一元二次方程利润问题应用题
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
一元二次方程利润问题应用题1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价6、一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)7、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元8、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
一元二次方程应用利润问题(1)姓名____________ 班级___________【例1】:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存。
商场决定采取适当的降价措施:如果每件衬衫每降价1元,商场平均每天可多售出2件。
若商场平均每天要盈利1200元,每件衬衫应降价多少元?【变式1】:某商场销售一种商品,每件进价60元,每件售价110元,每天可销售50件,每销售一件需要支付给商场管理费3元。
6月份该商品搞“减价促销”活动。
市场调查发现,售价每降低1元,每天销售量增加2件。
若某一天销售该商品共获利2590元,求该商品降价多少元?【例2】:今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本。
已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元。
请解答以下问题:(1)填空:每天可售出书_______本(用含x的代数式表示)(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【变式1】:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。
为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?一元二次方程--利润问题(2)姓名____________ 班级____________【例1】:为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100 个。
若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?【变式1】:因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次。
一元二次方程利润问题1、商场每天要赚1200元利润,每件衬衫降价x元,每天能多售出2x件衬衫。
设降价后每件衬衫的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件衬衫应降价2元。
2、商场每天要赚2100元利润,每件衬衫降价x元,每天能多售出2x件衬衫。
设降价后每件衬衫的售价为y元,则有:30(y-x) = 210030(y-x+2x) = 2100解得:x=3,每件衬衫应降价3元。
3、商店要赚8000元利润,每卖出一个商品的利润为y-40元,每涨价1元销售量减少10个。
设售价为y元,则有:y-40)×500 = 8000y-40-x)×(500-10x) = 8000解得:x=2,售价为46元。
4、商场每天要赚1600元利润,每件衣服降价x元,每天能多售出5件衣服。
设降价后每件衣服的售价为y元,则有:20(y-x) = 160020(y-x+5x) = 1600解得:x=2,每件衣服应降价2元。
5、商场每天要赚6000元利润,每卖出一个商品的利润为y-10元,每涨价1元销售量减少20千克。
设售价为y元,则有:500(y-10) = 6000500-20x)(y-9+x) = 6000解得:x=1,每千克应涨价1元。
6、商场每月要赚元销售利润,每台灯售价上涨x元,销售量减少10个。
设售价为y元,则有:600(y-30) =600-10x)(y-x) =解得:x=1,售价为35元,应进货600个。
7、商场每天要赚1200元利润,每件童装降价x元,每天能多售出2件童装。
设降价后每件童装的售价为y元,则有:20(y-x) = 120020(y-x+2x) = 1200解得:x=2,每件童装应降价2元。
可多售出50千克。
如果经营户希望每天仍能获利400元,每千克应该降价多少元?8、某种服装每天能够销售20件,每件盈利44元。
如果每件降价1元,每天可以多售出5件。
一元二次方程—销售问题◆营销中的利润问题:利润=售价-;利润率=%100进价利润;总利润=-总进价=(售价-进价)×例1.进价30元的衣服,以50元出售,平均每月能售出300件。
经试销发现每件衣服涨价1元,其月销售量就减少1件,物价部门规定,每件衣服售价不得高于80元,为实现每月利润8700元,应涨价多少元?变式1.某天猫店销售某种规格学生软式排球,成本为每个30元.以往销售大数据分析表明:当每只售价为40元时,平均每月售出600个;若售价每上涨1元,其月销售量就减少20个,若售价每下降1元,其月销售量就增加200个.(1)若售价上涨m元,每月能售出个排球(用m的代数式表示).(2)为迎接“双十一”,该天猫店在10月底备货1300个该规格的排球,并决定整个11月份进行降价促销,问售价定为多少元时,能使11月份这种规格排球获利恰好为8400元.2、某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件.为了迎接“六一”儿童节,商店决定采取适当的降价措施,以扩大销售量,增加利润.据测算,每件童装每降价1元,平均每天可多售出2件.设每件童装降价x元.(1)每天可销售件,每件盈利元?(用含x的代数式表示)(2)每件童装降价多少元时,平均每天盈利1200元.(3)平均每天盈利能否达到2000元,请说明理由.3、某店只销售某种进价为40元/kg的特产.已知该店按60元/kg出售时,平均每天可售出100kg,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10kg.若该店销售这种特产计划平均每天获利2240元.(1)每千克该特产应降价多少元?(2)为尽可能让利于顾客,则该店应按原售价的几折出售?4、某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?5、“绿化校园,书香开州”,今年三月份,开州区某校计划购买梧桐树苗和杉树苗共100棵,其中梧桐树苗每棵40元,杉树苗每棵35元,经预算,此次购买两种树苗一共至少需要3800元.(1)计划购买梧桐树苗最少是多少棵?(2)在实际购买中,因受树苗积压以及市场影响,为此商家降低了两种树苗的售价,且降价相同,但降价金额不得高于10元/棵,经统计发现,两种树苗的售价每降低1元,梧桐树苗的销售量会增加2棵,杉树苗的销售量会增加3棵.若该校实际购进这两种树苗一共所需费用比计划购买的最低费用多了300元,则两种树苗都降低多少元?。
一元二次方程的应用(利润类)1.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?2.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?4.某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加一株,平均单株盈利就减少0.5元.(1)如果每盆花苗(假设原来花盆中有3株)增加a株,则每盆花苗有_____株,平均单株盈利为_____元;(2)要使每盆的盈利达到10元,每盆应该植多少株?5..某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?6.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?7.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?8.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?9..果农李明种植的草莓计划以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.李明为了加快销售,减少损失,对价格经过两次下调后,以每千克9.6元的单价对外批发销售.(1)求李明平均每次下调的百分率;(2)小刘准备到李明处购买3吨该草莓,因数量多,李明决定再给予两种优惠方案以供其选择:方案一:打九折销售;方案二:不打折,每吨优惠现金400元.试问小刘选择哪种方案更优惠,请说明理由.10.满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?11.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?12.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?13.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?14.某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.(1)若售价定为42元,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少?15.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?某商场计划购进一批书包,经市场调查发现:某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个.(1)若售价定为42元,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月有10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少?16..每件商品的成本是120元,在试销阶段,发现每件售价与商品的日销量始终存在下表中的数量关系,但每天的盈利却不一样。
Al l练习2:利润问题(一元二次方程应用)1、某商场购进一种单价为元的篮球,如果以单价元售出,那么每月可售出个.根据销4050500售经验,售价每提高元.销售量相应减少个.110(1)假设销售单价提高元,那么销售每个篮球所获得的利润是________元;这种篮球每月的销x 售量是_________个.(用含的代数式表示)(4分)x (2)元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最8000大利润,此时篮球的售价应定为多少元?(8分)答案:(1),; 10x +50010x -(2)设月销售利润为元,y 由题意, ()()1050010y x x =+-整理,得. ()210209000y x =--+当时,的最大值为,20x =y 9000.205070+=答:元不是最大利润,最大利润为元,此时篮球的售价为元.80009000702.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x (角),零售店每天销售这种面包所获得的利润为y (角).⑴用含x 的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y 与x 之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?)每个面包的利润为(160-204002×(20)=10时,y 最大,此时最大利润y=500(角).3、某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价 (元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润 与每件的销售价 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。
一元二次方程应用(销售与利润问题)
1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减
少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天赢利最多,请你帮助设计方案.
2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策
的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了
促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?
4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?
5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价
6、一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)
7、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元
8、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
商店为了赚取8000元的利润,这种商品的售价应定为多少?应进货多少?
9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后共有81台电脑被感染。
请问每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
10.春游旅行社为吸引市民组团去广州旅行,推出了如下收费标准
①如果人数不超过25人,人均旅游费用为1000元;
②如果人数超过25人,每增加1人,人均旅游费降低20元,但人均旅游费用不得低于700元。
某单位组织员工去广州旅游,共支付给春秋旅行社旅游费用27000。
请问该单位这次共有多少名员工去广州旅游?
11.某水果批发商场经销一种号称‘天然VC之王’和‘生命之果’的水果——樱桃,如果每千克
盈利10元,每天可销售500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元、
若该商场从经济角度看,没钱可这种水果应涨价多少元,能使商场获利多少?
答案1、解:设每天利润为w 元,每件衬衫降价x 元,
根据题意得w=(40-x )(20+2x )=-2x2+60x+800=-2(x-15)2+1250
(1)当w=1200时,-2x2+60x+800=1200, 解之得x1=10,x2=20.
根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.
(2)解:商场每天盈利(40-x )(20+2x )=-2(x-15)2+1250.
当x=15时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.
2、解:设每台冰箱应降价x 元 ,那么 (8+50x
×4) ×(2400-x -2000)=4800 所以(x - 200)(x - 100)=0
x = 100或200 所以每台冰箱应降价100或200元.
3、解:设应将每千克小型西瓜的售价降低x 元根据题意,得:
20024)401.0200)(23(=-⨯+--x x 解得:1x =0.2,2x =0.3
答:应将每千克小型西瓜的售价降低0.2或0.3元。
4、解:设没件降价为x ,则可多售出5x 件,每件服装盈利44-x 元,依题意x ≤10∴(44-x)(20+5x)=1600
展开后化简得:x ²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元要找准关系式
5、解: (1)若销售单价为x 元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.
依题意得:
y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70)
(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg ,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg ,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500
元,而221500>195000时且221500-195000=26500元.
∴销售单价最高时获总利最多,且多获利26500元.
6、解:设第一次倒出x 升,则第二次为x (20-x )/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=10
8、解:衬衫降价x 元2100=(50-x)(30+2x)=1500+70x-x^2 x^2-70x+600=0 (x-10)(x-60)=0
x-60=0 x=60>50 舍去x-10=0 x=10
9、解:利润是标价-进价 设涨价x 元,则: (10+x)(500-10x)=8000
x-20=10或x-20=-10 x=30或x=10 经检验,x 的值符合题意 所以售价为80元或60元 所以进8000/(10+x)=200个或400个 所以应标价为80元或60元
应进200个或400个
6; 解:设每轮感染中平均每一台电脑会感染X台电脑。
1+X+(1+X)X=81
解得X1=8,X2=-10(不合题意,舍去)
∴(1+X)²+X(1+X)²=(1+X)³=(1+8)³=729>700
答:每轮感染中平均每一台电脑会感染8台电脑。
3轮感染后,被感染的电脑会超过700台。
7; 解:设该单位这次共有x名员工去广州旅游。
∵1000×25=25000<27000,所以员工人数一定超过25人。
依题意得[1000-20(x-25)]x=27000,解得x1=45,x2=30.当x1=45式。
人均旅游费用为1000-20(x-25)=600<700,不和题意,故舍去x1;当x2=30时,人均旅游费用为1000-20(x-25)=900>700,符合题意。
即该单位这次共有30名员工去广州旅游
8.设每千克应涨价x元,依题意得(10+X)(500-20X)=6000,
解得X1=10,X2=5,
因为在保证商场每天盈利6000元的同时又让顾客得到实惠舍去,故每千克应涨价5元。