1恒定电流.
- 格式:ppt
- 大小:695.00 KB
- 文档页数:15
物理选修3-1恒定电流公式归纳学生在学习物理选修教材中的恒定电流内容时,要灵活应用所学解决问题,才能真正掌握物理公式,下面是店铺给大家带来的物理选修3-1恒定电流公式归纳,希望对你有帮助。
物理选修3-1恒定电流公式1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U 外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R 成反比)电阻关系R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、短接欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
恒定电流电流形成电流的条件电荷的定向移动形成电流.这就是说,要形成电流,必须有能够自由移动的电荷——自由电荷.金属中的自由电子,电解液(酸、碱、盐的水溶液)中的正、负离子,都是自由电荷.在什么条件下,自由电荷才能发生定向移动呢?当导体内没有电场时,导体中大量的自由电荷就像气体中的分子一样,不停地做无规则的热运动.自由电荷向各个方向运动的机会都相等,因而对导体的任一横截面来说,在一段时间内从两侧穿过这个截面的自由电荷是相等的.从宏观角度来看,导体中的自由电荷没有定向移动,所以没有电流.电源正极的电势高,负极的电势低,两极之间有电压.把导体的两端分别接到电源的两极上,导体中有了电场,两端也有了电压,于是导体中的自由电荷在电场力的作用下发生定向移动,形成电流.所以,导体中产生电流的条件是:导体两端存在电压.干电池、蓄电池、发电机等都是电源,它们的作用是保持导体两端的电压,使导体中有持续的电流.电流的方向导体中的电流可以是正电荷的定向移动,也可以是负电荷的定向移动,还可以是正、负电荷沿相反方向的定向移动.习惯上规定正电荷的定向移动方向为电流的方向.在金属导体中.电流的方向与自由电子定向移动的方向相反.在电解液中,电流的方向与正离子定向移动的方向相同,与负离子定向移动的方向相反.正电荷在电场力作用下从电势高处向电势低处运动,所以电流的方向是从电势高的一端流向电势低的一端,即在电源外部的电路中,电流的方向是从电源的正极流向负极.电流的强弱电流有强弱的不同,电流的强弱用电流这个物理量来表示.通过导体横截面的电荷量q跟通过这些电荷量所用的时间t的比值称为电流.用I表示电流,则有在国际单位制中,电流的单位是安培,简称安,符号是A.如果在1s内通过导体横截面的电荷量是1C,导体中的电流就是1A.电流的常用单位还有毫安(mA)和微安(μA):1mA=10-3A1μA=10-6A.图示AD表示粗细均匀的一段导体,两端加以一定的电压.设导体的横截面积为S,导体每单位体积内的自由电荷数为n,每个自由电荷所带的电荷量为q,自由电荷沿导体定向移动的速率为v,则导体中的电流I的微观表达式:I=nqvS.方向不随时间而改变的电流叫做直流.方向和强弱都不随时间而改变的电流叫做恒定电流.通常的直流电常常是指恒定电流.*自由电子定向移动的速率常温下金属中自由电子热运动的平均速率约为105 m/s.可见,在金属导体中,自由电子只不过在速率巨大的无规则热运动上附加了一个速率很小的定向移动.既然自由电子的定向移动的速率很小,为什么合上开关,电流会立即传到远处,使那里的用电器开始工作呢?这是因为“电流的传播速率”不是自由电子的定向移动速率,而是电场的传播速率.电场的传播速率是很大的,它等于光速( 3.0×108 m/s).金属导线中各处都有自由电子,电路一旦接通,导线中便以 3.0×108 m/s的速率在各处迅速地建立起电场,在这个电场的作用下,导线各处的自由电子几乎同时开始做定向移动,整个电路中几乎同时形成了电流.有人认为,电路接通后,自由电子从电源出发,以定向移动的速率在金属导线中传播,等到它们传到用电器,那里才有电流.这种看法是不正确的.欧姆定律欧姆定律电阻既然需要在导体的两端加上电压,导体中才能有电流通过,那么,导体中的电流跟导体两端的电压有什么关系呢?德国物理学家欧姆(1787-1854)通过实验研究得出结论:导体中的电流I跟导体两端的电压U成正比,即I∝U.通常把这个关系写成上两式中的R是电压与电流的比值.实验表明,对同一个导体来说,不管电压和电流的大小怎样变化,比值R都是恒定的.对不同的导体来说,R的数值一般是不同的.这表明,R是一个跟导体本身有关的量.导体的R值越大,在同一电压下通过的电流越小.可见,比值R反映导体对电流的阻碍作用,叫做导体的电阻.体两端的电压U成正比,跟导体的电阻R成反比.这就是我们在初中学过的欧姆定律.电阻的单位是欧姆,简称欧,符号是Ω.它是根据欧姆定律规定的:如果在某段导体的两端加上1V的电压,通过的电流是1A,那么,这段导体的电阻就是1Ω.所以,1Ω=1V/A.常用的电阻单位还有千欧(k Ω)和兆欧(MΩ):1kΩ=103Ω.1MΩ=106Ω.导体的伏安特性导体中电流I和电压U的关系可以用图线来表示.用纵轴表示电流I,用横轴表示电压U,画出的I-U图线叫做导体的伏安特性曲线.在金属导体中,电流跟电压成正比,伏安特性曲线是通过坐标原点的直线.具有这种伏安特性的电学元件叫做线性元件.欧姆定律是在金属导体的基础上总结出来的,对其他导体是否适用,还需要经过实验的检验.实验表明,除金属外,欧姆定律对电解液也适用,但对气态导体(如日光灯管中的气体)和某些导电器件(如晶体管)并不适用.对欧姆定律不适用的导体和器件,电流和电压不成正比,伏安特性曲线不是直线.这种电学元件叫做非线性元件.电阻定律电阻率电阻定律电阻率导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度和横截面积.现在用实验定量地研究这个问题.实验表明,导体的电阻R跟它的长度L成正比,跟它的横截面积S成反比.这就是电阻定律.写成公式,则有式中的比例常量ρ跟导体的材料有关,是一个反映材料导电性能的物理量,称为材料的电阻率.横截面积和长度都相同的不同材料的导体,ρ值越大,电阻越大.当L=1m,S=1m2时,ρ的数值等于R值.可见,材料的电阻率在数值上等于这种材料制成的长为1m、横截面积为1m2的导体的电阻.式中R的单位是Ω,L的单位是m,S的单位是m2,所以ρ的单位是Ω·m(欧姆米,简称欧米).几种导体材料在20℃时的电阻率从上表可以看出,纯金属的电阻率小,合金的电阻率大.连接电路用的导线一般用电阻率小的铝或铜来制作,电炉、电阻器的电阻丝一般用电阻率大的合金来制作.各种材料的电阻率都随温度而变化.金属的电阻率随温度的升高而增大.电阻温度计就是利用金属的电阻随温度变化而制成的.常用的电阻温度计是利用金属铂做的.已知铂丝的电阻随温度的变化情况,测出铂丝的电阻就可以知道温度.有些合金如锰铜合金和镍铜合金的电阻率几乎可不受温度变化的影响,常用来制作标准电阻.半导体我们知道,容易导电的物体称为导体,不容易导电的物体称为绝缘体.其实,导体和绝缘体之间没有绝对的界限.绝缘体并非绝对不导电,只是绝缘体的电阻率很大.在室温下,金属导体的电阻率一般约为10-8Ω·m~10-6Ω·m,绝缘体的电阻率一般约为108Ω·m~1018Ω·m.长为1m、横截面积为1×10-4m2的一段绝缘体,两端加以1V电压,通过的电流约为10-14A~10-4A.可见电流是多么微小了.有些材料,它们的导电性能介于导体和绝缘体之间,而且电阻不随温度的增加而增加,反随温度的增加而减小,这种材料称为半导体,半导体的电阻率约为10-5Ω·m~106Ω·m.锗、硅、砷化镓、锑化铟等都是半导体材料.半导体的导电性能可以由外界条件所控制,如改变半导体的温度,使半导体受到光照,在半导体中加入其他微量杂质等,都可以使半导体的导电性能成百万倍地发生变化.这种性能是导体和绝缘体所没有的正因为半导体具备这种特性,人们用半导体制成了热敏电阻、光敏电阻、晶体管等各种电子元件,并且发展成为集成电路.把晶体管以及电阻、电容等元件,同时制作在很小的一块半导体晶片上,并且把它们按照电子线路的要求连接起来,使之成为具有一定功能的电路,这就是集成电路.在超大规模集成电路中,在面积比小拇指的指甲还小的一块半导体晶片上可以集成上百万个电子元件.集成电路的制成开辟了微电子技术的时代.集成电路的制成,微电子技术的发展,使电子计算机得以更新换代,由20世纪40年代约为30吨重的第一台庞大的电子计算机发展成为今天日益普及的个人计算机.个人计算机中的处理器(包括运算器和控制器)、存储器都是由大规模集成电路制成的.半导体,它在现代科学技术中发挥了重要的作用.超导体金属的电阻率随温度的降低而减小.人们发现,有些物质当温度降低到绝对零度附近时,它们的电阻率会突然减小到无法测量的程度,可以认为它们的电阻率突然变为零.这种现象叫做超导现象,能够发生超导现象的物质称为超导体.材料由正常状态转变为超导状态的温度,叫做超导材料的转变温度T c.例如铅的转变温度T c=7.0K,水银的转变温度T c=4.2K,铝的转变温度T c=1.2K,镉的转变温度T c=0.6K.超导体的电阻率几乎为零,如果用超导体材料制成一个闭合线圈,在这个线圈里一旦激发出电流,不需要电源,电流就可以持续几十天之久而不减小,并且发热的功率很小.在远距离输电中,在很长的输电线上白白地消耗掉大量的电能,如果使用超导输电线,将可避免电能的大量消耗.在大型的电磁铁和电机中,通过线圈的电流很强,损耗的电能很多.如果用超导材料做成线圈,耗损的功率大大降低,则可以制成强大功率的超导电磁铁和超导电机.各种电子器件如果能实现超导化.将会大大提高它们的性能.电子计算机实现超导化,将使个人计算机具有超级计算机的性能.超导体的应用具有十分诱人的前景.超导材料的转变温度很低,要维持这样低的温度,在技术上是非常困难的.几十年来,科学家们积极进行高温超导的研究.我国的研究工作走在世界的前列,在1989年,我国科学家发现了转变温度T c=130K的超导材料.目前在世界范围内掀起了高温超导研究的热潮,期望得到在室温下就能工作的超导材料.以便使它能有广泛的实际应用.电功和电率电功和电率电流通过一段电路时,自由电荷在电场力的作用下发生定向移动,电场力对自由电荷做功.设一段电路两端的电压为U,通过的电流为I.在时间t内将电荷q由这段电路的一端移动到另一端,电场力所做的功W=qU,而q=It,所以W=UIt.(1)在一段电路中电场力所做的功,也就是通常说的电流所做的功,简称电功.单位时间内电流所做的功叫做电功率.用P表示电功率,则有电压U、电流I和通电时间t的单位分别是V、A和s,由(1)式和(2)式求出的电功W和电功率P 的单位分别是J和W.电功率和热功率电场力对电荷做功的过程,是电能转化为其他形式能量的过程.在真空中,正电荷由电势高的某处移向电势低的另一处时,电场力对电荷做正功,电荷做加速运动,减少的电势能转化为电荷的动能.在电阻元件中电能的转化情况与真空中有所不同.在金属导体中,除了自由电子,还有金属正离子.在电场力的作用下,做加速定向移动的自由电子要频繁地与离子发生碰撞,并把定向移动的动能传给离子,使离子的热运动加剧.平均起来看,可以认为大量自由电子以某一不变的速率做定向移动.可见,在电阻元件中,通过自由电子与离子的碰撞,电能完全转化成内能.如果在一段电路中只有电阻元件,在这段电路中电场力所做的功W等于电流通过这段电路时发出的热量Q,即Q=W=UIt.由欧姆定律U=IR,热量Q的表达式可写成Q=I2Rt.(3)这个关系最初是焦耳用实验直接得到的,这就是我们在初中学过的焦耳定律.单位时间内发热的功率P=Q/t通常称为热功率.由(3)式可得热功率为P=I2R.(4)(1)式和(3)式,或者(2)式和(4)式,意义是不同的.(2)式表示输入给一段电路的全部电功率,或者说在这段电路上消耗的全部电功率.(4)式是这段电路上因发热而消耗的功率.在电路中只有电阻元件时,二者是相等的.当电路中有电动机、电解槽等用电器时,电能要分别转化成机械能、化学能等,只有一部分转化成内能,这时电功率大于热功率,二者并不相等.例如一台电动机,额定电压是220V,线圈电阻是0.4Ω,在额定电压下通过的电流是50A.在额定电压下输入给电动机的电功率P=UI=11kW,热功率P=I2R=1kW,大部分电能(功率为10kW)转化成机械能.串联电路和并联电路串联电路把若干个电阻或电学元件一个接一个地连接起来,这种连接方式叫做串联.在串联电路中,电流只能沿着一条通路流过各个电阻,所以串联电路中各处的电流相同.电流通过串联电路的各个电阻时,沿电流方向每通过一个电阻,电势就要降低一定的数值,因此电阻两端的电压又叫做电势降.串联电路两端的电压等于各个电阻两端的电压之和.设串联电路有n个电阻,则有U=U1+U2+……+U n.(1)串联电路中的n个电阻可以设想用这样一个电阻R来代替,当把电阻R连入电路中时,在相同的电压下,通过电路的电流跟原来的相同,电阻R叫做串联电路的等效电阻或总电阻.根据欧姆定律可得,上式表示,串联电路的总电阻等于各个电阻之和.由U1=IR1,U2=IR2……U n=IR n可得上式表示,串联电路中电压的分配与电阻成正比.串联电路中的每个电阻都分担了一部分电压,阻值越大的电阻,分担的电压越大.各个电阻上消耗的功率分别为P1=I2R1,P2=I2R2……P n=I2R n.由此可得上式表示,串联电路中功率的分配与电阻成正比.在串联电路中,阻值越大的电阻,消耗的功率越大.【例题1】有一盏弧光灯,额定电压U1=40V,正常工作时通过的电流I=5.0A.应该怎样把它连入U =220V的家庭电路中,它才能正常工作?分析解答并联电路把若干个电阻或电学元件并列地连接起来,这种连接方式叫做并联.并联电路的各个支路有两个公共接点A和B,支路中每个电阻两端的电压都等于A、B两点间的电压,所以并联电路各个支路两端的电压相同.实验表明,流入A点的电流I等于从该点流出的电流I1、I2、I3之和,即并联电路干路中的电流等于各个支路中的电流之和.设并联电路有n个支路,则有I=I1+I2+……+I n.(1)并联的n个电阻也可以设想用一个电阻R来代替,电阻R叫做并联电路的等效电阻或总电阻.根据欧姆定律可得,上式表示,并联电路总电阻的倒数等于各个电阻倒数之和.由并联电路各个支路两端的电压U相同,以及欧姆定律可得上式表示,并联电路各个支路中电流的分配与电阻成反比.支路中的电阻越小,通过的电流越大.各支路电阻上消耗的功率分别为P1=U2/R1,P2=U2/R2……P n=U2/R n,由此可得P1R1=P2R2=……=P n R n=U2.(4′)上式表示,并联电路中功率的分配与电阻成反比.由这个功率分配关系知道,并联在家庭电路中的额定电压相同(220V)的灯泡,额定功率大的,灯丝电阻小.【例题2】有一个电阻元件R1=100Ω,允许通过的最大电流为5mA.在图15-17所示的并联电路中,已知干路中的电流I=1A,并联电阻R2应为多大?分析解答电压表和电流表电压表和电流表常用的电压表和电流表都是由小量程的电流表G(表头)改装而成的.常用的表头主要由永磁铁和放入永磁铁磁场中的可转动的线圈组成.当线圈中有电流通过时,线圈在磁场力的作用下带着指针一起偏转.电流越大,指针偏转的角度越大,由指针在标有电流值的刻度盘上所指的位置就可以读出通过表头的电流值.由欧姆定律知道,通过表头的电流跟加在表头两端的电压成正比.如果在刻度盘上标出电压值,由指针所指的位置就可以读出加在表头两端的电压值.电流表G的电阻R g通常叫做电流表的内阻.指针偏转到最大刻度时的电流I g叫做满偏电流.电流表G 通过满偏电流时,加在它两端的电压U g叫做满偏电压.由欧姆定律可知,U g=I g R g.电流表G的满偏电压和满偏电流一般都比较小,测量较大电压时要串联分压电阻把电流表改装成电压表,测量较大电流时要并联分流电阻把小量程的电流表改装成大量程的电流表.【例题1】有一电流表G,内阻R g=10Ω,满偏电流I g=3mA.把它改装成量程为3V的电压表,要串联一个多大的分压电阻?分析解答【例题2】有一电流表G,内阻R g=25Ω,满偏电流I g=3mA.把它改装成量程为0.6A的电流表,要并联一个多大的分流电阻?分析解答滑动变阻器初中学过滑动变阻器,滑动变阻器有两种用途,一种是限流,移动滑片P可以改变连入电路中的电阻值,从而可以控制负载R中的电流.另一种是分压.移动滑片P可以改变加在负载R上的电压.【例题】在图中所示的电路中,U=6V,变阻器的电阻R′=50Ω,负载电阻R=100Ω.(1)滑片P移到A端时,R上的电压是多大?滑片P移到B端时,R上的电压是多大?滑片P在AB的中点时,R上的电压是多大?(2)滑片从A端向B端移动时,R上的电压怎样变化?分析解答电动势闭合电路欧姆定律电动势我们知道,从能量转化的观点来看,电源是把其他形式的能量转化为电能的装置.干电池、蓄电池把化学能转化为电能,发电机把机械能转化为电能.把电源连接到电路中,电路中就有了电流,由于电流做功,由电源提供的电能在电路中转化为其他形式的能量.不同类型的电源把其他形式的能量转化为电能的本领是不同的.我们用一个叫做电动势的物理量来表示电源的这种特性.在电路中通过单位电荷时电源所提供的电能.在数值上等于电源的电动势,电动势通常用E来表示.设电路中通过的电荷量为q,电源所提供的电能为W,则有,复习一下电势和电势差的定义及其单位,就会知道,电动势的单位也是伏特.我们在初中所说的电源的电压,其实指的是电源的电动势.干电池的电动势为 1.5V,这表示在干电池的电路中每通过1C的电荷量,干电池提供的电能为 1.5J.铅蓄电池的电动势为 2.0V,这表示在铅蓄电池的电路中每通过1C的电荷量,铅蓄电池提供的电能为 2.0J.闭合电路欧姆定律把电源接入电路,闭合电路中就有了电流.闭合电路可以看作是由两部分组成的.一部分是电源外部的电路,叫做外电路.外电路的电阻通常称为外电阻.另一部分是电源内部的电路,叫做内电路.电流通过内电路时,例如通过发电机线圈的导线或通过电池内部的溶液时,要受到阻碍作用,所以内电路也有电阻.内电路的电阻通常称为电源的内阻.闭合电路中有电流通过时,在外电路和内电路中,电源提供的电能转化为其他形式的能量.设电路中有电流通过时电源提供的电能为W,外电路中消耗的电能为W1,内电路中消耗的电能为W2,则由能量守恒定律可知,W=W1+W2.设电路中通过的电流为I.由电动势的定义可知,电源提供的电能W=Eq=EIt.设外电路为电阻电路,外电阻为R,由焦耳定律可知,外电路中消耗的电能W1=I2Rt.设内阻为r,由焦耳定律可知,内电路中消耗的电能W2=I2rt.代入上式可得EIt=I2Rt+I2rt.消去t,解出I,可得上式表示,闭合电路中的电流跟电源的电动势成正比,跟内、外电路中的电阻之和成反比.这个结论通常叫做闭合电路的欧姆定律.电动势跟电路中电压的关系电路中有电流通过时,电路的各部分都有电压.现在我们来研究电源的电动势跟电路各部分电压的关系.由(1)式可得E=IR+Ir.设外电路两端的电压为U,内电路的电压为U′.由欧姆定律知道,U=IR,U′=Ir.上式可以写成E=U+U′.(2)外电路两端的电压通常称为外电压,外电压也叫路端电压,内电路的电压通常称为内电压.上式表示,电源的电动势等于外电压和内电压之和.【例题1】在图中所示的电路中,电源的电动势为 1.5V,内阻0.12Ω,外电路的电阻为 1.38Ω,求电路中的电流和路端电压.解答路端电压跟外电阻的关系用电器都是接在外电路中的,电源的“有效”电压是路端电压,所以研究路端电压的变化规律是很重要的.实验表明,当外电阻减小时,电流增大,路端电压减小.就某个电源来说,电动势E和内阻r是一定的.由(1)式可知,当外电阻R改变时,电路中的电流I 要发生改变.现在把(2)式改写为U=E-U′=E-Ir.(3)可见,当电路中的电流I发生改变时,路端电压U发生改变.现在我们根据来讨论路端电压的变化规律.当外电阻R减小时,可知I增大,内电压U′=Ir增大,路端电压U减小.当外电路短路时,R趋近于零,I趋近于E/r,路端电压U趋近于零.电源的内阻一般都很小,例如铅蓄电池的内阻只有0.005Ω~0.1Ω,所以短路时电流很大.电流太大会烧坏电源,还可能引起火灾,一定要注意防止.当外电阻R增大时,可知I减小,内电压U′=Ir减小,路端电压U增大.当外电路断开时,R变为无限大,I变为零,Ir也变为零,U=E.这就是说,开路时的路端电压等于电源的电动势.图示为路端电压U与电流I的关系曲线,也就是(3)式的函数图象.这种关系曲线反映出电源的特性,是一条向下倾斜的直线.当R变为无限大时,I=0,U=E.随着R的减小,I逐渐增大,U逐渐减小.直线倾斜的程度跟内阻r有关系.内阻越大,倾斜得越厉害.内阻越小,这条直线越平;内阻趋于零时,这条直线趋近于跟横轴平行,这表示不论电流是多大,路端电压总等于电源的电动势.闭合电路中的功率在E=U+U′的两端乘以电流I,得到EI=UI+U′I=I2R+I2r.(4)上式中I2R是外电阻上消耗的热功率,I2r是内阻上消耗的热功率.EI=WI/q=W/t,是单位时间内电源提供的电能.上式表示电源提供的电能,一部分消耗在内阻上,其余部分输出到外电路中.【例题2】在图中,R1=14Ω,R2=9Ω.当开关S切换到位置1时,电流表的示数为I1=0.2A;当开关S扳到位置2时,电流表的示数为I2=0.3A.求电源的电动势E和内阻r.解答电阻的测量实际工作中经常需要测量电阻,我们介绍两种测量方法.伏安法根据欧姆定律U=IR,用电压表测出电阻两端的电压,用电流表测出通过电阻的电流,就可以求出电阻.这种测量电阻的方法叫做伏安法.用伏安法测电阻时,由于电压表和电流表本身具有内阻,把它们连入电路中以后,不可避免地要改变被测电路中的电压和电流,给测量结果带来误差.图中表示用伏安法测电阻的两种接法.。
第二章恒定电流1 等效电流的求解链接高考1.如图所示,一根横截面积为S的均匀长直橡胶棒上带有均匀的负电荷,每单位长度上电荷量为q,当此棒沿轴线方向做速度为v的匀速直线运动时,由于棒运动而形成的等效电流大小为()A.qvB.C.qvSD.思路点拨解答本题时可按以下思路分析:棒通过的长度→通过截面的电荷量→等效电流的大小[答案] A[解析]t时间内棒通过的长度l=vt,通过的电荷量Q=ql=qvt。
由I===qv,故选项A正确。
2.(多选)半径为R的橡胶圆环均匀带正电荷,总电荷量为Q,现使圆环绕垂直环所在平面且通过圆心的轴以角速度ω沿逆时针方向匀速转动,则下列说法正确的是()A.橡胶圆环中产生顺时针方向的电流B.若ω不变而使电荷量Q变为原来的2倍,则电流也将变为原来的2倍C.若电荷量Q不变而使ω变为原来的2倍,则电流也将变为原来的2倍D.若使ω、Q不变,使环半径增大,电流将变大思路点拨解答本题时可按以下思路分析:(1)正电荷运动方向→电流方向(2)圆环转动的周期→一个周期内通过截面的电荷量→电流的大小[答案]BC因为电流方向为正电荷的定向移动方向,所以橡胶圆环中产生的是逆时针方向的电流,选项A 错误;截取圆环的任一截面S,如图所示,在橡胶圆环运动一周的时间T内,通过这个截面的电荷量为Q,则有I==,又T=,所以I=,可以看出ω不变、Q变为原来的2倍时,电流变为原来的2倍,选项B正确;Q不变,ω变为原来的2倍时,电流也变为原来的2倍,选项C正确;由I=知,电流的大小与橡胶圆环半径无关,选项D错误。
基础过关电流的分析与计算3.以下说法正确的是()A.只要有可以自由移动的电荷,就存在持续电流B.金属导体内的持续电流是自由电子在导体内的电场作用下形成的C.电流的传导速率就是导体内自由电子的定向移动速率D.在金属导体内当自由电子定向移动时,它们的热运动就消失了[答案] B[解析]要有持续电流必须有电压,A错误。
第二章《恒定电流》测试题一、单选题(每小题只有一个正确答案)1.下列器材中,属于电源的是( )A.验电器B.电动机C.干电池D.变压器2.如图所示,一理想变压器原线圈匝数n 1=1100,副线圈匝数与=220,交流电源的电 压u = 220%2sin (100兀t ) V, R 为负载电阻,电压表、电流表均为理想电表,则下列说 B.交流电的频率为100 HzC.电流表A 1的示数大于电流表A"勺示数D.变压器的输入功率大于输出功率 3 .如图,电源内阻忽略不计,闭合电键,电压表V 1示数为U 1,电压表V 2示数为U 2,电 流表A 示数为I.在滑动变阻器R 的滑片由a 端滑到b 端的过程中()A. U 1先增大后减小B. U 1与I 的比值先增大后减小C. U 1变化量与I 变化量的比值不变D. 1变化量与I 变化量的比值先增大后减小4 .如图所示,a, b, c, d 是滑动变阻器的四个接线柱,现把此变阻器接成一个分压电 路向一个小灯泡供电,并要求滑片P 向c 移动时,小灯泡两端电压减少,则在下列说法 中正确的是( )A. a 接电源正极,b 接电源负极,c 、d 接小灯泡两端B. a 接电源正极,b 接电源负极,c 、a 接小灯泡两端法中正确的是( )A.电压表的示数为44V /C.a接电源正极,b接电源负极,d、b接小灯泡两端D.a接电源正极,b接电源负极,d、c接小灯泡两端5.对于不同型号的干电池,下列说法中正确的是()A.1号干电池的电动势大于5号干电池的电动势B.1号干电池的容量比5号干电池的容量小C.1号干电池的内阻比5号干电池的内阻大D.r i号和5号干电池分别连入电路中,若电流i相同,则它们做功的快慢相同6.如图所示,图线1、2分别表示导体A、B的伏安特性曲线,它们的电阻分别为R1、R2,则下列说法正确的是()A.R1:R2=1:38.R1:R2=3:1。
将R1与R2串联后接于电源上,则电压比U1:U2=1:2D.S R1与R2并联后接于电源上,则电流比I1:I2=1:39.两个小灯泡,分别标有“1 A 4 W”和“2 A 1 W”的字样,则它们均正常发光时的电阻阻值之比为()A.2:1B.16:1C.4:1D.1:1610如图所示的电路中,当可变电阻R的阻值减小时,下列说法正确的是()A.通过R1的电流强度增大B.通过R2的电流强度增大C. AB两点间的电压增大D. AB两点间的电压不变9.有一毫伏表,它的内阻是100 Q,量程为300 mV,现要将它改装成量程为3 V的伏特表,则毫伏表应()A.并联一个100 Q的电阻B.并联一个900 Q的电阻C.串联一个100 Q的电阻D.串联一个900 Q的电阻10.如图所示电路中,当变阻器R的滑动片P向下滑动时,电压表V和电流表A的示数()11 .对于欧姆定律,理解正确的是( )A.从R 二-可知,导体两端的电压为零时,导体的电阻也为零B.从R= -可知,导体的电阻跟导体两端的电压成正比,跟导体中的电流成反比C.从I 二-可知,导体中的电流跟加在它两端的电压成正比,跟它的电阻成反比D.从U=IR 可知,导体两端的电压随电阻的增大而增高 12.某同学用如图所示的电路经行小电机r 的输出功率的研究,其实验步骤如下所述, 闭合电键后,调节滑动变阻器,电动机未转动时,电压表的读数为一,电流表的读数为--;再调节滑动变阻器,电动机转动后电压表的读数为U2,电流表的读数为D 则此时 13.关于电阻率的说法,正确的是(C.电源的输出功率变大D. V 示数减小、A 示数增大I 2U I 2U A. U I -t 1 B. ―—1 2 2 I I C . D . U 2I 2A . 超导材料的电阻率总是为零B . 电阻率P 大的导体,电阻可以很小C . 电阻率p 与导体的长度L 和横截面积S 有关D . 电阻率表征了导体材料的导电能力的强弱, 由导体的长度决定,与温度无关14. 对计算任何用电器的电功率都适用的是 () ①.③.P = 12 RW ④.P = 一 t A . ①②B.②③ C . ①④ D . ③④ A. V 和A 的示数都减小B. V 和A 的示数都增大 电动机输出的机械功率为( )15.如图,电路中定值电阻阻值R 大于电源内阻阻值r,将滑动变阻器滑片向下滑动, 理想电压表V 1、V 2、V 3示数变化量的绝对值分别为△ U 1、△ U 2、△ U 3,理想电流表A 示 数变化量的绝对值为△ I ,正确的是()A. V 2的示数增大 C. △ U 3与△ I 的比值在减小 二、多选题(每小题至少有两个正确答案)16 .如右图所示的电路,A 、B 、C 为三个相同的灯泡,其电阻大于电源内阻,当变阻器的滑动触头P 向上移动时()A. A 灯变亮,B 灯和C 灯都变暗B. A 灯变亮,B 灯变暗,C 灯变亮C.电源的总电功率增大D.电源的效率降低17 .下列关于电源电动势的说法,正确的是( )A.电动势实质上就是电压B.电动势越大,表明电源把其他形式的能转化为电能的本领越大C.电动势是指电源内部非静电力所做的功D.电动势在数值上等于在电源内部移动单位电荷非静电力所做的功18.下列关于电功、电功率和焦耳定律的说法中正确的是 ( )A.电功率越大,电流做功越快,电路中产生的焦耳热一定越多B. W=UIt 适用于任何电路,而W=l 2Rt=—t 只适用于纯电阻电路C.在非纯电阻电路中,UI>I 2RD.焦耳热Q = I 2Rt 适用于任何电路19.两只电阻的伏安特性曲线如图所示,则下列说法中正确的是 B.电源输出功率在减小D. △ U 1 大于△ U 2A.两电阻的阻值为R大于R12B.两电阻串联在电路中时,R1两端电压大于R2两端电压C.两电阻串联在电路中时,R1消耗的功率小于R2消耗的功率D.两电阻并联在电路中时,R1的电流大于R2的电流20.由欧姆定律1=-导出U=IR和R=-,下列叙述中正确的是()A.由R=-知,导体的电阻由两端的电压和通过的电流决定B.导体的电阻由导体本身的性质决定,跟导体两端的电压及流过导体的电流的大小无关C.对于确定的导体,其两端的电压和流过它的电流的比值等于它的电阻值D.电流相同时,电阻越大,其电压降越大三、实验题21. (1)如图所示是简化的多用电表的电路。
习 题习题 1 将一恒定电流通过硫酸铜溶液1小时,阴极上沉积出铜0.0300 g ,串联在电路中的毫安计读数为25 mA 。
试求该毫安计刻度的误差有多大?习题 2 将两个银电极插入AgNO 3溶液,通过0.2 A 电流共30 min ,试求阴极上析出Ag 的质量。
习题 3 在Na 2SO 4溶液中通过1000 C 电量时,在阴极和阳极上分别生成NaOH 和H 2SO 4的质量各多少?习题 4 18°C 时,用同一电导池测出0.01 mol·dm −3 KCl 和0.001 mol·dm −3 K 2SO 4的电阻分别为145.00和712.2 Ω。
试求算:(1) 电导池常数;(2) 0.001 mol·dm −3 K 2SO 4溶液的摩尔电导率。
习题 5 已知18°C 时0.020 mol·dm −3 KCl 的κ = 0.2397 S·m −1。
在18°C 时,以某电导池分别充以0.020 mol·dm −3 KCl 和0.0014083 mol·dm −3的NaCNS 酒精溶液时,测得的电阻分别为15.946和663.45 Ω。
试求算:(1) 电导池常数;(2) 该NaCNS 溶液的摩尔电导率。
习题 6 在25°C 时,一电导池中充以0.01 mol·dm −3 KCl ,测出的电阻值为484.0 Ω;在同一电导池中充以不同浓度的NaCl ,测得下表所列数据。
(1) 求算各浓度时NaCl 的摩尔电导率;(2) 以m Λ对c 作图,用外推法求出。
∞m Λc / (mol·dm −3) 0.0005 0.0010 0.0020 0.0050R / Ω10910 5494 2772 1128.9习题 7 在18°C 时,已知Ba(OH)2、BaCl 2和NH 4Cl 溶液无限稀释时的摩尔电导率分别为0.04576、0.02406和0.01298 S·m 2·mol −1,试求算该温度时NH 4OH 溶液的。
第3章恒定电流课标要求1.观察并能识别常见的电路元器件,了解他们在电路中的作用。
了解串,并联电路电阻的特点。
2.理解电功,电功率及焦耳定律,能用焦耳定律解释生产生活中的电热现象。
3.通过实验,探究并了解金属导体的电阻与材料,长度和横截面积的定量关系。
会测量金属丝的电阻率。
第1节电流核心素养科学思维态度与责任能从微观视角和宏观表现分析电流的形成,对统计方法有初步了解。
通过科学家安培的事迹,了解科学研究、科技创新所带来的应用价值和社会价值,并从中学习科学家的探究精神。
知识点一电流的形成[观图助学]电闪雷鸣时,强大的电流使天空发出耀眼的闪光,但它只能存在一瞬间,而手电筒中小灯泡却能持续发光,这是因为手电筒中的电源能提供持续电压。
1.定义:电流是由自由电荷的定向移动形成的。
2.形成电流的条件(1)回路中存在自由电荷。
(2)导体两端有电压。
3.持续电流(1)导体两端有持续电压是导体中形成持续电流的条件。
(2)电源的作用是提供持续电压。
4.电流的速度:等于电场的传播速度,它等于3.0×108 m/s。
5.自由电子的运动速率:常温下,金属内的自由电子大约以105__m/s的平均速率做无规则的运动。
6.电子定向移动的速率:数量级大约是10-5m/s ,被形象地称为“电子漂移”。
[思考判断](1)只要有移动的电荷,就存在着持续电流。
(×) (2)只要导体两端没有电压,就不能形成电流。
(√) (3)只要导体中无电流,其内部自由电荷就停止运动。
(×)知识点二 电流的方向与大小1.电流的方向(1)在物理学中,规定正电荷定向移动的方向为电流的方向。
(2)在电源外部的电路中,电流的方向是从电源正极流向负极。
(3)在电源内部的电路中,电流的方向是从电源负极流向正极。
(4)电流是标量,虽有方向,但其运算不符合平行四边形定则。
2.电流的大小和单位(1)定义:流过导体某一横截面的电荷量与所用时间之比定义为电流。