利用三角形全等测距离设计
- 格式:doc
- 大小:2.49 MB
- 文档页数:5
《利用三角形全等测距离》教学设计一、教学内容《利用三角形全等测距离》是北师大版数学七年级(下)第三章第五节的内容。
二、教学目标及重难点1.教学目标:教学目标:(1)知识与技能会利用“边角边”,“角边角”,“角角边”来构造全等三角形测距离,培养学生把实际问题转化为数学问题的能力。
(2)过程与方法在经历从现实生活中抽象出几何模型的过程中,有意识地培养学生合作探究精神及有条理的思考、表达能力,以及创新意识,体会数学与实际生活的联系。
(3)情感态度与价值观通过情境创设,激发学生学习兴趣,体会数学来源于实际,又服务于实际生活的重大意义.教学重点――利用三角形全等测距离。
教学难点――如何把实际问题转化为数学问题(数学建模)。
三、教学方法:小组合作、探究式相结合四、教学工具:多媒体课件五、教学基本流程:一.回顾思考,温故知新二.创设情境,激发兴趣三.动手实践,探索新知四.小组合作,学以致用五.归纳总结,反思提高六.反馈练习,强化新知七.布置作业,课后延拓六、教学过程:教师活动学生活动设计意图一、回顾思考,温故知新(1)要判定两个全三角形全等有哪些方法?并思考在判定的三个条件中至少要有一个什么条件?(2)全等三角形有什么性质?学生独立思考后,举手回答问题(1)SSS,SAS,ASA,AAS 三个条件中至少需要一个边的条件(2)全等三角形的对应边相等,对应角相等。
通过提问可以温习与本节有关的知识,帮助基础较弱或掌握不牢的学生巩固旧知识,同时也是本节课的理论基础。
二.创设情境,激发兴趣出示一个玻璃瓶,两根等长的小棒,一把刻度尺提问:谁能利用我们所学的知识,用现在的这些器材测量出玻璃瓶的内径?这就是今天要学习的内容——利用三角形全等测距离。
启示:通过三角形的全等将不易测,不能到达的两点间的距离转化为可以测量的两点间的距离。
学生分小组讨论后派代表上前演示:把两根木棍的中点穿在一起,让木棍可以自由地活动,然后把两根木棍重叠在一起,插入瓶中,将两根木棍的角度打开,让木棍下面两端靠着瓶子内壁,只需测量外面两个点之间的距离就得到瓶子的内径。
北师大版七下数学4.5利用三角形全等测距离教案一. 教材分析本节课是北师大版七下数学的教学内容,主要讲述了利用三角形全等来测距离的方法。
通过本节课的学习,学生能够了解三角形全等的性质,并能运用全等三角形来解决实际问题,提高学生的实践操作能力。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,能够理解全等三角形的概念,并会运用全等三角形来解决问题。
但部分学生在实际操作中,可能对测量工具的使用和测量方法不够熟悉,需要老师在课堂上进行引导和示范。
三. 教学目标1.知识与技能:学生能够理解三角形全等的性质,并能运用全等三角形来测距离。
2.过程与方法:学生通过实际操作,掌握利用全等三角形测距离的方法,提高实践操作能力。
3.情感态度价值观:学生能够体验数学与实际生活的联系,培养学习数学的兴趣。
四. 教学重难点1.教学重点:学生能够理解三角形全等的性质,并能运用全等三角形来测距离。
2.教学难点:学生能够熟练运用全等三角形测距离的方法,解决实际问题。
五. 教学方法本节课采用问题驱动法、实践操作法和小组合作法进行教学。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过实践操作,让学生亲身体验和理解全等三角形的性质;通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教具准备:三角板、直尺、量角器、测距仪等。
2.教学课件:制作相关的教学课件,以便于引导学生思考和展示实例。
七. 教学过程1.导入(5分钟)教师通过设置问题情境,引导学生思考如何利用三角形全等来测距离。
例如,给出两个相似的三角形,让学生思考如何测量它们之间的距离。
2.呈现(10分钟)教师通过展示实例,讲解三角形全等的性质,并引导学生理解如何利用全等三角形来测距离。
同时,教师进行实际操作演示,让学生直观地感受和理解全等三角形的性质。
3.操练(10分钟)学生分组进行实践操作,运用全等三角形来测距离。
教师巡回指导,解答学生的问题,并给予适当的反馈。
一、情境导入如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC.连接BC并延长到E,使CE=CB.连接DE并测量出它的长度,你知道其中的道理吗?二、合作探究探究点:利用三角形全等测量距离【类型一】利用三角形全等测量物体的高度小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线P A与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?解析:根据题意可得△CPD≌△P AB(ASA),进而利用AB=DP=DB-PB求出即可.解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=54°.在△CPD 和△P AB中,∵∠CDP=∠ABP,DC=PB,∠DCP=∠APB,∴△CPD≌△P AB(ASA),∴DP=AB.∵DB=36米,PB=10米,∴AB=36-10=26(米).答:楼高AB是26米.方法总结:在现实生活中会遇到一些难以直接测量的距离问题,可以利用三角形全等将这些距离进行转化,从而达到测量目的.【类型二】利用三角形全等测量物体的内径要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O为卡钳两柄交点,且有OA =OB=OC=OD,如果圆形工件恰好通过卡钳AB,则此工件的外径必是CD的长,其中的依据是全等三角形的判定条件()A.SSS B.SASC.ASA D.AAS解析:如图,连接AB、CD.在△ABO和△DCO中,OA=OD,∠AOB=∠DOC,OB=OC,∴△ABO≌△DCO(SAS),∴AB=CD.故选B.方法总结:利用全等三角形的对应边来测量不能直接测量的距离,关键是构造全等三角形.【类型三】与三角形全等测量距离相关的方案设计问题如图所示,有一池塘,要测量池塘两端A、B的距离,请用构造全等三角形的方法,设计一个测量方案(画出图形),并说明测量步骤和依据.解析:本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的.解:在平地任找一点O,连OA、OB,延长AO至C使CO=AO,延BO至D,使DO=BO,则CD=AB,依据是△AOB≌△COD(SAS).方法总结:在解决方案设计探究问题时,符合条件的方案设计往往有多种,解题的关键在于通过分析,将实际问题转化为数学模型,构造出全等三角形进行解决.【类型四】利用三角形全等解决实际问题如图,工人师傅要在墙壁的O处用钻头打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.解析:由OC与地面平行,确定了A,O,C三点在同一条直线上,通过说明△AOB≌△COD可得D,O,B三点在同一条直线上.解:∵OC=35cm,墙壁厚OA=35cm,∴OC=OA.∵墙体是垂直的,∴∠OAB=90°.又∵CD⊥OC,∴∠OAB=∠OCD=90°.在△OAB和△OCD中,∠OAB=∠OCD=90°,OC=OA,∠AOB=∠COD,∴△OAB≌△OCD(ASA),∴DC=AB.∵DC=20cm,∴AB=20cm,∴钻头正好从B点出打出.三、板书设计1.利用全等三角形测量距离的依据“SAS”“ASA”“AAS”2.运用三角形全等解决实际问题A.SASB.ASAC.SSSD.AAS3.某大学计划为新生配备如图①所示的折叠凳.图②是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,则由以上信息可推得CB的长度也为30 cm,依据是( )A.SASB.ASAC.SSSD.AAS4.教室里有几盆花,如图①,要想测量这几盆花两旁的A,B两点间的距离不方便,因此,选点A,B都能到达的一点O,如图②,连接BO并延长BO到点C,使CO=BO,连接AO并延长AO到点D,使DO=AO.那么C,D两点间的距离就是A,B两点间的距离.理由:在△COD和△BOA中,所以△COD≌△BOA( ).所以CD= .所以只要测出C,D两点间的距离就可知A,B两点间的距离. 5.如图,由两根钢丝固定的高压电线杆,按要求当两根钢丝与电线杆的夹角相同时,固定效果最好.现已知钢丝触地点到电线杆的距离相等,那么请你判断图中两根钢丝的固定是否合乎要求,并说明理由.(电线杆的粗细忽略不计)6.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SASB.ASAC.AASD.SSS7.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.8.如图,为了测量出池塘两端A,B之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,那么只要测量出AD的长度就得到了A,B两点之间的距离.你能说明其中的道理吗?9.如图,已知零件的外径为a,要求它的厚度x,动手制作一个简单的工具,利用三角形全等的知识,求出x.10.如图,在△ABC中,D为AB的中点,AD=5 cm,∠B=∠C,BC=8 cm.(1)若点P在线段BC上以3 cm/s的速度从点B向终点C运动,同时..点Q在线段CA上从点C向终点A运动.①若点Q的速度与点P的速度相等,经过1 s后,请说明△BPD≌△CQP.②若点Q的速度与点P的速度不等,当点Q的速度为多少时,能使△BPD≌△CPQ?(2)若点P以3 cm/s的速度从点B向点C运动,同时..点Q以5 cm/s的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?11.如图,AB=DC,∠A=∠D.试说明:∠ABC=∠DCB.12.如图,在△ABC中,∠BAC=4∠ABC=4∠C,BD⊥AC交CA的延长线于点D,求∠ABD的度数.13.农科所有一块五边形的试验田如图所示,已知在五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=20 m,求这块试验田的面积.通过实例引入课堂教学,激发学生的探究兴趣,从而了解到全等三角形在实际生活中的应用.在小组。
在生活中应用全等三角形测距离在现实生活中,有很多问题需要用全等三角形的知识来解决。
下面,我们举例谈谈怎样构造全等三角形,测量两地的距离,看看在实际生活中的应用。
例1:有一池塘,要测池塘两端A、B间的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA,连结BC并延长到E,使CE=CB,连结DE,量出DE的长,这个长就是A、B之间的距离。
(1)按题中要求画图。
(2)说明DE=AB的理由,并试着把说明的过程写出来。
解:(1)如图1。
(2)因为在△ABC和△DEC中,CA CDACB DCECB CE所以△ABC≌△DEC所以DE=AB例2、如图2,某同学把一块三角形的玻璃摔成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A.带①去B.带②去C.带③去D.带①和②去。
析解:怎样做一个三角形与已知三角形全等,可以依据全等三角形的判定方法进行具体分析,题目中的一块三角形的玻璃被摔成三块,其中①仅留一个角,仅凭一个角无法做出全等三角形;而②没边没角;③存在两角和夹边,于是根据“ASA”不难做出与原三角形全等的三角形。
故应选C。
例3、如图3、小红和小亮两家分别位于A、B两处隔河相望,要测得两家之间的距离,请你设计出测量方案。
分析:本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,就可求出两家的距离。
方案:如图3,在点B所在的河岸上取点C,连结BC并延长到D,使CD=CB,利用测角仪器使得∠B=∠D,A、C、E三点在同一直线上。
测量出DE的长,就是AB的长。
因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD所以AB=DE。
例4、如图4,点C是路段AB的中点,两人从C点同时出发,以相同的速度分别沿两条直线行走,并同时到过D、E两地,DA⊥AB,EB⊥AB,D、E到路段AB 的距离相等吗?为什么?分析:因为两人是以相同的速度从点C同时出发,且同时到达D、E两点,所以CD=CE。
4.5 利用三角形全等测距离一.选择题(共3小题)1.如图,工人师傅常用“卡钳”这种工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′组成,O为AA′、BB′的中点.只要量出A′B′的长度,由三角形全等就可以知道工件内槽AB的长度.那么判定△OAB≌△OA′B′的理由是()(第1题图)A.SAS B.ASA C.SSS D.AAS2.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()(第2题图)A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可3.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()(第3题图)A.SAS B.ASA C.AAS D.SSS二.填空题(共3小题)4.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)(第4题图)5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.(第5题图)6.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.(第6题图)三.解答题(共10小题)7.小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB 与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?(第7题图)8.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一树C,继续前行20步到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.(第8题图)9.在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.(1)若AB=2,求BC的长;(2)如图1,当点G在AC上时,求证:BD=CG;(3)如图2,当点G在AC的垂直平分线上时,直接写出的值.(第9题图)10.在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离.请你用学过的数学知识按以下要求设计一测量方案.(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示).(第10题图)11.(1)如图1,以△A BC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米.(第11题图)12.(1)作图发现.如图1,已知△ABC,小涵同学以AB、AC为边向△ABC外作等边△ABD和等边△ACE.连接BE,CD.这时他发现BE与CD的数量关系是.(2)拓展探究如图2.已知△ABC,小涵同学以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,试判断BE与CD之间的数量关系,并说明理由.(3)解决问题如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=200米.AC=AE,则BE=米.(第12题图)13.如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.(第13题图)14.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图,求证:△ADC≌△CEB.(第14题图)15.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少?请说明理由.(第15题图)16.为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=38°,测楼顶A视线PA与地面夹角∠APB=52°,量得P到楼底距离PB与旗杆高度相等,等于8米,量得旗杆与楼之间距离为DB=33米,计算楼高AB是多少米?(第16题图)参考答案一.1.A2.D3.D二.4.③; ASA5.26.90三.7.解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=54°.在△CPD和△PAB中∵,∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=36,PB=10,∴AB=36﹣10=26(m),答:楼高AB是26米.8.证明:如图,由做法知:在Rt△ABC和Rt△EDC中,∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.9.解:(1)如图1中,过点A作AH⊥BC于点H.∴∠AHB=∠AHC=90°,在RT△AHB中,∵AB=2,∠B=45°,∴BH=AB•cosB=2×=2,AH=AB•sinB=2,在RT△AHC中,∵∠C=30°,∴AC=2AH=4,CH=AC•cosC=2,∴BC=BH+CH=2+2.(2)证明:如答图1中,过点A作AP⊥AB交BC于P,连接PG,∵AG⊥AD,∴∠DAF=∠EAC=90°,在△DAF和△GAE中,,∴△DAF≌△GAE,∴AD=AG,∴∠BAP=90°=∠DAG,∴∠BAD=∠PAG,∵∠B=∠APB=45°,∴AB=AP,在△ABD和△APG中,,∴△ABD≌△APG,∴BD=PG,∠B=∠APG=45°,∴∠GPB=∠GPC=90°,∵∠C=30°,∴PG=GC,∴BD=CG.(3)如答图2中,作AH⊥BC于点H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,在RT△AHC中,∵∠ACH=30°,∴AC=2AH,∴AH=AP,在RT△AHD和RT△APG中,,∴△AHD≌△APG,∴∠DAH=∠GAP,∵GM⊥AC,PA=PC,∴MA=MC,∴∠MAC=∠MCA=∠MAH=30°,∴∠DAM=∠GAM=45°,∴∠DAH=∠GAP=15°,∴∠BAD=∠BAH﹣∠DAH=30°,作DK⊥AB于点K,设BK=DK=a,则AK=a,AD=2a,∴==,∵AG=CG=AD,∴=.(第9题答图)10.解:(1)如答图.(2)在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB=CD.测量DC的长度即为AB的长度;(3)设DC=m.∵BO=CO,∠AOB=∠COD,AO=DO∴△AOB≌△COD (SAS)∴AB=CD=m.(第10题答图)11.解:(1)△ABC与△AEG面积相等.理由:过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则∠AMC=∠ANG=90°,∵四边形ABDE和四边形ACFG都是正方形,∴∠BAE=∠CAG=90°,AB=AE,AC=AG,∵∠BAE+∠CAG+∠BAC+∠EAG=360°,∴∠BAC+∠EAG=180°,∵∠EAG+∠GAN=180°,∴∠BAC=∠GAN,在△ACM和△AGN中,,∴△ACM≌△AGN,∴CM=GN,∵S△ABC=AB•CM,S△AEG=AE•GN,∴S△ABC=S△AEG,(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.∴这条小路的面积为(a+2b)平方米.(第11题答图)12.解:(1)如答图1.∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD和△EAB中,∵,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EA B中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)如图3,由(1)、(2)的解题经验可知,过A作等腰直角△ABD,∠BAD=90°,则AD=AB=200米,∠ABD=45°,∴BD=200米,连接CD,BD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=200米,BD=200米,根据勾股定理得:CD==200(米),则BE=CD=200米.故答案为:200.(第12题答图)13.解:∵AB⊥MN,∴∠ABC=90°,同理∠EDC=90°,∴∠ABC=∠EDC,在△ABC和△EDC中∴△ACB≌△ECD(ASA),∴AB=DE.14.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图,求证:△ADC≌△CEB.(第14题答图)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,∵,∴△ADC≌△CEB(AAS).15.解:AB=60米.理由如下:∵在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.16.解:∵∠CPD=38°,∠APB=52°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=52°.在△CPD和△PAB中∵,∴△CPD≌△PAB(ASA),∴DP=AB,∵DB=33,PB=8,∴AB=33﹣8=25(m),答:楼高AB是25米.。
利用三角形全等测距离教学目标:知识与技能:能利用三角形的全等解决实际问题。
过程与方法:通过让学生体会教科书中提供的情境,明白战士的具体做法,并尝试思考其中的道理,体会数学与实际生活的联系。
情感与态度: 通过生动、有趣、现实的例子激发学生的兴趣,引发他们去思考,并能在利用三角形全等解决实际问题的过程中进行有条理的思考和表达。
教学重点:能利用三角形的全等解决实际问题.教学难点:能在解决问题的过程中进行有条理的思考和表达.一、 目标导学① 复习全等三角形的性质及判定条件② 在下列各图中,以最快的速度画出一个三角形,使它与△ABC 全等,比比看谁快!二、自主探学引入一位经历过战争的老人讲述的一个故事,(图片显示);在一次战役中,为了炸毁与我军阵地隔河相望的敌军碉堡,需要测出我军阵地到敌军碉堡的距离。
由于没有任何测量工具,我军战士为此绞尽脑汁,这时一位聪明的战士想出了一个办法,为成功炸毁碉堡立了一功。
提出问题:你知道聪明的战士用的是什么方法吗?能解释其中的原理吗?B ACB A CA C B三、合作研学、展示赏学小明在上周末游览风景区时,看到了一个美的池塘 ,他想知道最远两点A 、B 之间的距离, 但是他没有船,不能直接去测。
手里只有一根绳子和一把尺子,他怎样才能测出A 、B 之间的距离呢?1. 写出这位叔叔的思路。
2.把你的设计方案在图上画出来。
要求:① 画出此种测量方法的图形。
② 标出此方法中需要的数据。
③ 展示各组方案,小组成员代表讲述画法和原理。
四、检测评学如图要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再定出BF 的垂线DE ,可以证明△EDC ≌△ABC ,得ED=AB ,因此,测得ED 的长就是AB 的长。
判定△EDC ≌△ABC 的理由是( )A 、SSSB 、ASAC 、AASD 、SAS五、小结师生互相交流利用全等三角形测量距离的合理性,在解决问题的过程中,采用了那些方案使不能直接测量的物体间的距离转化为可以测量的距离。
《利用全等三角形测距离》教学设计教学设计:利用全等三角形测距离一、教学目标:1.知识与技能目标:理解全等三角形的定义和性质,掌握利用全等三角形测距离的方法。
2.过程与方法目标:通过实际问题的解决,培养学生观察、分析和推理的能力。
3.情感态度与价值观目标:培养学生认真思考问题、合作探究和创新解决问题的学习态度。
二、教学内容:1.全等三角形的定义和性质。
2.利用全等三角形测距离的方法。
三、教学过程:步骤一:导入(15分钟)1.引出直角三角形的定义和勾股定理,复习相似三角形的知识。
2.引出全等三角形的定义,通过举例说明全等三角形的性质。
步骤二:讲解(20分钟)1.通过教师讲解和板书,复习全等三角形的判定条件。
2.理论说明如何利用全等三角形测距离:a.同样条件下的两个全等三角形的对应边长成比例。
b.利用等边三角形和等腰三角形的全等性质测距离。
步骤三:示范演练(30分钟)1.选择一个实际问题:从一个点到河边测量距离。
2.分组合作,通过测量方法和全等三角形的性质,推导出测量距离的方法。
a.学生观察问题,提出解决方案。
b.分析问题的关键点。
c.列出解决问题的步骤。
步骤四:小组探究(30分钟)1.将学生分成小组,提供不同的实际问题,要求利用全等三角形测量距离。
2.学生分析问题、解决问题过程中的关键点。
3.各小组交流分享解决问题的方法和答案。
步骤五:归纳总结(20分钟)1.小组汇报解决问题的方法和答案。
2.整理和归纳全等三角形测距离的方法。
3.分享优秀解决方法和解答。
四、教学资源:1.教师准备:黑板、彩色粉笔、演示材料。
2.学生准备:教材、笔、纸。
五、教学评价与反思:1.教师通过听讲和课堂练习,评价学生对全等三角形和测距离的理解和掌握程度。
2.教师针对学生的表现进行及时的反馈和指导,帮助学生克服困难,提高学习效果。
3.教师通过课后作业的批改和讲评,总结学生在全等三角形测距离中的常见错误和不足,调整教学策略。
六、拓展延伸:1.引导学生思考如何利用全等三角形解决其他实际问题。
利用三角形全等测距离
教学目标:
1、能利用三角形的全等解决实际问题。
2、通过让学生体会教科书中提供的情境,明白战士的具体做法,并尝试思考其中的道理,体会数学与实际生活的联系。
3、通过生动、有趣、现实的例子激发学生的兴趣,引发他们去思考,并能在利用三角形全等解决实际问题的过程中进行有条理的思考和表达。
教学设计分析
本节课设计了六个教学环节:复习提问,情境引入,探究新知,练习提高,回顾思考,布置作业
第一环节 复习提问
活动内容: ① 复习全等三角形的性质及判定条件
② 在下列各图中,以最快的速度画出一个三角形,使它与△ABC 全等,比比看谁快!(以小组为单位抢答或个人抢答或根据不同情况而定)题如下:
活动目的: 通过第1个问题的提问可以温习与本节有关的知识,帮助基础较
弱或掌握不牢的学生巩固旧知识,同时也是本节课的理论基础;第2个问题是为学习新内容作铺垫,向学生进一步渗透理论联系实际。
B A
C
B A C
A C B
第二环节 情境引入
活动内容:引入一位经历过战争的老人讲述的一个故事,(图片显示);
敌军碉堡的距离。
由于没有任何测量工具,我军战士为此绞尽脑汁,这时一位聪明的战士想出了一个办法,为成功炸毁碉堡立了一功。
配合简图如下:
教师提出问题: 你知道聪明的战士用的是什么方法吗?能解释其中的原理吗?
活动目的: 用真实的故事引入新课,体现了三角形全等在生活中的广泛应用,
适时的提问,激发了学生的学习积极性和好胜心。
学生独立思考后,小组间相互交流看法。
教师要注意帮助学生审题,引发学生思考,并有主动尝试利用三角形全等来解决实际问题的欲望,从而引出课题---利用三角形全等测距离。
第三环节 探究新知
活动内容: ① 教师引导学生可以用全等的方法测距离,来解决生活中的许多
解决相关问题。
给出例题:(见教科书,教师可适当加入情境,合理安排问题),个人思考后,小组讨论。
小明在上周末游览风景区时,看到了一个美的池塘 ,他想知道最远两点A 、B 之间的距离, 但是他没有船,不能直接去测。
手里只有一根绳子和一把尺子,
情景设置
他怎样才能测出A 、B 之间的距离呢?把你的设计方案在图上画出来,并与你的同伴交流你的方案,看看谁是方案更便捷。
②,但却
ACD ≌
CAB(SAS)
AB =CD
B C
A D
1
2
解:连结AC ,由AD ∥CB ,可得∠1=∠2在
ACD 与CAB 中:
如图,先作三角形ABC,再找一点D ,使
AD ∥BC ,并使AD=BC ,连结CD ,量CD 的长即得AB 的长返回
方案二
方法3:
如图,找一点D ,使AD ⊥BD ,延长AD 至C ,使CD=AD ,连结BC ,量BC 的长即得AB 的长。
B
ADB ≌
CDB(SAS)
BA = BC
返回
方案三
第四环节 练习提高
活动内容:巩固所学知识学生完成以下练习: 练习
如图要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再定出BF 的垂线DE ,可以证明△EDC ≌△ABC ,得ED=AB ,因此,测得ED 的长就是AB 的长。
判定△EDC ≌△ABC 的理由是( ) A 、SSS B 、ASA C 、AAS D 、SAS
如图所示小明设计了一种测工件内径AB 的卡钳,问:在卡钳的设计中,AO 、BO 、CO 、DO 应满足下列的哪个条件?( ) A 、AO=CO B 、BO=DO
C 、AC=B
D D 、AO=CO 且BO=DO
如图是挂在墙上的一面大镜子,上面有两点A 、B 。
小明想知道A 、B 两点之间的距离,但镜子挂得太高,无法直接测量。
小明做了如下操作:在他够的着
B A
●
●
D C
E
F
B
的圆上找到一点C ,接下去小明却忘了应该怎么做?你能帮助他完成吗?
活动目的:对本节课的知识进一步的理解、巩固、提高。
第五环节回顾与思考
活动内容:师生互相交流利用全等三角形测量距离的合理性,在解决问题的过程中,采用了那些方案使不能直接测量的物体间的距离转化为可以测量的距离。
(着重思考如何把距离的测量转化为三角形全等的问题)学生回忆、交流,尝试着对所学知识进行归纳、梳理。
教师引导学生回忆所学内容,与学生一起进行补充完善,使学生更加明确所学知识。
活动目的:使学生知道数学与利用所学的数学知识,把生活中的实际问题转化为几何问题,知道运用数学建模的方法解决身边的实际问题,并体会其中的转化思想。
第六环节布置作业
活动内容:1.请你找两个被建筑物或河流等隔开的物体,然后想办法测量这两个物体之间的距离,并说明利用什么数学知识或数学原理。
2.找些相关习题(略)。