过E作EP∵AM,过F作FQ∵CN,∵AM∵CN,∵EP∵FQ,∵∵MAE+∵AEP=180°,∵FEP+∵EFQ=180°,∵CFQ+∵FCN=180°∵∵MAE+∵AEF+∵EFC+∵FCN=180°×3=540°;(2)猜想:若平行线间有n个点,则所有角的和为(n+1)•180°.证明:如图2,过n个点作AM的平行线,则这些直线互相平行且与CN平行,∵结合(1)问得:所有角的和为(n+1)•180°.【点拨】本题主要考查了平行线的性质,解决问题的关键是作平行线,利用两直线平行,同旁内角互补得出结论.举一反三:【变式】如图,已知AB∵CD.(1)如图1所示,∵1+∵2=;(2)如图2所示,∵1+∵2+∵3=;并写出求解过程.(3)如图3所示,∵1+∵2+∵3+∵4=;(4)如图4所示,试探究∵1+∵2+∵3+∵4+∵+∵n=.【答案】(1)180°;(2)360°;(3)540°;(4)(n-1)×180°【分析】(1)由两直线平行,同旁内角互补,可得答案;(2)过点E作AB的平行线,转化成两个图1,同理可得答案;(3)过点E,点F分别作AB的平行线,转化成3个图1,可得答案;(4)由(2)(3)类比可得答案.解:(1)如图1,∵AB∵CD,∵∵1+∵2=180°(两直线平行,同旁内角互补).故答案为:180°;(2)如图2,过点E作AB的平行线EF,∵AB∵CD,∵AB∵EF,CD∵EF,∵∵1+∵AEF=180°,∵FEC+∵3=180°,∵∵1+∵2+∵3=360°;(3)如图3,过点E,点F分别作AB的平行线,类比(2)可知∵1+∵2+∵3+∵4=180°×3=540°,故答案为:540°;(4)如图4由(2)和(3)的解法可知∵1+∵2+∵3+∵4+…+∵n=(n-1)×180°,故答案为:(n-1)×180°.【点拨】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.。
初一典型几何证明题1、已知: AB=4,AC=2,D是BC中点, AD是整数,求AD解:延长A D到 E,使AD=DE∵D是 BC中点A ∴BD=DC在△ ACD和△ BDE中AD=DE∠BDE=∠ADC B CDBD=DC∴△ACD≌△ BDE∴AC=BE=2∵在△ ABE中AB-BE<AE<AB+BE∵AB=4即 4-2<2AD<4+21<AD<3∴AD=22、已知: BC=DE,∠B=∠E,∠ C=∠D,F 是 CD中点,求证:∠1=∠2A21B EC F D证明:连接BF和 EF∵BC=ED,CF=DF∠, BCF=∠EDF∴△BCF≌△ EDF 第1页共22 页∴BF=EF,∠CBF=∠DEFB E连接在△ BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在△ ABF和△ AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△ AEF。
∴∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=D,E EF证明:连接EF ∵AB∥CD共22 页第9页∴∠B=∠C∴△BEM≌△CFM( SAS)∵M是 BC中点∴CF=BE∴BM=CM在△BEM和△CFM中BE=CF∠B=∠CBM=CM7. 已知:如图所示,AB=AD,BC=DC,E、F 分别是DC、BC的中点,求证:AE=AF。
证:连接AC DE=BF∵在△ ADC和△ABC中∴△ADE≌△ ABF(SAS)AD=AB ∴AE=AFDC=BCAC=AC∴△ADC≌△ ABC(SSS)D∴∠B=∠ DE∵E、F 分别是DC、BC的中点AC又∵ BC=DCF∴DE=BFB∵在△ ADE和△ABF中AD=AB∠D=∠B8. 如图,在四边形ABCD中, E是AC上的一点,∠1=∠2,∠3=∠4,求证 : ∠5=∠6.证明:∵在△ADC和△ ABC中∴△DEC≌△ BEC(SAS)∠BAC=∠DAC ∴∠DEC=∠BEC∠BCA=∠DCAAC=AC∴△ADC≌△ ABC(AAS)D∵AB=AD,BC=CD在△ DEC与△ BEC中A12E5634CCE=CEB∠BCA=∠DCABC=CD9. 如图,在△ABC中, AD为∠ BAC的平分线,DE⊥AB于 E,DF⊥AC于 F。
全等三角形判定的三种类型已知一边一角型一次全等型1.已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC.2.如图,在△ABC中,D是BC边上的一点,连接AD,过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F,且BE=CF.求证:AD是△ABC的中线.两次全等型3.如图,已知,在四边形ABCD中,E是AC上一点,∠DAC=∠BAC,∠DCA=∠BCA.求证:∠DEC =∠BEC.4.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD于F交BC于E.(1)求证:∠ABD=∠CAE.(2)求证:∠ADB=∠CDE.(3)直接写出BD、AE、ED之间满足的数量关系.已知两边型一次全等型5.如图,点B,F,C,E在直线l上(点F,点C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.两次全等型6.如图所示,AB=CB,AD=CD,E是BD上任意一点,求证:AE=CE.7.如图:已知AE交BD于点C,∠DAC=∠EBC=∠BAC,AB=AC.试说明:DC与BE有怎样的数量关系.已知两角型一次全等型8.如图,已知∠BDC=∠CEB=90°,BE、CD交于点O,且AO平分∠BAC,求证:OB=OC.三角形中的四种常见说理类型说明相等关系1.如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF,求证:DE=DF.说明位置关系说明平行关系2.已知△ABC为等边三角形,点P在AB上,以CP为边长作等边三角形△PCE.求证:AE∥BC.说明垂直关系3.如图,△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,且BD=CF,BE=CD,G是EF的中点,求证:DG⊥EF.说明倍分关系说明角的倍分关系4.如图,△ABC中,AB=AC,BD⊥AC于D.猜想:∠DBC与∠BAC之间的数量关系,并予以证明.说明线段的倍分关系5.如图,△ABC中,AB=AC,AD和BE是高,它们相交于H,且AE=BE.(1)求∠C的度数.(2)求证:AH=2BD.说明和、差关系6.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,求证:AB+BD=AC.线段垂直平分线与角平分线的应用类型典例例1.已知:如图,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分线与AB边的垂直平分线相交于点D,DE⊥AC,DF⊥BC,垂足分别是E、F.(1)求证:AE=BF;(2)求线段DG的长.利用线段垂直平分线的性质求线段的长1.如图,已知AB比AC长3cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.利用线段垂直平分线的性质求角的度数2.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于D,连接AD.(1)若△ADC的周长为16,AB=12,求△ABC的周长;(2)若AD将∠CAB分成两个角,且∠CAD:∠DAB=2:5,求∠ADC的度数.利用线段垂直平分线的性质解决实际问题3.某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等.请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?利用线段垂直平分线的性质说明线段的数量关系4.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P放在射线OM上,两直角边分别与OA,OB交于点C,D.(1)证明:PC=PD.(2)若OP=4,求OC+OD的长度.利用线段垂直平分线的性质说明线段的位置关系5.如图所示,AD为△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,EF交AD于点M,求证:AM ⊥EF.全等三角形判定的三种类型1.证明:如右图所示,∵BD=DC,∴∠3=∠4,又∵∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC=∠ACB,∴△ABC是等腰三角形,∴AB=AC,在△ABD和△ACD中,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD,∴AD平分∠BAC.2.证明:∵BE⊥AD,CF⊥AD,∴∠BED=∠F=90°,在△BED和△CFD中,,∴△BED≌△CFD,∴BD=CD,∴AD是△ABC的中线.3.证明:在△ACD和△ACB中,,∴△ACD≌△ACB,(ASA)∴BC=CD,在△DCE和△BCE中,,∴△DCE≌△BCE(ASA),∴∠DEC=∠BEC.4.(1)证明:∵AE⊥BD,∴∠AFB=∠BAC=90°,∴∠ABD+∠BAF=90°,∠BAF+∠CAE=90°,∴∠ABD=∠CAE.(2)证明:过C作CM⊥AC,交AE的延长线于M,则∠ACM=90°=∠BAC,∴CM∥AB,∴∠MCE=∠ABC=∠ACB,∵∠BAF=∠ADB,∠ADB+∠F AD=90°,∠ABD+∠BAF=90°,∴∠ABD=∠CAM,在△ABD和△CAM中,,∴△ABD≌△CAM(ASA),∴∠ADB=∠M,AD=CM,BD=AM,∵D为AC中点,∴AD=DC=CM,在△CDE和△CME中,,∴△CDE≌△CME(SAS),∴∠M=∠CDE,∴∠ADB=∠CDE.(3)解:结论:BD=AE+DE.理由:∵△CDE≌△CME,∴ME=DE,∵AM=AE+ME=AE+DE,∵BD=AM,∴BD=AE+DE.5.(1)证明:∵BF=CE,∴BF+FC=FC+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)解:结论:AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴AB∥DE,AC∥DF.6.证明:在△ABD与△CBD中,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,在△ABE与△CBE中,△ABE≌△CBE(SAS),∴AE=CE.7.解:DC=BE,∵∠EBC=∠BAC,∠ACD=∠BAC+∠ABC,∠ABE=∠EBC+∠ABC,∴∠ACD=∠ABE,在△ACD和△ABE中,,∴△ACD≌△ABE(ASA),∴DC=BE.8.证明:∵∠BDC=∠CEB=90°,∴CD⊥AB,BE⊥AC,∵AO平分∠BAC,∴OD=OE,在△BDO和△CEO中∴△BDO≌△CEO(ASA),∴OB=OC.三角形中的四种常见说理类型1.证明:连接AD,∵AB=AC,D是BC的中点,∴∠EAD=∠F AD,在△AED和△AFD中,,∴△AED≌△AFD(SAS),∴DE=DF.2、证明:∵△ABC与△PCE为等边三角形,∴AC=BC,EC=PC,∠BCA=∠PCE=60°,∴∠BCP=∠ACE,在△BCP和△ACE中,,∴△CBP≌△CAE(SAS),∴∠CAE=∠B=60゜=∠ACB,∴AE∥BC.3.证明:连ED,DF,∵AB=AC,∴∠B=∠C,在△BED和△CDF中,,∴△BDE≌△CFD(SAS),∴DE=DF,∵G是EF的中点,∴DG⊥EF.4.解:∠DBC=∠BAC.设∠C=β,∵AB=AC,∴∠ABC=∠C=β,∴∠BAC=180°﹣2β,∠BAD=∠ABC+∠C=2β,∵BD⊥AC,∴∠ABD=90°﹣2β,∴∠DBC=90°﹣β,∴∠DBC=∠BAC.5.(1)解:∵AE=BE,BE⊥AC,∴∠BAE=45°,又∵AB=AC,∴∠C=(180°﹣∠BAE)=(180°﹣45°)=67.5°;(2)证明:∵AB=AC,AD⊥BC,∴BC=2BD,∠1+∠C=90°,∵BE⊥AC,∴∠2+∠C=90°,∴∠1=∠2,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC,∴AH=2BD.6.证明:如图,在AC上截取AE=AB,∵AD平分∠BAC,∴∠CAD=∠BAD,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴DE=BD,∠AED=∠ABC,∵∠AED=∠C+∠CDE,∠ABC=2∠C,∴∠CDE=∠C,∴CE=DE,∵AE+CE=AC,∴AB+BD=AC.线段垂直平分线与角平分线的应用类型例1.(1)证明:连接AD、BD,∵AD是∠BCA的平分线,DE⊥AC,DF⊥BC,∴DE=DF,∵DG是AB边的垂直平分线,∴AD=DB,在Rt△AED和Rt△DFB中,,∴Rt△AED≌Rt△BFD(HL),∴AE=BF;(2)由(1)得:CE=CF==7,∴AE=EC﹣AC=1,∵∠ECD=∠EDC=45°,∴DE=CE=7,由题意可得:AG=BG=5,∴AD2=AE2+DE2=50,∴DG2=AD2﹣AG2=25,∴DG=5.1.解:∵DE是BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+AD+CD=AC+BD+AD=AC+AB,由题意得,,解得.∴AB和AC的长分别为8.5cm,5.5cm.2.解:(1)∵DE是AB的垂直平分线,∴AD=BD,又∵△ADC的周长为16,∴AD+CD+AC=16,即BD+CD+AC=BC+AC=16,又AB=12,∴AB+BC+AC=16+12=28,则△ABC的周长为28;(2)∵AD=BD,∴∠BAD=∠ABD,∵∠CAD:∠DAB=2:5,设一份为x,即∠CAD=2x,∠DAB=∠ABD=5x,又∠C=90°,∴∠ABD+∠BAC=90°,即2x+5x+5x=90°,解得:x=7.5°,∵∠ADC为△ABD的外角,∴∠ADC=∠DAB+∠ABD=5x+5x=10x=75°.3.解:如图,这所中学建在P点位置(点P为△ABC的外心).连结AB、BC、AC,作AB和BC的垂直平分线,两垂直平分线相交于点P,则点P到点A、B、C的距离相等.4.证明:(1)如图,过点P作PE⊥OA于点E,PF⊥OB于点F,∴∠PEC=∠PFD=90°.∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°.而∠PDO+∠PDF=180°,∴∠PCE=∠PDF在△PCE和△PDF中∴△PCE≌△PDF(AAS)∴PC=PD;(2)∵∠AOB=90°,OM平分∠AOB,∴△POE与△POF为等腰直角三角形,∴OE=PE=PF=OF,∵OP=4,∴OE=2,由(1)知△PCE≌△PDF ∴CE=DF ∴OC+OD=OE+OF=2OE=4.5.证明:∵DE⊥AC于点E,DF⊥AB于点F,∴∠AED=∠AFD=90°,∵AD为三角形ABC的角平分线,∴∠EAD=∠F AD,而AD=AD,∴△AED≌△AFD∴ED=DF,AE=AF∴△AEF为等腰三角形,AM为∠BAC的平分线∴AM是△AEF的高,即AM⊥EF.。
七年级下册数学几何证明题
七年级下册数学几何证明题
一、直线平分角
在平面几何中,对于给定的角,如果有一条直线能够将这个角划分成
两个相等的小角,我们称这条直线是该角的平分线。
接下来我们将证
明两个定理和一个引理。
定理1:如果直线ab平分角BAC,则直线ab与弧BCB′的切点C相同。
引理:如果点D在圆弧BCB′上,且点D在角BAC的平分线ab上,则BD=DC。
定理2:如果点E在角BAC的平分线ab上,且BE=CE,则直线ab平
分角BAC。
证明:
首先,我们先证明引理。
根据圆的性质,半径与弦垂直且平分弦。
又因为BD=DC,所以BD和DC分别是圆弧BCB′的半径,从而BD⊥BC,DC⊥BC。
又因为点D在角BAC的平分线ab上,所以BD⊥BA,DC⊥CA。
综上所述,BD⊥BA,BD⊥BC,BD是角BAC的平分线上任意一点至
圆弧BCB′的切线。
同理,DC是角BAC的平分线上任意一点至圆弧BCB′的切线。
这样,我们就证明了引理。
接下来,我们证明定理1。
假设直线ab平分角BAC,且ab与弧BCB′的切点为C′。
根据引理,如果D是角BAC的平分线上的一点,且D在圆弧BCB′上,则BD=DC。
所以,当切点C与切点C′不同时,就会导致BD≠DC,与引理矛盾。
所以,点C和点C′必须是同一个点,即直线ab与弧BCB′的切点C唯一。
综上所述,我们证明了定理1。
最后,我们证明定理2。
假设点E在角BAC的平分线ab上,且BE=CE。
根据定理1,直线ab与弧BCB′的切点C唯一。
假设BE和CE分别与圆弧BCB′交于点F和G。
根据弧与切线的性质,∠BCF≤90°,∠BCG≤90°。
又因为BE=CE,所以∠BEF=∠CEG。
综上所述,∠BCF=∠BEF=∠BAC,∠BCG=∠CEG=∠BAC。
所以,直线ab平分角BAC。
综上所述,我们证明了定理2。
二、垂直平分线
在平面几何中,对于给定的线段,如果有一条直线能够将这个线段划分成两个相等的小线段,并且与这个线段垂直相交,我们称这条直线是该线段的垂直平分线。
接下来我们将证明一个定理。
定理:如果直线l垂直平分线段AB,且直线l与线段AB的交点为C,则AC=CB。
证明:
假设直线l垂直平分线段AB,且直线l与线段AB的交点为C。
因为直线l垂直平分线段AB,所以AC=CB。
综上所述,我们证明了定理。
通过以上的证明题,我们学习了直线平分角和垂直平分线的性质与定理。
这些性质与定理为我们解题提供了重要的思路和方法,帮助我们更好地理解几何证明题,并提高我们的证明能力。
在学习数学的过程中,我们需要多多练习,并灵活运用所学知识,才能更好地掌握几何证明的技巧和方法。