分子印迹与固相萃取
- 格式:pdf
- 大小:579.55 KB
- 文档页数:7
分子印迹固相萃取剂的合成及性能研究的开题报告摘要:分子印迹技术是一种特异性较强的化学分析方法,已经广泛应用于生物医药、环境监测、食品安全等领域。
其中分子印迹固相萃取技术以其高效、简便、灵敏的特点,已经成为分子印迹技术中的重要分支。
本文将对分子印迹固相萃取剂的合成及性能研究进行探讨。
关键词:分子印迹固相萃取;合成;性能研究一、研究背景分子印迹技术是一种基于分子识别的高级分析技术,近年来得到了广泛的关注和应用。
分子印迹技术的基本原理是通过先将模板分子与功能单体在反应体系中进行聚合反应,然后将模板分子从聚合物中移除得到分子印迹聚合物。
这种聚合物在经过特定的激活步骤之后可以表现出特异性与高选择性地识别模板分子。
目前,分子印迹技术已经成功应用于药物检测、环境监测、食品检测等领域。
其中,分子印迹固相萃取技术因其操作简单、高效、重现性好等优点,已经成为分子印迹技术领域中的一个重要分支。
二、研究内容本文主要研究分子印迹固相萃取剂的合成及性能研究,主要包括以下方面:1.合成分子印迹固相萃取材料:选择适当的模板分子、功能单体以及交联剂,通过自由基聚合法、溶胶凝胶法、熔融近共混法等方法,制备出具有特异性识别模板分子的分子印迹固相萃取材料。
2.评价分子印迹固相萃取材料的性能:利用高效液相色谱、气相色谱、液质联用等分析方法,对合成的分子印迹固相萃取材料的吸附、快速性、选择性和再现性等基本性能进行评价。
3.应用分子印迹固相萃取材料分析实际样品:选取药物、环境污染物等典型样品,利用合成的分子印迹固相萃取材料对其进行提取和富集,然后使用高效液相色谱、气相色谱等分析方法对其进行分析。
三、研究意义本文旨在研究分子印迹固相萃取剂的合成及性能研究。
通过合成高效的分子印迹固相萃取材料,可以实现对目标样品的高效、灵敏、特异性地分离和富集。
该研究对推动分子印迹技术的发展和应用具有重要的意义。
四、研究方法1.实验仪器:干燥箱、恒温水浴器、离心机、分光光度计、高效液相色谱仪等。
分子印迹固相萃取小柱
分子印迹固相萃取小柱是一种应用了分子印迹技术的固相萃取柱。
这种小柱主要用于分离和纯化目标分子,例如在样品预处理、色谱分析、生物医药等领域中。
分子印迹技术是一种通过高分子聚合物的合成和识别过程,制备出对特定目标分子具有特异性识别能力的聚合物的技术。
这种技术可以用于制备分子印迹固相萃取小柱,通过对目标分子的特异性识别,实现对目标分子的高效分离和纯化。
分子印迹固相萃取小柱的主要优点包括:
1. 特异性识别:由于分子印迹技术的原理,小柱可以对目标分子进行特异性识别,从而实现高效分离和纯化。
2. 高吸附容量:由于聚合物的合成过程中可以控制聚合物的结构和性质,因此可以制备出具有高吸附容量的分子印迹固相萃取小柱。
3. 可重复使用:与常规的吸附剂相比,分子印迹固相萃取小柱具有较高的耐用性,可以在多次使用后仍保持良好的性能。
4. 操作简便:使用分子印迹固相萃取小柱进行分离和纯化操作简便,可以快速地完成样品的处理。
总之,分子印迹固相萃取小柱是一种高效、特异性的分离和纯化工具,具有广泛的应用前景。
如需了解更多信息,建议咨询专业人士。
分子印迹固相萃取什么是分子印迹固相萃取?分子印迹固相萃取是一种基于分子印迹技术的固相萃取方法。
分子印迹技术是一种通过特异性识别目标分子的方法,利用模板分子在聚合物基质中形成特定的空腔结构,从而实现对目标分子的选择性识别和提取。
分子印迹固相萃取的原理是利用具有亲和性的分子印迹聚合物固定在固相载体上,通过分子印迹聚合物与目标分子的特异性相互作用来实现对目标分子的萃取和富集。
分子印迹固相萃取的应用领域分子印迹固相萃取技术在分析化学领域具有广泛的应用,主要包括以下几个方面:1. 环境监测分子印迹固相萃取可以应用于环境监测中对水、土壤和大气中的有机污染物的富集和分析。
通过选择合适的模板分子和功能单体,可以实现对特定有机污染物的选择性富集,提高样品的灵敏度和分析效果。
2. 食品安全检测食品中的残留农药、兽药和重金属离子等有害物质对人体健康具有潜在风险。
利用分子印迹固相萃取技术可以实现对食品中有害物质的选择性富集和分析,提高食品安全检测的准确性和可靠性。
3. 药物分析在药物分析领域,分子印迹固相萃取可以用于药物代谢产物的富集和分离,以及药物在体内的动力学研究。
通过选择合适的模板分子和功能单体,可以实现对药物分子的高选择性和高灵敏度的分析。
4. 生物分析分子印迹固相萃取在生物领域的应用主要集中在蛋白质和肽段的富集和分离领域。
通过选择合适的模板分子和功能单体,可以实现对特定蛋白质和肽段的选择性富集和分析,为蛋白质组学研究和生物分析提供更好的方法和手段。
分子印迹固相萃取的优势和挑战分子印迹固相萃取技术具有以下几个优势:1.高选择性:分子印迹聚合物可以通过模板分子的引导和识别实现对目标分子的高选择性富集和分离,减少其它干扰物质的干扰。
2.高灵敏度:由于分子印迹聚合物对目标分子具有特异性识别和富集能力,因此可以实现对目标分子的高灵敏度分析,提高检测的准确性和可靠性。
3.萃取效果稳定:由于分子印迹聚合物具有良好的耐化学性和热稳定性,因此可以在不同条件下保持良好的萃取效果,具有较好的重复性和稳定性。
分子印迹-固相萃取分子印迹技术是一种新型的分子识别技术,其发展于上个世纪八十年代初期。
该技术的作用是快速而可靠地检测分子体系中的特定化合物。
分子印迹技术在实际应用中有广泛的用途,包括环境监测、医药生产、农业生产等。
而固相萃取作为分子印迹技术的重要组成部分,同样在这些领域发挥着重要作用。
固相萃取是从样品矩阵中富集所需成分的技术。
其基本原理是将样品中的目标成分通过特定的化学反应与吸附剂相互作用,使其附着在吸附剂表面,然后将吸附剂与样品分离,并将吸附剂中的目标成分进行洗脱。
分子印迹-固相萃取技术与传统固相萃取相比,具有更高的选择性和灵敏度。
其基础是制备一种特定的分子印迹材料,该材料在操作过程中与目标分子配对,并选择性吸附和提取目标分子。
一旦获得了分子印迹材料,就可以重复使用它来检测同一目标分子。
制备分子印迹材料的方法包括自由基聚合、可控自由基聚合、缩合聚合等技术。
其中,自由基聚合技术是最常用的方法之一。
该方法的基本原理是将单体、交联剂、模板分子和引发剂混合在一起,形成聚合物-模板复合物,经过静置、洗脱等操作后,即得到分子印迹材料。
在分子印迹-固相萃取技术的实际应用中,样品的预处理和提取、分子印迹材料的制备和评价、样品的分析等都是非常重要的环节。
针对不同的样品和目标分子,选择合适的预处理和提取方法,配合高效的分子印迹材料,对于获得准确可靠的分析结果至关重要。
总之,分子印迹-固相萃取技术是一种新兴的分子识别技术,可以用于实现高效、准确的目标分子检测。
随着技术的进一步发展和应用领域的拓展,这一技术在未来有望发挥更加广泛的作用。
分子印迹聚合物固相萃取及其应用摘要:分子印迹作为制备对某一特定的分子(印迹分子或模板分子)具有特异性识别的聚合物的过程,在分离分析、仿生传感器和模拟酶催化等方面具有重要的应用前景。
关键词:分子印迹分子印迹聚合物固相萃取应用前景分子印迹聚合物(molecularly imprinted polymers ,mips)是一种人工合成的具有分子识别能力的新型高分子材料,合成此聚合物的技术是在pauling 的“抗原--抗体”作用学说以及dickey 的“专一性吸附”理论的启发下建立起来的。
此外,它具有稳定的物理化学特性和机械性能,能耐高温、高压;抵抗酸、碱、高浓度离子及有机溶剂的作用,并可以反复使用。
近十几年来,利用基于mips 的技术从环境样品(水和土壤)和生物样品(血液、尿液、动物肝脏、植物)中萃取分析物受到越来越多的关注,并取得了良好的效果,本文主要综述分子印迹聚合物的制备及其在固相萃取中的应用。
一、分子印迹聚合物的制备原理mips 制备的基本原理是,在适当的溶剂中,经交联剂作用,模板分子与一种或几种功能单体形成含有模板分子的聚合物母体,然后通过物理或化学途径除去母体中的模板分子,最终得到分子印迹聚合物(mips)。
二、分子印迹聚合物的制备方法按照单体与模板分子结合方式不同,分子印迹主要可以分为预组织法和自组装法两种基本方法(一)预组织法合成分子印迹聚合物预组织法(preorganization)又称共价法,在此方法中,印迹分子先通过共价键与功能单体相结合,形成单体- 模板分子复合物[1],然后加入交联剂交联聚合,聚合后再通过化学方法使共价键断裂而去除印迹分子。
(二)自组装法合成分子印迹聚合物在制备分子印迹聚合物的过程中,印迹分子与功能单体首先通过一种或几种非共价键作用自组装成具有多点相互作用和确定关系的复合物[2],再加入交联剂和引发剂,聚合后这种相互作用被固定下来,然后通过淋洗除去印迹分子,如此就可以得到分子印迹聚合物。
分子印迹聚合物的制备及固相萃取性能研究的开题报告
一、研究背景
分子印迹技术是一种基于特异性分子识别的分析化学方法,在药物检测、环境监测、生化分析等领域有着广泛的应用。
近年来,随着生物医药、食品安全等领域的不
断发展,对于分子印迹聚合物合成方法和性能研究的需求也在逐渐增加。
固相萃取技术是一种常用的样品前处理方法,其主要原理是在固定的萃取相中提取分析物质,去除不必要的干扰物质,从而提高分析准确度和灵敏度。
分子印迹聚合
物材料具有选择性和特异性,可以作为固相萃取材料,用于样品前处理中的分离与富集。
本课题旨在探究分子印迹聚合物的制备方法及其在固相萃取中的性能,为分子印迹聚合物的应用提供实验数据和理论基础。
二、研究内容
1. 分子印迹聚合物的制备方法研究,包括合适的模板分子的选择、聚合物材料的选择、聚合模板方法的优化等方面。
2. 分子印迹聚合物固相萃取性能的研究,包括富集效果的测定、萃取速度的测定、特异性和选择性的评估等方面。
3. 样品前处理方法的建立,包括对比不同萃取材料的效果、优化样品处理流程等方面。
4. 实际样品的分析测试,主要针对生物医药、食品安全等领域的样品进行分析,评估分子印迹聚合物在实际分析应用中的效果。
三、研究意义
1. 对分子印迹聚合物的制备方法进行深入探究,为分子印迹技术在实际应用中提供更加完善的基础理论支持。
2. 通过分子印迹聚合物固相萃取性能的研究,为固相萃取技术的改进提供实验数据和理论基础。
3. 建立实际样品分析测试方法,为药物、环境、食品等领域的实际分析应用提供技术支持。
·综述·分子印迹整体材料在固相萃取中的应用及展望摘要:分子印迹整体柱结合了分子印迹技术的高立体选择性和整体柱制备过程简单、易于修饰改性、重复性好以及传质速度快等优点, 是固相萃取材料的发展趋势和前沿课题。
介绍了分子印迹聚合物整体材料在与高效液相色谱和毛细管液相色谱法联用技术方面的应用.阐述了固相微萃取技术及其应用。
并对分子印迹整体材料在固相萃取方面的发展趋势作了简要展望.关键词:分子印迹;整体柱;固相萃取;综述Applications of Molecular Imprinted Monolithic Material inSolid-Phase ExtractionAbstract:The molecular imprinted monolithic column is the trend of development and the advanced task of the solid phase extraction materials, due to it combine with high selectivity of the molecular imprinting technology (MIT) and simple preparation, easy modification , high reproducibility and rapid mass transport of the monolithic column. In this paper,the application of molecularly imprinted polymersmonolithic materials in high—performance liquid chromatography (HPLC) and capillary electrochromatography (CEC)were summarized。
个与模板分子在空间结构上完全匹配并含有与模板分子特异性结合的功能基的三维空穴如图这个三维空穴可以选择性地重新与模板分子结合即对模板分子具有专一性识别作用这个三维空穴的空间结构和功能单体的种类是由模板分子的结构和性质决定的由于用不同的模板分子制备的分子印迹聚合物具有不同的结构和性质所以一种印迹聚合物只能与一种分子结合类似于“锁”和“钥匙”也就是说印迹聚合物对该分子具有选择性结合作用图分子印迹与模板聚合类似它们都是利用单体或生成的聚合物与模板分子通过氢键静电结合和范德华力等相互作用经单体聚合后产生具有一定结构的聚合物分子印迹与模板聚合主要的不同之处在于模板聚合是指单体与聚合物模板共同存在下所进行的聚合反应起模板作用的聚合物对聚合反应速度和聚合物的最终结构有着重要和特殊的影响作用能得到具有一定聚合度和规整立体结构的聚合物通常模板聚合是以聚合物为模板而分子印迹聚合物可以以任何分子为模板模板聚合产物通常是线型分子而分子印迹聚合物则是具有高交聚度的热固型高分子分子印迹技术的分类按照单体与模板分子结合方式的不同,分子印迹技术可分为预组织法和自组图首先模板分子与功能单体以共价键的形式形成模板分子的衍生物单体一模板分子复合物这一步相当于分子预组织过程然后交联聚合使功能基固定在聚合物链上除去模板分子后功能基留在空穴中当模板分子重新进入空穴中时模板分子与功能单体上的功能基不是以共价键结合而是以非共价键结合,如同分子自组装,,’上述两种方法虽然可以克服在同一聚合物中同时使用两种功能单体的缺点,但都无法回避预组织法所存在的较为复杂的化学合成步骤分子印迹聚合物的制备分子印迹聚合物的制备技术称为分子印迹技术或称分子模板技术简单地说就是仿照抗体的形成机理在模板分子周围形成一个高交联的刚性高分子除去模板分子后在聚合物的网络结构中留下具有能够发生结合反应的基团对模板客体分子表现高度的选择识别性能与通常的聚合物合成相比分子印迹聚合物的合成有基独特之处其中最主要的有两点①单体必须带有能与印迹分子发生作用的功能基如能与印迹分子生成共价键的基团能与印迹分子产生氢键的基团能与印迹分子发生离子交换作用的基团等而不是像其他聚合物那样先聚合再进行功能基化②这类聚合物一般是高度交联的以确保单体将有利于与印迹分子结合的排。
分子印迹聚合物整体柱合成、表征及其固相微萃取应用研
究的开题报告
一、研究背景
固相微萃取是目前环境、食品等领域中常用的样品前处理方法之一。
而分子印迹聚合物是一种可以特异性识别目标分子的高分子材料,可以用于制备固相微萃取材料。
目前,固相微萃取中常用的材料主要是商业化的氧化硅、活性炭等。
然而这些材料对
于复杂样品的分离、富集等处理效果不够理想,需要更加特异性、高效的材料。
因此,基于分子印迹技术制备高度特异性、选择性的固相微萃取材料成为了当今研究的热点
之一。
二、研究目的
本研究拟通过合成自制的分子印迹聚合物整体柱材料,开发一种新的固相微萃取方法,应用于环境与食品中目标分子的富集、分离等前处理。
三、研究内容
1、合成自制的分子印迹聚合物整体柱材料,优化聚合反应条件,并通过红外光谱、热重分析、扫描电镜等方法对材料进行表征;
2、考察样品前处理条件,确定分子印迹聚合物整体柱材料在固相微萃取中的最
适条件;
3、分别对水样、食品样、环境样等不同类型的样品中目标分子进行富集、分离,并通过高效液相色谱等分析方法进行定性、定量分析。
四、研究意义
本研究将开发一种新型的固相微萃取方法,该方法基于分子印迹技术制备的聚合物整体柱材料,具备高度特异性、选择性和灵敏度。
不仅可应用于环境监测、食品安
全等领域的样品前处理,也具有广泛的应用前景。
Journal of Chromatography B,878 (2010) 1700–1706Contents lists available at ScienceDirectJournal of ChromatographyBj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c h r o mbSolid-phase extraction of tramadol from plasma and urine samples using a novel water-compatible molecularly imprinted polymerMehran Javanbakht a ,∗,Abdol Mohammad Attaran b ,Mohammad Hadi Namjumanesh a ,Mehdi Esfandyari-Manesh a ,Behrouz Akbari-adergani caDepartment of Chemistry,Amirkabir University of Technology,Tehran,Iran bDepartment of Chemistry,Payamenoor University,Delijan,Iran cFood &Drug Laboratory Research Center,Food &Drug Department,Ministry of Health and Medical Education,Tehran,Irana r t i c l e i n f o Article history:Received 23December 2009Accepted 8April 2010Available online 24 April 2010Keywords:Molecularly imprinted polymer Solid-phase extraction Tramadol Plasma Urinea b s t r a c tIn this study,a novel method is described for the determination of tramadol in biological flu-ids using molecularly imprinted solid-phase extraction (MISPE)as the sample clean-up technique combined with high-performance liquid chromatography (HPLC).The water-compatible molecularly imprinted polymers (MIPs)were prepared using methacrylic acid as functional monomer,ethylene gly-col dimethacrylate as cross-linker,chloroform as porogen and tramadol as template molecule.The novel imprinted polymer was used as a solid-phase extraction (SPE)sorbent for the extraction of tramadol from human plasma and urine.Various parameters affecting the extraction efficiency of the polymer have been evaluated.The optimal conditions for the MIP cartridges were studied.The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol.The limit of detection (LOD)and limit of quantification (LOQ)for tramadol in urine samples were 1.2and 3.5g L −1,respectively.These limits for tramadol in plasma samples were 3.0and 8.5g L −1,respectively.The recoveries for plasma and urine samples were higher than 91%.© 2010 Elsevier B.V. All rights reserved.1.IntroductionTramadol hydrochloride,trans -(±)-2-[(dimethylamino)meth-yl]-1-(3-methoxyphenyl)-cyclohexanol hydrochloride,is a syn-thetic analgesic (pain reliever).Like morphine,tramadol binds to receptors in the brain (opioid receptors)and inhibits reuptake of norepinephrine and serotonin,which appears to contribute to the drug’s analgesic effect.Tramadol,like other narcotics used for the treatment of pain,may be abused.Its therapeutic plasma concen-tration is in the range of 100–300g L −1[1].Tramadol is rapidly and almost completely absorbed after oral administration but its absolute bioavailability is only 65–70%due to first-pass metabolism [2].The drug has been quantified using different methods such as UV–vis spectrophotometry [3,4],voltammetry and amperometry [5],elecrophoresis with fluorescence [6]or electrochemilumines-cence [7]detection,gas chromatography with flame ionization [8],mass spectrometry [9–11]or nitrogen–phosphorus [12]detection.The methods described for the determination of tramadol in bio-logical samples involve high-performance liquid chromatographic∗Corresponding author.Tel.:+982164543295;fax:+982164543296.E-mail address:mehranjavanbakht@ (M.Javanbakht).(HPLC)methods with UV [13–15],fluorescence [16–18],electro-chemical [19]and mass spectrometry detection [20],but in most cases it combined with a liquid–liquid extraction (LLE)step using organic phases such as ethyl acetate [21–23],n-hexane [24]and tert -butyl methyl ether [17],that hindered the degree of automa-tion.Sample preparation is essential for the analysis of compounds in real samples.Due to unsatisfactory selectivity,the traditional sorbents usually cannot separate analytes efficiently in complex biological or environmental samples.Solid-phase extraction (SPE)is the most popular of clean-up techniques due to factors such as convenience,cost,time saving and simplicity.SPE is the most accepted sample pretreatment method today [25].A relatively new development in the area of SPE is the use of molecularly imprinted polymers (MIPs)for the sample clean-up [26–29].MIPs are syn-thetic polymers possessing specific cavities designed for a target molecule.MIPs are synthesized by the polymerization of different components.In the most common preparation process,monomers form a complex with a template through covalent or non-covalent interactions and are then joined by using a cross-linking agent.After removing of the template by chemical reaction or extraction,bind-ing sites are exposed which are complementary to the template in size,shape,and position of the functional groups,and consequently allow its selective uptake.MIPs are often referred to as ‘artificial1570-0232/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.jchromb.2010.04.006M.Javanbakht et al./J.Chromatogr.B878 (2010) 1700–17061701antibodies’.Unlike antibodies,MIPs are stable to extremes of pH, organic solvents and temperature which allows for moreflexibil-ity in the analytical methods[26,30].The use of MIPs for SPE can involve various modes,including conventional SPE where the MIP is packed into columns or cartridges[31,32]and batch mode SPE where the MIP is incubated with the sample[33].Another major advantage of MIP-based SPE,related to the high selectivity of the sorbent,is the achievement of an efficient sample clean-up.Recently,we applied MIPs as new sensing material in poten-tiometric detection of hydroxyzine[34],cetirizine[35],and SPE of verapamil[36],bromhexine[37]and metoclopramide[38].In this study we present a novel method for the performance evaluation of tramadol based MIPs as selective SPE sorbents for efficient sam-ple clean-up and followed determination of tramadol from complex matrices by high-performance liquid chromatography.This scheme as MISPE allows the sensitive,simple and inexpensive extraction and detection of the analyte in human plasma and urine samples.2.Experimental2.1.ReagentsMethacrylic acid(MAA)from Merck(Darmstadt,Germany)was distilled in vacuum prior to use in order to remove the stabilizers. Ethylene glycol dimethacrylate(EGDMA)and2,2 -azobis isobuty-ronitrile(AIBN)from Sigma–Aldrich(Steinheim,Germany)were of reagent grade and were used without any further purification. All solvents used in chromatography analyses were HPLC grade and supplied by Merck.Tramadol hydrochloride was used for preparing stock and standard solutions.Bromhexine HCl,dextromethorphan HBr,diphenhydramine HCl,morphine,acetaminophen,aspirin and ephedrine were obtained from the Ministry of Health and Medical Education(Tehran,Iran).The tramadol stock solutions (1000g L−1)were prepared weekly and stored at+4◦C.Intermedi-ate standard solution of100g L−1was prepared by the dilution of stock solutions with water.Working standard solutions of different concentrations were prepared daily by diluting the intermediate standard solution with mobile phase solution.2.2.ApparatusAn Alliance HPLC instrument from Waters Company was used to separate and analyze tramadol in plasma and urine samples. The chromatographic system was composed of an isocratic Waters pump,a Waters2996photodiode array detector and an online degasser.A Rheodyne model7725i injector with a20L loop was used to inject the samples.Chromatographic separation was achieved on an ACE5m,C184.6mm×250mm column.HPLC data were acquired and processed using a PC and Millennium2010 Chromatogram Manager software(Version2.1Waters).pH of solu-tions were adjusted using a model630digital Metrohm pH meter equipped with a combined glass-calomel electrode.IR spectra of grounded polymer were recorded on a Shimadzu IR-460spectrom-eter(Kyoto,Japan)using KBr pellets in the range of400–4000cm−1.2.3.Procedures2.3.1.MIP and NIP preparation with bulk polymerizationFor the preparation of the tramadol imprinted polymer(Fig.1), the template(65.8mg,0.25mmol)was dissolved in chloroform in a25-mL thickwalled glass tube.The functional monomer (MAA)(0.129mL,1.5mmol),the cross-linking monomer(EGDMA) (2.96mL,16mmol),and the initiator(AIBN)(12mg,0.082mmol) were then added to the above solution.The mixture was uniformly dispersed by sonication for40min to remove oxygen.Then the solution was placed in a water bath at60◦C.The reaction was allowed to proceed for18h.The hard polymers that were obtained were crushed.After the polymerization procedure and drying,the polymer particles were washed with methanol and acetic acid (10:1,v/v,of98%methanol and pure acetic acid)for three times and with distillated water for two times.The complete removal of tem-plate was followed by HPLC-UV.In order to verify that retention of template was due to molecular recognition and not to non-specific binding,a control,non-imprinted polymer(NIP)was prepared as the same procedure,including washing,but with the omission of the target molecule,tramadol.The size of the particles used after crushing and sieved was between15and40m.2.3.2.MISPE conditionsMIP and NIP columns were prepared by packing60mg of the polymer into1mL empty SPE cartridges.The cartridge was condi-tioned sequentially with1mL methanol,1mL of ultra-pure water and1mL20mmol L−1ammonium phosphate at pH3.0,loading with5mL of the water sample(50g L−1)at pH8.0.After load-ing,column was washed with1mL acetonitrile:acetone(1:3,v/v) and1mL dichloromethane.We need to dry the SPE cartridge thor-oughly after the washes by vacuum application.Finally,the elution was performed by passing3×1mL methanol:acetic acid(10:1,v/v). All fractions were evaporated to dryness at20◦C under a stream of nitrogen andfinally recovered in1mL of mobile phase.Then,20L of each sample was injected onto the analytical column of HPLC.2.3.3.Chromatographic conditionsA simple,sensitive,and reproducible HPLC method has been developed for the determination of tramadol employing reversed phase high-performance liquid chromatography with UV detection [39].The HPLC was carried out at+40◦C.A degassed mixture of ace-tonitrile:phosphate buffer(0.01mol L−1,pH5.8)(18:82,v/v)was prepared and delivered in isocratic mode atflow rate of1mL min−1. All of the analyses were carried out at an operation wavelength of 218nm and HPLC data were acquired and processed using a PC and Millennium2010chromatogram manager software(Version 2.1Waters).The mean retention time of tramadol was3.92min.2.3.4.Rebinding experimentsBatch adsorption experiments were used to evaluate the bind-ing affinity of the imprinted polymer as reported before[40].The general procedure for the extraction of tramadol by the MIP was as follows:the polymer beads were suspended in aqueous solutions and the pH was adjusted at8.0.Then50mg of polymer particles were added in5-mLflask containing tramadol solutions of various concentrations.The mixtures were thermostated at25◦C for2h under continuous stirring and then wasfiltrated on a paperfilter (flow rate=50mL min−1by applied vacuum).The free concentra-tion of tramadol after the adsorption was recorded by HPLC-UV at218nm.Three replicate extractions and measurements were performed for each aqueous solution.The adsorbed tramadol was desorbed from the MIP by treatment with2mL of methanol and acetic acid(10:1,v/v,of98%methanol and pure acetic acid).The imprinted polymer containing tramadol was placed in the des-orption medium and stirred continuously at600rpm and room temperature for designated time.Thefinal tramadol concentration in the aqueous phase was determined.The same procedure was followed for NIP particles.2.3.5.Extraction procedure for human plasma and urine samplesDrug-free human plasma was obtained from the Iranian blood transfusion service(Tehran,Iran)and stored at−20◦C until use after gentle thawing.Urine was also collected from healthy vol-unteers(males,around30-year-old).Stock standard solutions of tramadol were prepared in water.For urine,solutions were pre-pared by adding5mL volumes of tramadol solution to a10mL1702M.Javanbakht et al./J.Chromatogr.B878 (2010) 1700–1706Fig.1.Schematic representation of the MIP synthesis.volumetric flask and the solution was diluted to the mark with buffer (pH 3)and vortexed for 5min and were centrifuged for 20min at 8000rpm.For plasma,we suggest it dilute with 25mM ammonium acetate (pH 5),then centrifuge to remove excess of pro-teins.2mL of the plasma and urine samples spiked by tramadol were diluted with 2mL buffer pH 8.0and were centrifuged for 20min at 8000rpm and then filtered through a cellulose acetate filter (0.20m pore size,Advantec MFS Inc.,CA,USA).The fil-trate were collected in glass containers and stored at −20◦C until analysis was performed.2mL of the filtered supernatant was collected to be directly percolated through the MIP or the NIP car-tridges.3.Results and discussion 3.1.CharacterizationThe IR spectra of NIP,the unleached and leached MIPs dis-played similar characteristic peaks,indicating the similarity in the backbone structure of the different polymers.As a result of the hydrogen binding with the –COOH group of MAA,the O–H stretch-ing and the bending vibrations at 3494cm −1and 1398cm −1in the leached MIP materials were shifted to 3476cm −1and 1386cm −1in the corresponding unleached MIP,respectively.Furthermore,there were two other distinct differences between the IR spec-tra of the leached and unleached MIPs.In the leached polymer,there were one broad band around 2704cm −1and one sharp band around 2956cm −1.The first was shifted to 2636cm −1and another appeared around 2987cm −1.Other absorption peaks match both those of MIP,as well as NIP:1731cm −1(stretching vibration of C O bonds on carbonyl groups);1636cm −1(stretching vibrationof residual vinylic C C bonds)and vibrations at 1258,1159,954,875,817and 756cm −1.3.2.Optimal MIP formulation and progenic solventThere are several variables,such as amount of monomer or nature of cross-linker and solvent that affects the final character-istics of the obtained materials in terms of capacity,affinity and selectivity for the target analyte.Thus,by achieving an optimum combination of cross-linker and functional monomer non-specific binding should be able to be minimized.Primary experiments revealed that the imprinted polymers prepared in chloroform show better molecular recognition ability than acetonitrile (AN)and dimethyl formamide (DMF)in aqueous environment (Fig.2).Thus,in chloroform,different formulations for the obtainment of MIPs with improved molecular recognition capabilities have been used.Generally,proper molar ratios of functional monomer to tem-plate are very important to enhance specific affinity of polymers and number of MIPs recognition sites.High ratios of functional monomer to template result in high non-specific affinity,while low ratios produce fewer complexation due to insufficient func-tional groups [41].Four molar ratios of the monomer MAA to the template of 2:1,4:1,6:1and 8:1were used in the experiments.The optimum ratio of functional monomer to template for the spe-cific rebinding of tramadol was 6:1(Table 1),which had the best specific affinity and the highest recovery of 94%,while that of the corresponding NIPs was low at 25%.The specific adsorption recov-ery of tramadol at 6:1was 69%,while those at 2:1,4:1and 8:1were 26%,37%and 36%,respectively.Therefore,a typical 1:6:64template:monomer:cross-linker molar ratio was used for further studies.M.Javanbakht et al./J.Chromatogr.B 878 (2010) 1700–17061703Fig.2.Recoveries obtained using the MIP and NIP polymers synthesized in differ-ent organic solvents.Batch experiments with 50mg of polymer particles;sample volume,5mL;pH,8.0;tramadol concentrations,50g L −1.Table 1Compositions and comparisons of the extraction of tramadol from tramadol stan-dard solution (5mL,100g L −1)using 50mg of various polymers as sorbents at pH 8.0,elute:2mL methanol and acetic acid (10:1,v/v).MIP MAA (mmol)Tramadol (mmol)EGDMA (mmol)AIBN (mmol)Extraction (%)(mean ±SD)a MIP10.50.25160.08252(±2.4)MIP2 1.00.25160.08265(±2.6)MIP3 1.50.25160.08294(±3.1)MIP4 2.00.25160.08270(±3.0)NIP10.50160.08226(±1.9)NIP2 1.00160.08228(±2.1)NIP3 1.50160.08225(±2.1)NIP42.0160.08234(±2.8)aAverage of three determinations.3.3.Effect of pHIt has been demonstrated that efficient imprint rebinding is pos-sible in aqueous buffer solutions,showing high binding affinity and selectivity as a result of hydrophobic interactions.The effect of pH on the rebinding efficiency of tramadol was investigated by varying the solution pH from 4.0to 9.0(Fig.3).Several batch experiments were performed by equilibrating 50mg of the imprinted particlesFig.3.Effect of pH.Batch experiments with 50mg of polymer particles;sample volume,5mL;tramadol concentrations,50g L −1.with 5mL of solutions containing 50g L −1of tramadol under the desired range of pH.It was observed that tramadol underwent com-plete rebinding/elution at pH 8.0.The lower responses observed at lower pHs may be attributed to the protonation of the amine group of tramadol.3.4.Choice of loading,washing and eluent solutionGenerally,the polymers have binding ability with both specific and non-specific interactions.The specific interactions may origi-nate mainly from the imprinting procedure,which creates selective recognition sites for the template.The non-specific interactions were assessed by measuring the binding of the non-imprinted poly-mer.At first,cartridges were conditioned with 1mL methanol,1mL of ultra-pure water and 1mL 20mmol L −1ammonium phosphate at pH 3.0.Water samples were then loaded onto the cartridges at a flow rate of 1mL min −1and the wash procedure was assessed for obtaining maximum recovery of the analytes using a variety mix-tures including;acetonitrile,acetone,tetrahydrofuran,dimethyl formamide (DMF),acetonitrile–acetone,dichloromethane (DCM),acetonitrile–methanol and hydrochloric acid.In order to investi-gate the usefulness of the washing step,5mL of 50g L −1tramadol aqueous solution (pH 8.0)was loaded on the MIP and NIP cartridges separately,followed by desorption with the washing solvent.The results were showed that washing with 2mL of acetone,tetrahy-drofuran and dichloromethane had no obviously effect on the retention of tramadol on both MIP and NIP cartridges.In contrast,polar organic solvents,such as methanol,dimethyl formamide and acetonitrile had clearly effect on the retention of tramadol on both MIP and NIP cartridges.With 2mL acetonitrile:acetone (1:3,v/v),the recovery of tramadol in NIP cartridge was decreased to 14%,while the recovery of tramadol by the MIP cartridges was not reduced (94.0%).For plasma samples,extra wash in the SPE protocol was needed.In this case,by using 1mL hydrochloric acid (0.01mol L −1),1mL acetonitrile:acetone (1:3,v/v)and fol-lowing 1mL DCM,the recovery of tramadol in NIP cartridge was decreased to 6%,while the recovery of tramadol by the MIP car-tridges was not reduced noticeably (91.0%).It is important to note that hydrochloric acid wash is necessary for the removal of metal ions.DCM wash should be done prior to elution to have selective retention of tramadol.Note that we need to dry the SPE cartridge thoroughly after the washes by vacuum applica-tion.For the recovery of strongly bound tramadol,the polymer were eluted with 3×1mL of methanol/acetic acid (10:1,v/v).As a result,recovery after the whole SPE process avoids contaminat-ing HPLC column.Meanwhile,increasing of the sample volume up to 100mL,just had a light effect on the extraction of tra-madol.The reproducibility and repeatability of the method were eval-uated from run-to-run MISPE experiments (5g L −1standard solution,n =6)and different batch experiments (five batches)and RSDs of 3.2%and 5.4%for the extraction amounts of tramadol were obtained,respectively.3.5.Adsorption capacityThe capacity of the sorbent is an important factor that deter-mines how much sorbent is required to remove a specific amount of drug from the solution quantitatively.In the measurement of the adsorption capacity of MIP and NIP absorbents,the absorbents (100mg)were added into 5mL of tramadol solutions at concentra-tions of 1.0–300mg L −1,and the suspensions were mechanically shaken at room temperature,followed by centrifugally removing of the absorbents.The remained tramadol in the supernatant was measured by HPLC,and the isothermal adsorptions are plotted in1704M.Javanbakht et al./J.Chromatogr.B878 (2010) 1700–1706Fig.4.Effect of tramadol concentrations on the retention capacities of MIP and NIP particles at pH8.0.Fig.4.According to these results,the maximum amount of tramadol that can absorbed by MIP was found to be190mg g−1at pH8.0.For higher tramadol amounts,a slight increase of retained tramadol was observed on MIP capacity curve.As all the accessible specific cavities of the MIP are saturated,the retention of the analyte is only due to non-specific interactions which can be approximatly identical for MIP and NIP polymers.3.6.Study of MIP selectivityChromatographic evaluation and equilibrium batch rebinding experiments are the methods most commonly used to investi-gate the selectivity of the imprinted materials[42].For equilibrium batch rebinding experiments,a known mass of template in solu-tion is added to a vial containing afixed mass of polymer.Once the system has come to equilibrium,the concentration of free template in solution is measured and the mass of template adsorbed to the MIP calculated[43].The initial concentrations of drugs(100g L−1, 5mL)were extracted by50mg of imprinted material at pH of8.0on MIP and NIP.The distribution ratio(mL g−1)of tramadol between the MIP particles and aqueous solution was determined by follow-ing equation:K D=(C i−C f)VC f m(1) where V is the volume of initial solution and m is the mass of MIP materials.Selectivity coefficients for tramadol ion relative tofor-Fig.5.Chemical structure of investigated drugs in this study.M.Javanbakht et al./J.Chromatogr.B878 (2010) 1700–17061705Table2Recoveries(%)obtained from after the loading of the MIP and NIP cartridges with5mL of water solution containing50g L−1tramadol(pH8.0).Drug K D(MIP)(mL g−1)K D(NIP)(mL g−1)k sel(MIP)k sel(NIP)kTramadol156733–––Acetaminophen723021.8 1.1019.8 Diphenhydramine433436.40.9737.5 Dextromethorphan383541.50.9444.1 Bromhexine453934.80.8540.9 Aspirin594026.70.9328.7 Morphine363043.5 1.1039.5 Ephedrine923217.0 1.0316.5eign compounds are defined as:k sel Tramadol/j =K TramadolDK jD(2)where K TramadolD and K jDare the distribution ratios of tramadol andforeign compound,respectively.The previous MISPE protocol was applied also to these drug molecules on NIP particles.The rela-tive selectivity coefficient(k )was also determined by following equation:k =k(MIP)k(NIP)(3)Acetaminophen,diphenhydramine,bromhexine,aspirin,mor-phine and ephedrine were selected to investigate the selectivity of the MIP.Their molecular structures are shown in Fig.5.Solutions of all compounds were prepared individually with the concentration of100g L−1.Distribution ratio(K D),selectivity coefficient(k sel) and relative selectively coefficient(k )values of MIP and NIP mate-rial for these different drugs were listed in Table2.The data in Table2shows that MIP exhibit moderately affinity for ephedrine and acetaminophen with the relative selectively coefficient of16.5 and19.8,respectively.This could be simply clarified by their close similarity to tramadol in the way of the arrangement of the func-tional groups or the size of the three-dimensional structure.For aspirin,based on the structural difference,the MIP shows higher relative selectively coefficient(28.8)than those of ephedrine and acetaminophen.Bromhexine,dextromethorphane,morphine and diphenhydramine exhibited much lower affinity for MIP and k values of40.9,44.1,39.5and37.5were obtained,respectively. 3.7.Tramadol assay in human plasma and urine samplesTo demonstrate the potential of MIP for the selective clean-up of analyte,the MIP was applied to the purification of spiked tramadol in human plasma and urine.Aqueous media was employed for the loading solution and the wash procedure was assessed for obtain-ing maximum recovery of the analyte as said by Sections2.3.4and 3.4.It was seen that the procedure can elute interferences and avoid contaminating HPLC column.The chromatograms obtained for plasma and urine samples were compared in Figs.6and7.This efficient method allowed cleaner extracts to be obtained and inter-fering peaks arising from the complex biological matrices to be suppressed.Results from the HPLC analyses showed that the MIP extraction of tramadol for plasma and urine samples are linear in the ranges5–350g L−1and2.0–300g L−1with goodprecision (3.8%for and3.1%for25.0g L−1)and recoveries(between91–94% and93–96%),respectively(Table3).Typical chromatograms pre-sented in Figs.6and7reveal that the MIP can be used for clean-up and when new MIP sorbent was used,a board peak in chro-matogram was omitted.The limit of detection(LOD)and limit of quantification(LOQ)for tramadol in urine samples were1.2andFig.6.HPLC chromatograms obtained after percolation of2mL urine spiked with 50.0g L−1of tramadol with a clean-up step comprising the(A)MIP and(B)NIP. Monitored at218nm;conditions:column ACE5m,C184.6mm×250mm at +40◦C,eluent acetonitrile:phosphate buffer(0.01mol L−1,pH5.8)(18:82,v/v)at flow rate of1.0mL min−1.Fig.7.HPLC chromatograms obtained after clean-up a50.0g L−1solution of tra-madol in plasma samples with the(A)MIP and(B)NIP monitored at218nm; conditions:column ACE5m,C184.6mm×250mm at+40◦C,eluent acetoni-trile:phosphate buffer(0.01mol L−1,pH5.8)(18:82,v/v)atflow rate of1.0mL min−1.Table3Assay of tramadol in human plasma and urine by means of the described SPE-HPLC protocol.Sample Spiked value(ng mL−1)Proposed SPE-HPLC protocol(recovery%±SD)aMIP NIPHuman plasma1091±3.08.1±1.72094±3.49.0±1.45093±2.98.4±1.0 Human urine1094±3.324±2.62593±3.126±2.45096±3.425±2.8a Average of three determinations.3.5g L−1respectively.These limits for tramadol in plasma samples were3.0and8.5g L−1,respectively.4.ConclusionsIn this paper for thefirst time,a novel tramadol MIP was pre-pared by bulk polymerization.The tramadol MIP showed higher1706M.Javanbakht et al./J.Chromatogr.B878 (2010) 1700–1706molecular recognition than NIP on chromatographic evaluation.A SPE-HPLC method based on MIP has been developed for the extrac-tion of tramadol from aqueous solutions.Furthermore,the MIP particles as new sorbents in SPE were successfully investigated for the clean-up of human plasma and urine samples with an opti-mized procedure.This efficient method allowed cleaner extracts to be obtained and interfering peaks arising from the complicated biologic samples to be suppressed.The method was applied to the trace tramadol determination at three levels,and the recoveries for the spiked human plasma and urine samples were higher than91% in the10–50g L−1.It could be concluded that the technique has great potential in developing selective extraction method for other compounds.AcknowledgementFinancial support provided by the Amirkabir University of Tech-nology(Tehran,Iran)is acknowledged.References[1]K.S.Lewis,N.H.Han,Am.J.Health Syst.Pharm.54(1997)643.[2]W.Lintz,H.Barth,R.Becker,E.Frankus,E.Schmidt-Bothelt,Arzneimittel-forschung48(1998)436.[3]R.B.Raffa,C.Wu,D.J.Stone,M.R.Borenstein,Ellen E.Codd,T.P.Coogan,J.Phar-macol.Toxicol.Method43(2000)205.[4]H.E.Abdellatef,M.M.El-Henawee,H.M.El-Sayed,M.M.Ayad,Spectrochim.ActaPart A65(2006)1087.[5]E.M.P.J.Garrido,J.M.P.J.Garrido,F.Borges,C.Delerue-Matos,J.Pharm.Biomed.Anal.32(2003)975.[6]U.B.Soetebeer,M.-O.Schierenberg,H.Schulz,G.Grunefeld,P.Andresen,G.Blaschke,J.Chromatogr.B745(2000)271.[7]S.-N.Ding,J.-J.Xu,W.-J.Zhang,H.-Y.Chen,Talanta70(2006)572.[8]S.-T.Ho,J.-J.Wang,W.-J.Liaw,C.-M.Ho,J.-H.Li,J.Chromatogr.B736(1999)89.[9]K.A.Hadidi,J.K.Almasad,T.Al-Nsour,S.Abu-Ragheib,Forensic Sci.Int.135(2003)129.[10]Y.F.Sha,S.Shen,G.L.Duan,J.Pharm.Biomed.Anal.37(2005)143.[11]C.Moore,S.Rana,C.Coulter,J.Chromatogr.B850(2007)370.[12]Q.Tao,D.J.Stone Jr.,M.R.Borenstein,V.Jean-Bart,E.E.Codd,T.P.Coogan,D.Desai-Krieger,S.Liao,R.B.Raffa,J.Chromatogr.B763(2001)165.[13]S.H.Gan,R.Ismail,J.Chromatogr.B:Biomed.Sci.Appl.759(2001)325.[14]G.C.Yeh,M.T.Sheu,C.L.Yen,Y.W.Wang,C.H.Liu,H.O.Ho,J.Chromatogr.B:Biomed.Sci.Appl.723(1999)247.[15]S.H.Gan,R.Ismail,W.A.Wan Adnan,Z.Wan,J.Chromatogr.B:Analyt.Technol.Biomed.Life Sci.772(2002)123.[16]P.Overbeck,G.Blaschke,J.Chromatogr.B:Biomed.Sci.Appl.732(1999)185.[17]M.Nobilis,J.Kopecky,J.Kvetina,J.Chladek,Z.Svoboda,V.Vorisek,F.Perlik,M.Pour,J.Kunes,J.Chromatogr.A949(2002)11.[18]Y.Gu,J.P.Fawcett,J.Chromatogr.B:Analyt.Technol.Biomed.Life Sci.821(2005)240.[19]M.Valle,J.M.Pavon,R.Calvo,M.A.Campanero,I.F.Troconiz,J.Chromatogr.B:Biomed.Sci.Appl.724(1999)83.[20]L.M.Zhao,X.Y.Chen,J.J.Cui,M.Sunita,D.F.Zhong,Yao Xue Xue Bao39(2004)458.[21]M.R.Rouini,Y.Hosseinzadeh Ardakani, F.Soltani,H.Y.Aboul-Enein, A.Foroumadi,J.Chromatogr.B830(2006)207.[22]A.Kuc uk,Y.Kadıoglu,F.elebi,J.Chromatogr.B816(2005)203.[23]S.H.Gan,R.Ismail,W.A.Wan Adnan,Z.Wan,J.Chromatogr.B772(2002)123.[24]V.Kmetec,R.Roskar,J.Pharm.Biomed.Anal.32(2003)1061.[25]M.-C.Hennion,J.Chromatogr.A856(1999)3.[26]B.Sellergren(Ed.),Molecularly Imprinted Polymers:Man-Made Mimics ofAntibodies and their Applications in Analytical Chemistry(Techniques and Instrumentation in Analytical Chemistry),vol.23,Elsevier,Amsterdam,2001.[27]E.Caro,R.Marce,P.Cormack,D.Sherrington,F.Borrul,Anal.Chim.Acta562(2006)145.[28]S.G.Hu,L.Li,X.W.He,Prog.Chem.17(2005)531.[29]N.Masque,R.M.Marce,F.Borrull,Trends Anal.Chem.20(2001)477.[30]C.He,Y.Long,J.Pan,K.Li,F.Liu,J.Biochem.Biophys.Methods70(2007)133.[31]M.Walshe,J.Howarth,M.T.Kelly,R.O’Kennedy,M.R.Smyth,J.Pharm.Biomed.Anal.16(1997)319.[32]A.Zander,P.Findlay,T.Renner,B.Sellergren,A.Swietlow,Anal.Chem.70(1998)3304.[33]L.I.Andersson,A.Paprica,T.Arvidsson,Chromatographia46(1997)57.[34]M.Javanbakht,S.Eynollahi Fard,A.Mohammadi,M.Abdouss,M.R.Ganjali,P.Norouzi,L.Safaraliee,Anal.Chim.Acta65(2008)612.[35]M.Javanbakht,S.Eynollahi Fard,M.Abdouss,A.Mohammadi,M.R.Ganjali,P.Norouzi,L.Safaraliee,Electroanalysis20(2008)2023.[36]M.Javanbakht,N.Shaabani,A.Mohammadi,M.Abdouss,M.R.Ganjali,P.Norouzi,Curr.Pharm.Anal.5(2009)269.[37]M.Javanbakht,H.Namjumanesh,B.Akbari-Adergani,Talanta80(2009)133.[38]M.Javanbakht,N.Shaabani,B.Akbari-Adergani,J.Chromatogr.B877(2009)2537.[39]H.Y.Ardakani,M.R.Rouini,J.Pharm.Biomed.Anal.44(2007)1168.[40]Y.H.Zhai,Y.W.Liu,X.J.Chang,S.Chen,X.J.Huang,S.B.Chen,X.P.Huang,Anal.Chim.Acta593(2007)123.[41]A.Rachkov,N.Minour,J.Chromatogr.A889(2000)111.[42]K.J.Shea,D.A.Spivak,B.Sellergre,J.Am.Chem.Soc.115(1993)3368.[43]W.M.Mullett,M.Walles,K.Levsen,J.Borlak,J.Pawliszyn,J.Chromatogr.B:Biomed.Anal.801(2004)297.。