分枝定界法
- 格式:ppt
- 大小:114.00 KB
- 文档页数:11
分支定界法分支定界法,也称为分界定义法,是为了确定并将客观事物归类的一种逻辑基础规范。
它是一组文本规范,用于描述和分类客观事物,以及它们之间的关系。
它分析客观事物的共性,从这些共性,弄清楚客观事物以及它们之间的关系,形成分支定义法。
分支定界法最初创造于18世纪的德国,由卡尔文贝因茨(Karl von Bennizs)提出,他的著作 Theorie der classifikation(分类理论)发表于1790年。
他的主要思想是:通过对客观事物的共性的分析,将客观事物归类,并形成一系列的分类方法。
分支定界法一般包括三个层次:主类,亚类,次类。
主要是将客观事物按照一定的共性划分到不同的类别中,然后在每个主类中进行更详细的分析,形成子类,从而将客观事物更细致地分类。
分支定界法有很多优点。
首先,它可以更好地适应新出现的客观事物,以及客观事物可能出现的新情况。
这是因为,分支定界法有着一系列的分类方法,不仅具有某种共性,而且有着不同的子类,这些子类可以更好地形成客观事物之间的关系,并且有利于新类别的形成。
此外,分支定界法还可以帮助人们进行判断。
分界定义法是一种可以把客观事物细致分类的方法,从而可以更好地去判断两个客观事物之间是否有关系,或者相似度如何,从而帮助我们做出判断。
然而,分支定界法也有一定的局限性。
有时,分支定界法所指定的客观事物重叠,或者具有相同的共性,这会降低分类的准确性。
此外,它也会忽略一些客观事物的细微差别,这可能会影响分类的结果。
总之,分支定界法是一种有效的客观事物归类方法。
它可以更好地划分客观事物的共性,也可以更直观地反映客观事物之间的关系,从而有效地把客观事物归类。
此外,它还可以帮助我们做出判断,但它也有一定的局限性,必须在不同的客观事物之间上尽量保持准确性和细微差别。
分枝界限法一、 算法的基本思想1. 基本思想分枝定界法是一个用途十分广泛的算法,运用这种算法的技巧性很强,不同类型的问题解法也各不相同。
分支定界法的基本思想是对有约束条件的最优化问题的所有可行解(数目有限)空间进行搜索。
该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集(称为分支),并为每个子集内的解的值计算一个下界或上界(称为定界)。
在每次分支后,对凡是界限超出已知可行解值那些子集不再做进一步分支。
这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。
这一过程一直进行到找出可行解为止,该可行解的值不大于任何子集的界限。
因此这种算法一般可以求得最优解。
将问题分枝为子问题并对这些子问题定界的步骤称为分枝定界法。
2. 分枝节点的选择对搜索树上的某些点必须作出分枝决策,即凡是界限小于迄今为止所有可行解最小下界的任何子集(节点),都有可能作为分枝的选择对象(对求最小值问题而言)。
怎样选择搜索树上的节点作为下次分枝的节点呢?有两个原则:a) 从最小下界分枝(队列式FIFO 分枝限界法):每次算完界限后,把搜索树上当前所有叶节点的界限进行比较。
找出限界最小的节点,此结点即为下次分枝的结点。
优点:检查子问题较少,能较快地求得最佳解缺点:要存储很多叶节点的界限及对应的耗费矩阵,花费很多内存空间 b) 从最新产生的最小下界分枝(优先队列式分枝限界法)从最新产生的各子集中选择具有最小的下界的结点进行分枝。
缺点:节省了空间缺点:需要较多的分枝运算,耗费的时间较多这两个原则更进一步说明了,在算法设计中的时空转换概念。
分枝定界法已经成功地应用于求解整数规划问题、生产进度表问题、货郎担问题、选址问题、背包问题以及可行解的数目为有限的许多其它问题。
对于不同的问题,分枝与界限的步骤和内容可能不同,但基本原理是一样的。
二、 算法实现过程(通过推销员问题来说明分支定界法的思想)1.型推销员问题设有5个城v5432,,,,v v v v ,从某一城市出发,遍历各城市一次且仅一次,最后返回原地,求最短路径。
分枝定界 python分枝定界法简介分枝定界法是一种求解组合优化问题的算法,其核心思想是将问题分解成一系列子问题,并对每个子问题使用上界和下界进行限制。
这种分而治之的方法允许算法高效地搜索解决方案空间,并最终确定最优解。
算法步骤1. 初始化:从问题的初始状态开始,并计算该状态的成本下界。
2. 分支:将当前状态分解成多个子状态,每个子状态代表可行的解决方案。
3. 定界:对于每个子状态,计算其成本上界和下界。
4. 剪枝:如果一个子状态的成本上界低于当前最佳解的成本下界,则可以将其剪枝,因为它不可能产生更优解。
5. 递归:对于未被剪枝的子状态,递归地应用分枝定界法。
6. 回溯:如果所有子状态都被剪枝或探索完毕,则回溯到父状态并继续搜索。
优势分枝定界法具有以下优势:保证最优解:算法保证找到最优解,只要问题是整数规划问题。
高效:通过使用上界和下界进行剪枝,算法避免了对整个解决方案空间的穷举搜索。
适用于各种问题:分枝定界法可以用于求解各种组合优化问题,包括旅行商问题、背包问题和装箱问题。
劣势分枝定界法也存在一些劣势:计算量大:对于大规模问题,算法可能需要大量的计算时间。
存储需求:算法需要存储大量信息,包括子问题、上界和下界。
不易并行化:分枝定界法通常不容易并行化,这限制了其在大规模问题上的可扩展性。
改进为了提高分枝定界法的效率,已经提出了多种改进技术:有效的启发式:使用启发式方法来生成良好的初始解,可以减少搜索空间。
松弛:使用线性规划或其他松弛技术来计算更紧的下界。
基于约束的传播:传播约束之间的逻辑关系,以减少剪枝所需的计算。
可变邻域搜索:在当前解周围搜索,以逃离局部最优解。
总体而言,分枝定界法是一种功能强大的算法,可用于求解各种组合优化问题。
通过利用上界和下界进行剪枝,该算法可以高效地搜索解决方案空间,并保证找到最优解。
然而,对于大规模问题,计算量和存储需求可能成为限制因素。
改进技术有助于克服这些限制,并提高算法的效率。
分枝定界法的步骤
分枝定界法是一种求解组合优化问题的方法,其步骤如下:
1. 确定问题的目标函数以及约束条件:首先需要明确问题的目标函数是什么,以及有哪些约束条件需要满足。
2. 构造初始问题:根据问题的要求,构造一个初始问题,并计算初始问题的目标函数值。
3. 分枝:在初始问题的基础上,对其中的某个变量(或几个变量)进行分枝操作。
将问题划分为多个子问题,每个子问题代表了某个变量取值的一个分支。
4. 计算下界:对于每个子问题,计算出一个下界值。
下界值是一个目标函数值的估计,它不会高于目标函数的最小值。
5. 判断分支:根据计算出的下界值,选择一个最有希望的子问题进行分支,即选择一个下界值最小的子问题。
6. 回溯:从步骤5选择的分支开始,回溯到父问题,跳过部分分支。
7. 重复:重复步骤3到步骤6,直到找到一个满足问题要求的解,或者找到一个可行解的上界值。
8. 定解:通过进一步确定上界值,并进行剪枝操作,选择最优解。
9. 输出:输出最优解及其对应的目标函数值。
需要注意的是,分枝定界法的关键在于如何计算下界值和进行剪枝操作,以减少问题的搜索空间。
常用的技巧有线性规划松弛、最小生成树、割集等。