圆单元检测试题
- 格式:doc
- 大小:147.50 KB
- 文档页数:2
圆单元测试题及答案解析一、选择题1. 下列哪个选项不是圆的性质?A. 圆周角等于它所对的弧的一半B. 圆的直径是圆的最长弦C. 圆的半径是圆心到圆周上任意一点的距离D. 圆的周长与直径的比值是一个常数答案:A2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 2rD. C = πd答案:B3. 如果圆的半径为3,那么它的直径是:A. 6B. 9C. 12D. 15答案:A二、填空题4. 圆的面积公式是 _______。
答案:A = πr²5. 一个圆的半径是4厘米,那么它的周长是 _______ 厘米。
答案:25.12三、简答题6. 圆的切线有哪些特点?答案:圆的切线在圆上只有一个接触点,且在该点的切线与半径垂直。
7. 圆的内接四边形有哪些性质?答案:圆的内接四边形的对角互补,即一个内角等于其对角的补角。
四、计算题8. 已知圆的半径为5厘米,求圆的周长和面积。
答案:周长 C = 2πr = 2 × 3.14 × 5 = 31.4 厘米;面积 A = πr² = 3.14 × 5² = 78.5 平方厘米。
9. 一个圆的周长是44厘米,求这个圆的半径。
答案:半径r = C / (2π) = 44 / (2 × 3.14) ≈ 7 厘米。
五、证明题10. 证明:圆的内接四边形的对角线互相平分。
答案:设圆内接四边形ABCD,连接对角线AC和BD。
由于ABCD是圆内接四边形,所以∠A + ∠C = 180°,同理∠B + ∠D = 180°。
根据圆周角定理,∠BAC和∠BDC是圆心角的一半,所以它们相等。
同理∠CAD和∠ABD也相等。
因此,△ABC和△ADC是全等的,所以AC平分BD。
同理,BD平分AC。
所以圆的内接四边形的对角线互相平分。
六、应用题11. 一个圆形花坛的直径是20米,求花坛的周长和面积。
圆单元测试卷一、填空(第12题每格0.5分,其余每空1分,共35.5分)。
1.从圆心到圆上任意一点的线段叫( )。
通过()并且()都在()的线段叫做直径。
圆的位置是由()确定的,圆的大小决定于()的长短。
2.在同一个圆里,所有的半径(),所有的()也都相等,直径等于半径的()。
3.圆周率表示同一圆内()和()的倍数关系,它用字母()表示,保留两位小数后的近似值是()。
4.在同一个圆内可以画()条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是()厘米。
5.在长6厘米,宽4厘米的长方形内剪下一个最大的圆,这个圆的周长是(),面积是(),还剩下面积( )。
6.一个圆环,外圆半径是6分米,内圆半径4分米,圆环的面积是()。
7.甲圆直径长8厘米,是乙圆直径的40%。
乙圆的周长是()。
8.一个圆的半径是8厘米,这个圆面积的是()平方厘米。
9.大圆的半径等于小圆直径,则大圆面积是小圆面积的()倍,小圆周长是大圆周长的()。
10.在一张长32厘米,宽16厘米的长方形内画半径是4厘米的圆,这样的圆最多能画()个,这些圆的面积和是()。
11.圆是()图形,它有()对称轴。
正方形有()条对称轴,长方形有()条对称轴,等边三角形有()条对称轴。
12.填表:二、判断题。
(9分)1.圆的周长是它的直径的π倍。
()2.半径为1厘米的圆的周长是3.14厘米。
()3.一个圆的周长是12.56厘米,面积是12.56平方厘米。
()4.圆的半径由6分米增加到9分米,圆的面积增加了45平方分米。
()5.当长方形、正方形、圆的周长相等时,圆的面积最大。
()6.水桶是圆形的。
()7.半个圆的周长就是圆周长的一半。
()8.所有的直径都相等。
()9.π=3.14.()三、画一画。
(共7.5分)1.以O为圆心,画一个直径是 2.下面是正方形,在它的内4厘米的圆。
部画一个最大的圆。
·O3. 画出下列图形的所有对称轴。
(每条0.5分)四、计算下列各圆的周长。
《第24章圆》单元检测试卷(一)姓名:________班级:_______得分:______一选择题:1.下列说法不正确的是()A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧2.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°第2题图第3题图第4题图3.如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为4m,水面最深地方的高度为1m,则该输水管的半径为()A.2mB.2.5mC.4mD.5m4.如图,⊙O的直径CD垂直于弦AB于点E,且CE=2,OB=4,则AB的长为()A. B.4 C.6 D.5.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm 的长为半径作圆,则⊙C与AB的位置关系是( )A.相离B.相切C.相交D.相切或相交第5题图第6题图6.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°7.如图,Rt△AB′C′是Rt△ABC以点A为中心逆时针旋转90°而得到的,其中AB=1,BC=2,则旋转过程中弧CC′的长为( )A.πB.π C.5π D.π第7题图第8题图第9题图8.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,若∠P=40°,则∠ACB度数是( )A.80°B.110°C.120°D.140°9.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3B.2.4C.2.5D.2.610.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分第10题图第11题图第12题图11.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2mB.3mC.6mD.9m12.如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,AC=2,则BD的长度为()A.1B.C.D.13.如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为()A.πB.πC.πD.π第13题图第14题图第15题图14.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB 于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.π﹣1D.π﹣215.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A. B. C.或 D.或或17.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5B.2:5C.:2D.:18.如图,点A、B分别在x轴、y轴上(),以AB为直径的圆经过原点O,C是的中点,连结AC,BC.下列结论:①; ②若4,OB =2,则△ABC的面积等于5; ③若,则点C的坐标是(2,),其中正确的结论有()A.3个B.2个C.1个D.0个19.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A 点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()20.如图,以为圆心,半径为2的圆与轴交于、两点,与轴交于、两点,点为⊙上一动点,,垂足为.当点从点出发沿顺时针运动到点时,点所经过的路径长为()(A)(B)(C)(D)二填空题:21.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(2008•庆阳)图中△ABC 外接圆的圆心坐标是_______.第21题图第22题图第23题图22.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=_______.23.如图,AB为⊙O的直径,∠E=20°,∠DBC=50°,则∠CBE= °.24.在Rt△ABC中,∠C=90°,AC=5,BC=12,若以C点为圆心、r为半径所作的圆与斜边AB只有一个公共点,则r的范围是.第24题图第25题图第26题图25.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.26.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________。
北师大版六年级数学上册第一单元《圆》检测卷满分:100分时间:70分钟一、选择题(每小题2分,共16分)1.要剪一个面积是12.56平方厘米的圆形纸片,至少需要面积是()平方厘米的正方形纸片。
A.12.56 B.14 C.16 D.202.用同样长的铁丝围成一个面积最大的形状,应当围成()。
A.等边三角形B.正方形C.长方形D.圆3.用圆规画圆,圆规两脚张开的距离是所画圆的()。
A.半径B.圆心C.直径D.无答案4.在同一个圆内直径等于半径的()。
A.一半B.2倍C.相等5.圆内最长的线段有()条。
A.1 B.4 C.无数6.在长10厘米,宽8厘米的铁皮里剪一个最大的圆,圆的直径是()。
A.10 cm B.5 cm C.16 cm D.8 cm7.在一个长为6厘米、宽为4厘米的长方形中,画一个最大的圆,圆的半径是()。
A.4厘米B.2厘米C.3厘米8.用圆规画一个周长是15.7厘的圆,圆规两脚间的距离是()。
A.2厘米B.2.5厘米C.4厘米D.5厘米二、填空题(每空1分,共19分)9.一个圆形花坛的周长是50.24米,这个花坛的直径是(),面积是()。
10.在一个边长为40厘米的正方形中画一个最大的圆,圆的面积是()平方厘米。
11.圆的()决定圆的大小,()决定圆的位置。
12.已知下图正方形的面积是28平方厘米,求阴影部分的面积。
解决问题的关键是求出圆的面积。
此时,我们求不出圆的半径,但能把正方形分成四个相等的小正方形,求出小正方形的面积是()平方厘米,它恰好是圆半径的平方,从而可求出圆面积是()平方厘米,进而可求出阴影部分的面积是()平方厘米。
13.时针长3cm,分针长6cm,经过三小时后,时针针尖走了()cm,时针扫过的面积是()。
分针针尖走了()cm,分针扫过的面积是()。
14.()叫做半径,半径用字母()表示。
15.如果在长24cm,宽16cm的长方形纸上画一个最大的半圆,这个半圆的周长是(),面积是()。
(一)课题:第一单元圆的测试题1.请写出元的直径和半径的关系(用字母表示):2.圆的周长公式用字母表示为(1)(2)3.圆的面积公式用字母表示为:4.求出下列圆的周长和面积:直径为20cm 半径为4dm 直径为80mm 半径3m周长:面积:1.画一个半径是1.5厘米的圆。
(1)用字母标出圆心、半径和直径(2)画出它的一条对称轴2.计算3.14×2= 3.14×5= 3.14×4= 3.14×6=3.14×8= 3.14×3= 3.14×9= 3.14×7=2.日本富士山是世界最著名的火山之一,底座直径约40千米,富士山的占地面积约是多少平方千米?3.天坛公园中的回音壁呈圆形。
它的内圆半径是32.5米,周长是多少米?4.一粒小石子投到平静的水中,水波大约可传5米;一片落叶掉到水中,水波大约可传1米。
哪种物体产生的水波面积大?大多少?5.餐厅有两种圆桌,小圆桌桌面直径是1.6米,是大圆桌的4/5。
(1)小圆桌与大圆桌周长比是多少?(2)大圆桌面积比小圆桌大约大多少平方米?(得数保留两位小数)6.一个圆形花坛,原来直径是15米,扩建后的直径与原来的比是4:3.扩建后花坛的周长和面积各是多少?(二)新青岛版(五四制)小学五年级下册数学完美的图形圆的综合测试题一、填空1.一个圆形桌面的直径是 2米,它的面积是()平方米。
2.已知圆的周长c,求d=(),求r=()。
3.圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。
4.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。
5.大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。
6.一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。
7.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米;再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。
人教版六年级数学上册第五单元《圆》检测卷满分:100分时间:90分钟一、选择题(每小题2分,满分16分)1.1张圆形纸片至少对折()次,才能找到圆心。
A.1B.2C.3D.02.下水道的井盖设计成圆形,主要是因为()。
A.美观B.周长相等C.直径相等,怎么放都掉不下去3.如图,从A到B沿大圆周走比较近,还是沿小圆周走比较近?正确答案是()。
A.沿大圆周走近B.沿小圆周走近C.一样近D.无法判断4.同学们在玩套圈游戏,哪种站法最公平?()。
A.B.C.5.一个周长是43.96cm的圆,半径增加了5cm,面积增加了()。
A.153.86cm2B.452.16cm2C.298.3cm2D.518.1cm26.下图是一个轴对称图形,长方形的长和宽的比是7∶4,则小圆面积和大圆面积的比是()。
A.3∶4B.3∶7C.4∶7D.9∶167.豆豆家的一个圆形餐桌(如图),桌面面积大约是50平方分米,妈妈要为这个餐桌配一块正方形桌布,把桌面全覆盖上,商店有以下四种规格的桌布,她应该选择边长至少是()的桌布。
A.15厘米B.7分米C.9分米D.12分米8.下图的三个圆环中,内圆和外圆的直径比值相等的是()。
A.(1)和(3)B.(1)和(2)C.(2)和(3)D.以上答案均不对二、填空题(每小题2分,满分16分)9.用圆规画一个周长是50.24cm的圆,圆规两脚间的距离是()cm,所画圆的面积是()cm2。
10.用圆规画一个周长是12.56cm的圆,圆规两角的距离是()cm,这个圆的面积是()cm2。
11.“五角钱”(猜一数学图形)(),这个图形的周长用字母表示()。
12.李师傅想把3根横截面直径都是10厘米的圆木用铁丝紧紧地捆绑在一起(如图),捆一圈(接头处不计)至少需铁丝()厘米。
13.在一个周长是64cm的正方形纸片内,剪一个最大的圆,这个圆的半径是()cm,这个圆的面积是()cm2。
14.在一块长5分米、宽4分米的长方形铁板上剪一个最大的圆,这个圆的面积是()平方分米。
圆单元试题及答案1. 圆的周长公式是什么?- 答案:圆的周长公式是 \( C = 2\pi r \),其中 \( C \) 代表周长,\( \pi \) 是圆周率,\( r \) 是圆的半径。
2. 已知圆的半径为5厘米,求其周长。
- 答案:根据周长公式 \( C = 2\pi r \),将半径 \( r = 5 \) 厘米代入公式,得 \( C = 2 \times \pi \times 5 \) 厘米。
计算结果约为 \( C = 31.42 \) 厘米。
3. 圆的面积公式是什么?- 答案:圆的面积公式是 \( A = \pi r^2 \),其中 \( A \) 代表面积,\( \pi \) 是圆周率,\( r \) 是圆的半径。
4. 计算半径为3厘米的圆的面积。
- 答案:根据面积公式 \( A = \pi r^2 \),将半径 \( r = 3 \) 厘米代入公式,得 \( A = \pi \times 3^2 \) 平方厘米。
计算结果约为 \( A = 28.27 \) 平方厘米。
5. 一个圆的直径是10厘米,求其半径。
- 答案:圆的半径是直径的一半,所以半径 \( r = \frac{d}{2} \),其中 \( d \) 是直径。
将直径 \( d = 10 \) 厘米代入公式,得\( r = \frac{10}{2} \) 厘米,即半径为5厘米。
6. 圆心角为90度的扇形,其面积是整个圆面积的多少?- 答案:圆心角为90度的扇形面积是整个圆面积的\( \frac{90}{360} \)。
因为一个圆有360度,所以90度的扇形面积是整个圆面积的 \( \frac{1}{4} \)。
7. 已知一个圆的面积是78.5平方厘米,求其半径。
- 答案:使用面积公式 \( A = \pi r^2 \),将面积 \( A = 78.5 \) 平方厘米代入公式,解得 \( r^2 = \frac{A}{\pi} \)。
圆单元测试题及答案一、选择题(每题5分,共20分)1. 圆的周长公式是()。
A. C = 2πrB. C = πdC. C = 2πdD. C = dπ答案:A2. 圆的面积公式是()。
A. A = πr²B. A = 2πrC. A = πd²D. A = 2πd答案:A3. 半径为3的圆的周长是()。
A. 6πB. 9πC. 18πD. 36π答案:B4. 半径为4的圆的面积是()。
B. 64πC. 32πD. 256π答案:A二、填空题(每题5分,共20分)1. 半径为5的圆的周长是______。
答案:10π2. 直径为8的圆的面积是______。
答案:16π3. 圆周率π的近似值是______。
答案:3.141594. 半径为7的圆的直径是______。
答案:14三、解答题(每题10分,共20分)1. 已知一个圆的半径为6,求它的周长和面积。
答案:周长:C = 2πr = 2 × 3.14159 × 6 = 37.69908面积:A = πr² = 3.14159 × 6² = 113.0972. 已知一个圆的直径为14,求它的半径、周长和面积。
半径:r = d/2 = 14/2 = 7周长:C = πd = 3.14159 × 14 = 43.98226面积:A = πr² = 3.14159 × 7² = 153.93804四、计算题(每题15分,共30分)1. 一个圆的周长是44π,求它的半径。
答案:半径:r = C / (2π) = 44π / (2 × 3.14159) = 22 2. 一个圆的面积是78.5π,求它的半径。
答案:半径:r = √(A / π) = √(78.5π / 3.14159) = 5。
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.22.如图,在中,弦、于点,且.求证:.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.参考答案一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】由在同圆或等圆中,的长度=的长度,根据弧长公式得到它们所对的圆心角相等,再根据在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,即可对选项进行判断.【详解】∵在同圆或等圆中,的长度=的长度,∴弧AB和弧CD所对的圆心角相等,∴的度数等于的度数;∴和是等弧;∴所对的弦的弦心距等于所对的弦的弦心距.故选D.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交【答案】D【解析】【分析】由P、Q是直线l上的两个不同的点,且OP=5,⊙O的半径为5,可得点P在⊙O上,直线l与⊙O相切或相交;若OQ=5,则直线l与⊙O相交.【详解】∵OP=5,⊙O的半径为5,∴点P在⊙O上,故A错误;∵P是直线l上的点,∴直线l与⊙O相切或相交;∴若相切,则OQ>5,且点Q在⊙O外;若相交,则点Q可能在⊙O上,⊙O外,⊙O内;故B、C错误.∴若OQ=5,则直线l与⊙O相交;故D正确.故选D.【点睛】此题考查了直线与圆的位置关系,注意掌握分类讨论思想的应用是解题关键.3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】考点:垂径定理;勾股定理.分析:根据垂径定理计算.解答:解:如图OD=OA=OB=5,OE⊥AB,OE=3,∴DE=OD-OE=5-3=2cm,∴点D是圆上到AB距离为2cm的点,∵OE=3cm>2cm,∴在OD上截取OH=1cm,过点H作GF∥AB,交圆于点G,F两点,则有HE⊥AB,HE=OE-OH=2cm,即GF到AB的距离为2cm,∴点G,F也是圆上到AB距离为2cm的点.故选C.点评:本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.【答案】B【解析】【分析】首先根据题画出图形,然后在优弧上取点D,连接AD,BD,根据圆周角的性质,即可求得∠ADB的度数,又由圆的内接四边形的性质,即可求得∠ACB的度数.【详解】如图:在优弧上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=55°,∵四边形ADBC是⊙O的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=125°.故选B.【点睛】此题考查了圆周角定理与圆的内接四边形的性质,根据题意作出图形,掌握数形结合思想的应用及圆周角定理是解题关键.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、【答案】D【解析】试题解析:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OM⊥CD,∴∠COM=30°,∵OC=6,∴OM=6cos30°=3,∴=2π故选D.考点:1.正多边形和圆;2.弧长的计算.6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米【答案】B【解析】【分析】根据垂径定理可知AD的长,设半径为r,利用勾股定理列方程求出r的值即可.【详解】∵CD⊥AB,∴由垂径定理得AD=6米,设圆的半径为r,则OD2+AD2=OA2,即(9-r)2+62=r2,解得r=米.故选B.【点睛】考查了垂径定理、勾股定理.根据题意构造一个由半径、半弦、弦心距组成的直角三角形进行计算是解题关键.7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或【答案】A【解析】【分析】根据⊙O的半径为3,OP=2,OQ=3,OR=4,可以知道点P在圆内,点Q在圆上,点R在圆外,因而这三点中P的一点任意作直线总是与⊙O相交.【详解】∵的半径为,,,,∴Q点在圆上;R点在圆外;P点在圆内,∴经过P点任意作直线总是与⊙O相交.故选A.【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.准确判断P、Q、R三点与⊙O的位置关系是解决本题的关键.8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.【答案】B【解析】【分析】新月形ACED的面积是圆O半圆的面积-弓形CED的面积,弓形CED的面积又=扇形BCD面积-三角形BCD 的面积,然后依面积公式计算即可.【详解】∵OC=OB=R,,∴BC=R,)∴新月形ACED的面积=S半圆-(S扇形BCD-S△BCD=-(-)=R2.故选B.【点睛】本题的关键是看出:新月形ACED的面积是圆O半圆的面积-弓形CED的面积,然后逐一求面积即可.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.【答案】C【解析】【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴的度数是120°,∵C、D是上的三等分点,∴弧CD与弧ED的度数都是40度,∴∠COE=80°,故选:C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D【答案】A【解析】【分析】根据三角形外角的性质得到∠BEC>∠BDC,根据圆周角定理得到∠BAC=∠BEC,得到答案【详解】如图:连接AE,∵∠BEA是△ADE的外角,∴∠BEA>∠D,∵∠C=∠BEA,∴∠C>∠D,故A选项正确,则B、C、错误,∵不确定D点的位置,∴∠C不一定等于2∠D,故D选项错误,故选A.【点睛】本题考查的是圆周角定理和三角形的外角的性质的应用,掌握同弧所对的圆周角相等和三角形的一个外角大于与它不相邻的任何一个内角是解题的关键.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.【答案】圆外,圆上,圆内【解析】【分析】由点是的外心,可知O为△ABC的外接圆的圆心,因为∠C=90°,由圆周角定理可知AB为外接圆的直径,根据勾股定理可求出AB的长,根据直角三角形斜边中线等于斜边一半可知OC的长度,根据半径的长判断点C的位置即可.【详解】∵,点是的外心,∴AB为⊙O的直径,且O为AB中点,∵,,∴AB==5,∴OC=2.5,∵2.5>2;2.5=2.5; 2.5<3,∴以、、为半径作,则点与的位置关系分别是圆外、圆上、圆内.故答案为:圆外、圆上、圆内【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.根据圆周角定理确定O点的位置是解题关键.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.【答案】【解析】【分析】如图:作OE⊥AB于E,根据垂径定理可知CE=CD,AE=AB,根据AC=AE-CE求出AC的长即可.【详解】如图:作OE⊥AB于E,∴根据垂径定理得:CE=CD=3,AE=AB=5,∴AC=AE-CE=2.故答案为:2【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,熟练掌握垂径定理是解题关键.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.【答案】【解析】【分析】根据同圆中,等弧所对的圆心角相等可知∠BOC的度数,即可求出∠AOC的度数.【详解】∵,∠BOE=55°,∴∠COD=∠DOE=∠BOE=55°,∴∠BOC=165°,∴∠AOC=180°-165°=15°,故答案为:15【点睛】本题考查圆周角定理,在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.【答案】【解析】【分析】设圆心为O,连接AO,BO,AC,AE,易证三角形AOB是等边三角形,确定∠GFE=∠EAC=30°,再利用弧长公式计算即可.【详解】如图所示:设圆心为O,连接AO,BO,AC,AE,∵AB=,AO=BO=,∴AB=AO=BO,∴△AOB是等边三角形,∴∠AOB=∠OAB=60°同理:△FAO是等边三角形,∠FAB=2∠OAB=120°,∠DAF=120°-90°=30°,即旋转角为30°,∴∠EAC=30°,∠GFE=∠FAD=120°-90°=30°,∵AD=AB=,∴AC=2,∴当点C第一次落在圆上时,点C运动的路径长为=()π;故答案为:()π【点睛】本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)【答案】【解析】【分析】根据,,,可求出△ABC的其余边长,表面积为一个圆锥的侧面积+一个圆的底面积+圆柱的侧面积,按照公式计算即可.【详解】∵Rt△ABC中,∠C=90°,∠A=30°,AB=10,∴BC=5,AC=5,∴所得几何体的表面积为:π×5×10+π×52+2π×5×5=75π+50.故答案为75π+50.【点睛】考查圆锥的计算;画出相关图形,判断出表面积的组成是解决本题的关键.16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.【答案】【解析】【分析】先根据直角三角形两锐角互余求出∠BOD,再根据圆周角定理∠DCB=∠BOD即可得答案.【详解】∵OD⊥BC交弧BC于点D,∠ABC=30°,∴∠BOD=90°-∠ABC=90°-30°=60°,∴∠DCB=∠BOD=30°.故答案为:30【点睛】本题主要考查圆周角定理,在同圆或等圆中同弧所对的圆周角的度数是圆心角的一半,熟练掌握圆周角定理是解题关键.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)【答案】【解析】【分析】根据含30度的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°;点A先以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线上时,点A所经过的路线的长.【详解】∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC由现在的位置向右无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长, ∴点A经过的路线长=×3+×2=(4+)π.故答案为:(4+)π.【点睛】本题考查了旋转的性质与弧长的计算,解题的关键是熟练的掌握旋转的性质与弧长的计算方法. 18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.【答案】【解析】【分析】将圆柱体展开,然后利用两点之间线段最短解答即可.【详解】圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2cm,∴长方形的宽即是圆柱体的底面周长:2π×2=4πcm;又∵圆柱高为9πcm,∴小长方形的一条边长是3πcm;根据勾股定理求得AC=CD=DB=5πcm;∴AC+CD+DB=15πcm;故答案为:15π.【点睛】本题主要考查了圆柱的计算、平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.【答案】【解析】【分析】先求出矩形对角线的长,然后由B、C、D与⊙A的位置,确定⊙A的半径的取值范围.【详解】根据题意画出图形如下所示:∵AB=CD=5,AD=BC=12,∴AC=BD==13.∵B、C、D中至少有一个点在⊙A内,且至少有一个点在⊙A外,∴点B在⊙A内,点C在⊙A外.∴5<r<13.故答案是:5<r<13.【点睛】本题考查的是点与圆的位置关系,要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.【答案】(1). (2).【解析】【分析】过O作OC⊥AB交AB于C点,根据垂径定理可知OC垂直平分AB,根据OA=OB,∠AOB=120°可求出∠OAB=30°,根据30°角所对直角边等于斜边一半即可求得圆心到的距离;根据勾股定理求出AC的长即可求出AB的长.【详解】过O作OC⊥AB交AB于C点,如图所示:由垂径定理可知,OC垂直平分AB,∵OA=OB,∠AOB=120°∴∠OAB=30°∴OC=OA=cm∴由勾股定理可得:AC= =cm∴AB=2AC=5cm.故答案为:;5;【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.【答案】水面下降了米.【解析】【分析】如图:过点O作ON⊥CD于N,交AB于M,先根据垂径定理求得AM、CN,然后根据勾股定理求出OM、ON的长,即可得出结论【详解】如图,下降后的水面宽CD为6m,连接OA,OC,过点O作ON⊥CD于N,交AB于M.∴∠ONC=90°.∵AB∥CD,∴∠OMA=∠ONC=90°.∵AB=8m,CD=6m,∴AM=AB=4,CN=CD=3,在Rt△OAM中,∵OA=5,∴OM==3.同理可得ON=4,∴MN=ON-OM=1(米).答:水面下降了1米.【点睛】本题考查的是垂径定理的应用以及勾股定理的应用,熟知垂直于弦的直径平分弦,并且平分这条弦所对的两条弧是解答此题的关键.22.如图,在中,弦、于点,且.求证:.【答案】见解析【解析】【分析】根据,可证明,进而证明AC=BD,通过证明即可证明结论.【详解】∵,∴,,∴在与中,∵,∴,∴.【点睛】本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质,熟练掌握,圆心角、弧、弦的关系是解题关键.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.【答案】.【解析】【分析】由于三条弧所对的圆心角的和为180°,根据扇形的面积公式可计算出三个扇形的面积和,而三条弧与边AB 所围成的阴影部分的面积=S△ABC-三个扇形的面积和,再利用三角形的面积公式计算出△ABC的面积,然后代入即可得到答案.【详解】∵∠C=90°,CA=CB=2,∴AC=1,S△ABC==2,∵三条弧所对的圆心角的和为180°,三个扇形的面积和==,∴三条弧与边AB所围成的阴影部分的面积=S△ABC-三个扇形的面积和=2-,【点睛】本题考查扇形面积,熟练掌握面积公式并明确三条弧所对的圆心角的和为180°是解题关键.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.【答案】圆心到的距离为.【解析】【分析】连接,,过点作于点,根据圆周角定理可知∠BOC=60°,进而证明△OBC是等边三角形,根据垂径定理可知CD的长度,利用勾股定理求出OD的长即【详解】连接,,过点作于点,∵,∴.∵,∴是等边三角形,∴,∵OD⊥BC,∴CD=BC=2,∴=,即圆心到的距离为.【点睛】本题考查圆周角定理及垂径定理,在同圆中,同弧所对的圆周角的度数等于圆心角的一半,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握定理是解题关键.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.【答案】(1)见解析;(2)见解析;(3)x=5,.【解析】【分析】(1)根据直径所对的圆周角是90°可知∠ACB=∠AFO=90°,由平行线判定定理即可证明OF//BC;(2)由可知∠CBE=∠FOA,利用,,即可证明;(3)在Rt△OCE中,利用勾股定理列方程即可求出x的值,根据OC=2OE可知∠OCE=30°,即可求出∠COD的度数,利用扇形面积及三角形面积公式求出阴影面积即可.【详解】证明:∵为的直径,∴又∵∴证明:∵∴∠CBE=∠FOA∵,,∴解:连接.设,∵∴.在中,,根据勾股定理可得:解得:,即,∵OC=5+5=10,∴OC=2OE,∴∠OCE=30°,∴,∴扇形的面积是:的面积是:∴阴影部分的面积是:.【点睛】本题考查圆周角定理、垂径定理及扇形面积,熟练掌握定理和公式是解题关键.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.【答案】(1);(2)见解析;(3).【解析】【分析】(1)连接和,由OE=BC,可知OE=BE,进而可知∠OBE=45°,同理可证∠OCE=45°,即可证明∠BOC=90°,根据圆周角定理即可求得∠BAC的度数;(2)由折叠性质可知AG=AD=AF,∠AGH=∠AFH=90°,∠DAC=∠CAF,∠BAD=∠BAG,由∠BAD+∠DAC=45°,可证明∠GAF=90°,即可证明四边形AFHG 是正方形;(3)由折叠性质可知,;由(2)可知∠BHC=90°,设AD长为x,利用勾股定理列方程求出x的值即可得解.【详解】(1)连接和;∵,∴;∵,∴,∴;∵,∴;由折叠可知,,,,,∴;∴;∴四边形是正方形;解:由得,,,,;设的长为,则,.在中,,∴;解得,,(不合题意,舍去);∴.【点睛】本题主要考查圆周角定理及折叠性质,在同圆中,同弧所对的圆周角的度数等于圆心角的一半;折叠后的图形与原图形全等,熟练掌握折叠的性质是解题关键.。
圆单元测试题及答案9、圆单元试题(一)一、选择题(共30分)1、如图1,⊙的直径为10,圆心到弦AB的距离的长为3,则弦AB的长是()A、4B、6 、7 D、82、如图2,小明同学设计了一个测量圆直径的工具,标有刻度的尺子A、B在点钉在一起,并使它们保持垂直,在测直径时,把点靠在圆周上,读得刻度E=8,F=6,则圆的直径为()A、12B、10 、1 D、153、如图3,AB为⊙的直径,点在⊙上,若∠B=60°,则∠A等于()A、80°B、50°、40° D、30°4、如图4,P为⊙外一点,PA、PB分别切⊙于A、B,D 切⊙于点E,分别交PA、PB于点、D,若PA=5,则△PD的周长为()A、5B、7 、8 D、105、已知在△AB中,AB=A=13,B=10,那么△AB的内切圆的半径为()A、 B、、2 D、36、已知⊙的半径为4,A为线段P的中点,当P= 7时,点A与⊙的位置关系是()A、点A在⊙内B、点A在⊙上、点A在⊙外 D、不能确定7、过⊙内一点的最长弦为10 ,最短弦长为8 ,则的长为()A、9B、6 、3 D、8、如图5,⊙的直径AB与A的夹角为30°,切线 D与AB的延长线交于点D,若⊙的半径为3,则D的长为()A、6B、、3 D、9、如图6,⊙与x轴相切于原点,平行于y轴的直线交圆于P、Q两点,P点在Q点的下方,若P点的坐标是(2,1),则圆心的坐标是()A、(0,3)B、(0,)、(0,2) D、(0,)10、如图7,⊙1和⊙2内切,它们的半径分别为3和1,过1作⊙2的切线,切点为A,则1 A的长是()A、2B、4 、 D、二、填空题(共30分)11、如图8,在⊙中,弦AB等于⊙的半径,⊥ AB交⊙于点,则∠A= 。
12、如图9,AB、A与⊙相切于点B、,∠A=50゜,P为⊙上异于B、的一个动点,则∠BP的度数为。
13、已知⊙的半径为2,点P为⊙外一点,P长为3,那么以P为圆心且与⊙相切的圆的半径为。
《圆》的单元测试题(第4周)
班别_______学号________姓名________成绩_________
一、选择题:( 3分×5=15分)
1. 如图1,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数是( ) A. 40° B. 50° C. 60° D. 80°
2.已知⊙O 1的半径为5cm ,⊙O 2的半径为3cm ,且圆心距O 1O 2=7cm ,则两圆的位置关系为( ) A.外离 B.外切 C. 相交 D.内切
3.如图2,PA 、PB 分别与⊙O 相切于点A 、B ,OP 交AB 于C ,则图中共有全等三角形的对数是( ) A.2对 B.3对 C.4对 D.不能确定 4. 在直径为6cm 的圆中,120°的圆心角所对的弧长度为( ) A.9πcm B.4πcm C.2πcm D.πcm
5. 已知圆锥的侧面展开图的面积为15πcm 2 ,母线长为5cm ,则圆锥的底面半径为( ) A.
cm 2
3 B.3 cm C.
4 cm D. 6 cm
二、填空题(4分×5=20分)
6.若⊙O 的直径为10厘米,圆心O 到直线AB 的距离为10厘米,则⊙O 与直线AB 的位置关系是
________.
7.两圆相切,圆心距为10cm,已知其中一圆半径为6cm, 则另一圆半径为_______. 8. 如图3,在A B C ∆中,O
是内心,∠BOC=126°,则
A ∠的度数是________. 9.如图4,已知A
B 与⊙O 相切于
C ,若OA=OB=5cm ,AB=8cm ,则⊙O 的半径为_______。
10. 使用曲尺检验工件的凹面,成半圆时为合格, 如图所示的三种情况中合格的是_______。
A B C
三、解答题:(共65分)
11.(7分×2=14分)作图题:
(1)已知: ,
试找出 所在的圆的圆心。
(2)如图,请用尺规法作出这个三角形的外接圆。
12. (10分) 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠BAC=20°,
求∠P 的度数。
13.( 10分)如图5,AB 是⊙O 的直径,该圆的半径为6.5cm ,弦AC 长5cm ,求弦BC 的长。
O
C
B
A
︵
AB ︵
AB
图1
图2
图3
图4
图5
P
A
C
14.(10分)如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF。
请你找出线段OE与OF的数量关系,并给予证明。
15. (10分)如图,设AB为⊙O的直径,如果图上点D恰使∠CAF=∠B.
直线EF与⊙O相切吗?若相切,请给予证明.
16. (1分)如图所示,AB是⊙O的直径,BC平分∠ABD交⊙O于点C,过点C作⊙O的切线CE交BD的延长线于点D.
(1)试判断△BCE的形状,并说明理由.
(2)连结AC,若CE=4,DE=3,求AC的长
附加题:(10分)
如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆于点E. 求证:(1)IE=BE. (2)IE是AE和DE的比例中项.
E A。