八数上(XJ)-类比归纳专题:一元一次不等式(组)中含字母参数的问题--精品习题课件
- 格式:ppt
- 大小:1005.50 KB
- 文档页数:13
中考数学含字母参数的不等式(组)考点归纳、经典例题解析含字母参数的不等式(组)问题,其考察学生对于不等式(组)解集的理解和灵活运用,很多考生都在细节的处理中出现问题,虽然其考点的难度并不是很大,但是要得到正确的答案往往是很艰难的。
我们必须能够掌握解题技巧,而且能跳出这类题型的“陷阱”,否则很容易丢分。
为此,王老师给大家出了一期关于这个考题的知识点汇总,有需要的同学记得收藏。
根据历年考纲的要求,中考数学对于这一部分可能考察的点,一共有3点:1.能用数形结合的思想理解一元一次不等式(组)解集的含义.2.正确熟练地解(含字母参数)不等式(组),能在数轴上表示出解集,并会求其特殊解.3.正确熟练地解(含字母参数)方程(组),并会确定解集.一、基础知识回顾:二、方法及解题技巧第一、口决法:求(含字母参数)不等式(组)解集时常用口诀“大大取大;小小取小;大小小大中间找;大大小小取不了(无解)”来确定解集。
解析:通过不等式组的两个解,结合解析:利用口诀“小小取小”可知-m大于2,即可求出m的范围。
解析:根据不等式组的解集,可以在数轴上表示出(1,2】,再根据无解来判断k的取值范围,一定要特别注意等号这个特殊的点。
第二、分类讨论法:系数含有字母参数的不等式,要进行分类讨论系数的正负才能正确的确定不等式的解集,从而求出字母参数的取值范围。
【解析】此不等式的解要对x的系数进行分类讨论当a>-2018时,原不等式变形为:x>1;不符合题意。
当a<-2018时,原不等式变形为:x<1.符合题意。
由数轴可以知-m≥3时无解,由此可知-m<3有解,可得m>-3。
解析:由原不等式4-3x大于等于0,可得到x小于等于4/3。
在数轴上画出这个不等式组的可能区间。
根据数轴可得:-2<m≤-1.三、方法、规律归纳1.常数项含参不等式:只需要把字母参数看成已知数,用参数来表示不等式解集,再结合条件确定参数的值.2.系数含参不等式:通过分类讨论参数的正负,利用不等式的性质三求出不等式的解集,再结合条件确定参数的取值范围。
一元一次不等式含参问题一元一次不等式含参问题类型一:根据不等式组的整数解情况确定字母的取值范围。
例1:已知不等式组begin{cases}4x+2>3(x+a)\\2x>3(x-2)+5\\5x+2>3(x-1)end{cases}有3个整数解,则$m$的取值范围是什么?变式练1:已知不等式组,如果有3个整数解,则$m$的取值范围是什么?变式练2:已知关于$x$的不等式组,如果解集为$x>3$,则$a$的取值范围是什么?变式练3:已知关于$x$的不等式组begin{cases}4x+2>3(x+a)\\2x>3(x-2)+5\\5x+2>3(x-1)end{cases}如果只有4个整数解,则实数$a$的取值范围是什么?变式练4:已知关于$x$的不等式组begin{cases}3x\leq 8-x+2a\\22a\leq xend{cases}如果仅有4个整数解,则实数$a$的取值范围是什么?类型二:根据不等式组的解集确定字母的取值范围。
例2:已知关于$x$的不等式组无解,则$a$的取值范围是什么?变式练1:若关于$x$的不等式组有解,则实数$a$的取值范围是什么?变式练2:若不等式组的解集为$x>3$,则$a$的取值范围是什么?变式练3:若关于$x$的不等式组的解集为$x<2$,则$a$的取值范围是什么?变式练4:已知不等式组无解,则$a$的取值范围是什么?类型三:根据未知数解集或者未知数间的关系确定字母的取值范围。
例3:已知方程组begin{cases}2x+y=1+3m\\x+2y=1-mend{cases}满足$x+y<2$,求$m$的取值范围。
变式练1:若关于$x,y$的二元一次方程组begin{cases}x+2y=4k\\2x+y=2k+1end{cases}的解满足$x+y<1$,则$a$的取值范围是什么?变式练2:已知关于$x$的不等式$1-a)x>3$的解集为$x<2$,则$a$的值为多少?变式练3:若不等式$3m-2x3$,则实数$m$的值为多少?变式练4:若不等式组的解集为$3\leq x\leq 4$,则不等式$ax+b<0$的解集为什么?综合练:1.关于$x$的一元一次不等式$7x-14\leq 0$的解集是什么?A。
专题3.3 一元一次不等式(组)含参问题(12大类型)(全章知识梳理与考点分类讲解)第一部分【题型目录】【题型1】已知含参方程的解的正负性,求参数取值范围............................1;【题型2】已知含参一元一次不等式的解集,求参数取值范围........................2;【题型3】已知含参一元一次不等式整数解,求参数取值范围........................2;【题型4】已知含参一元一次不等式组有解,求参数取值范围........................2;【题型5】已知含参一元一次不等式组无解,求参数取值范围........................2;【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围......3;【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围......3;【题型8】已知含参一元一次不等式组解集,求参数值或取值范围.............3;【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围........4;【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围...4;【题型11】直通中考...........................................................5;【题型12】拓展延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】已知含参方程的解的正负性,求参数取值范围【例1】(23-24八年级下·陕西汉中·期末)1.关于x 的分式方程32211x mx x -=+++的解为负数,则m 的取值范围是( )A .0m <B .4m >-C .4m <-D .4m <-且5m ¹-【变式1】(20-21八年级下·江苏扬州·期中)2.已知关于x 的方程232x mx -=-的解是非负数,则m 的取值范围为 .【变式2】(23-24七年级下·贵州黔东南·阶段练习)3.若关于x 的方程528x a -=的解是非正数,则a 的取值范围是( )A .4a >-B .4a <-C .4a ³-D .4a £-【题型2】已知含参一元一次不等式的解集,求参数取值范围【例2】(23-24七年级下·全国·期中)4.已知关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,则a 的取值范围是( )A .5a £B .<5a C .3a £D .>5a 【变式1】(23-24七年级下·黑龙江齐齐哈尔·期末)5.如果关于x 的不等式(1)1a x -³解集为11x a³-,则a 的取值范围是 .【变式2】6.如果关于x 的不等式()11a x a +>+的解集为1x <,那么a 的取值范围是 .【题型3】已知含参一元一次不等式整数解,求参数取值范围【例3】(2024七年级下·江苏·专题练习)7.若关于x 的一元一次不等式1x m +£只有1个正整数解,则m 的取值范围是 .【变式1】(23-24八年级下·陕西宝鸡·期中)8.若关于x 的不等式57x m x +³的正整数解是1234、、、.则m 的取值范围为( )A .10m <B .8m ³C .810m ££D .810m £<【变式2】(23-24六年级下·上海浦东新·期末)9.若关于x 的不等式0x m -³的最小整数解是2x =,则m 的取值范围是⋯( )A .12m £<B .12m <£C .23m <£D .23m £<【题型4】已知含参一元一次不等式组有解,求参数取值范围【例4】(23-24七年级下·河南南阳·期末)10.已知关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,则实数m 的取值范围是( )A .3m >B .2m ≥C .1m <D .1m £-【变式1】(23-24七年级下·全国·单元测试)11.若不等式组12x x k <£ìí>î有解,则k 的取值范围是( )A .2k <B .2k ³C .1k <D .12k £<【变式2】(23-24七年级下·湖南衡阳·期中)12.关于x 的不等式组3284a x x a ->ìí+>î有解且每一个x 的值均不在26x -££的范围中,则a 的取值范围是 .【题型5】已知含参一元一次不等式组无解,求参数取值范围【例5】(23-24八年级下·陕西西安·期末)13.若关于x 的一元一次不等式组11340x xx a ì-³-ïíï->î无解,则a 的取值范围是 .【变式1】(23-24六年级下·上海杨浦·期末)14.若关于x 的不等式组62x x m m -<<ìí-<î无解,那么m 的取值范围是【变式2】(24-25八年级上·湖南长沙·开学考试)15.已知不等式组40329x a x x -<ìí-³-+î无解,则a 的取值范围是.【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围【例6】(24-25八年级上·湖南衡阳·开学考试)16.若关于x 的不等式组()()324122x x x m x ì-<-í-£-î,恰好有三个整数解,则m 的取值范围是 .【变式1】(22-23八年级下·四川达州·期中)17.若关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,则m 的取值范围是 .【变式2】(23-24八年级下·全国·单元测试)18.关于x 的不等式组()1023544133x x k x x k +ì+>ïïí+ï+>++ïî恰有三个整数解,则k 的取值范围是( )A .112k <£B .112k £<C .312k £<D .312k <£【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围【例7】(22-23七年级下·湖北武汉·阶段练习)19.如果关于x 的不等式组2030x m n x -³ìí-³î仅有四个整数解;1-、0、1、2,那么适合这个不等式组的整数m 、n 组成的有序实数对(),m n 最多共有( )A .4个B .6个C .8个D .9个【变式】(23-24七年级下·四川资阳·期末)20.已知关于x 的不等式组0217x a x -<ìí-³î至少有两个整数解,且存在以3,a ,6为边的三角形,则整数a 的值有个【题型8】已知含参一元一次不等式组解集,求参数值或取值范围【例8】(2024·湖北·模拟预测)21.若关于x 的一元一次不等式组63(1)51x x x m -+<-ìí->-î的解集是2x >,则m 的取值范围是( )A .3m >B .3m …C .3m <D .3m …【变式1】(23-24八年级下·全国·单元测试)22.若关于x 的不等式组220x a b x ->ìí->î的解集为11x -<<,则2019()a b +的值是( )A .1B .12C .1-D .12-【变式2】(22-23七年级下·江苏盐城·阶段练习)23.不等式组29612x x x k +>+ìí-<î的解集为2x <.则k 的取值范围为 .【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围【例9】(22-23八年级下·重庆忠县·期中)24.如果关于x 的不等式组441113(22m x x x ->ìïí-<+ïî有且仅有三个整数解,且关于x 的分式方程26122mx x x --=--有非负数解,则符合条件的所有整数m 的和为 .【变式1】(23-24七年级下·重庆北碚·期末)25.已知关于y 的分式方程52211a y y --=---解为非负整数,且关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,则所有满足条件的整数a 的和为( )A .6B .5C .9D .13【变式2】(22-23八年级下·江苏无锡·阶段练习)26.已知方程21144a a a +=--,且关于x 的不等式组x a x b>ìí£î只有2个整数解,那么b 的取值范围是( )A .13b -<£B .23b <£C .45b £<D .34b £<【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围【例10】(24-25八年级上·湖南长沙·开学考试)27.若存在一个整数m ,使得关于,x y 的方程组432173453x y m x y m +=+ìí+=-î的解满足1x y +£,且让不等式5041x m x ->ìí-<-î只有3个整数解,则满足条件的所有整数m 的和是( )A .12B .6C .—14D .—15【变式】(23-24七年级下·山东威海·期末)28.已知关于x ,y 的方程组3454331x y m x y m +=-ìí+=+î的解满足0,0x y x y +<->,求m 的取值范围.第三部分【中考链接与拓展延伸】【题型11】直通中考【例1】(2024·四川南充·中考真题)29.若关于x 的不等式组2151x x m -<ìí<+î的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m £【例2】(2023·四川眉山·中考真题)30.关于x 的不等式组35241x m x x >+ìí-<+î的整数解仅有4个,则m 的取值范围是( )A .54m -£<-B .54m -<£-C .43m -£<-D .43m -<£-【题型12】拓展延伸【例1】(22-23七年级下·重庆江津·期中)31.已知关于x 、y 的方程组3453x y ax y a +=-ìí-=î,下列结论中正确的个数有( )① 当3a =时,41x y =ìí=î是方程组的解;② 不存在一个实数a ,使得x 、y 的值互为相反数;③ 当方程组的解是52x y =ìí=-î时,方程组()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïî的解为3272m n ì=ïïíï=ïî;④ x 、y 都为自然数的解有3对.A .1个B .2个C .3个D .4个【例2】(23-24九年级上·重庆九龙坡·阶段练习)32.关于x 的分式方程23133a x x x -+=++的解为整数,且关于y 的不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,则所有满足条件的整数a 的值之和为 .1.D【分析】本题考查了分式方程的解,分式方程的解为负数的条件是有解且解为负数,解题的关键是能正确解分式方程并理解分式方程的解为负数的条件为有解且解为负数.【详解】解:322,11x mx x -=+++方程两边同乘以()1x +得:()3221,x x m -=++解得:4,x m =+∵关于x 的分式方程32211x mx x -=+++的解为负数,10x \+¹且 0,x <即410m ++¹且40,m +<解得:4m <-且 5.m ¹-故选:D .2.6m £且4m ¹##4m ¹且6m £【分析】本题考查了分式方程的解,解不等式等知识,首先求出关于x 的方程232x mx -=-的解,然后根据解是非负数,再解不等式求出m 的取值范围..【详解】解:关于x 的方程232x mx -=-得6x m =-+,20x -¹Q ,2x \¹,Q 方程的解是非负数,60m \-+³且62m -+¹,解这个不等式得6m £且4m ¹.故答案为:6m £且4m ¹.3.D【分析】本题考查了解一元一次方程和解一元一次不等式,熟练掌握解方程和不等式的方法是解题的关键.先解一元一次方程,再根据题意构建一元一次不等式,最后解不等式即可.【详解】∵528x a -=,∴825ax +=,∵关于x 的方程528x a -=的解是非正数,∴8205ax +=£,解得4a £-,故选:D .4.A【分析】考查不等式的解集,掌握一元一次不等式的求法是解题的关键. 先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】解:解不等式 413x a +>得,34ax ->,解不等式2103x +>得,12x >-,Q 关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,3142a -\³-,解得:5a £,故选:A ;5.1a <【分析】本题考查了不等式的性质,根据题意可知关于x 的不等式(1)1a x -³解集为11x a³-,则x 的系数的正数,再根据这个结果求出a 的取值范围,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:∵关于x 的不等式(1)1a x -³解集为11x a³-,∴10a ->,∴1a <,故答案为:1a <.6.1a <-【分析】本题考查了不等式的性质和解不等式,根据不等式的性质求解即可,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】∵关于x 的不等式()11a x a +>+的解集为1x <,∴10a +<,解得:1a <-,故答案为:1a <-.7.2<3m £【分析】先解一元一次不等式可得x ≤m−1,然后根据题意可得11<2m £-,进行计算即可解答.本题考查了一元一次不等式的整数解,准确熟练地进行计算是解题的关键.【详解】解:1x m +£,解得x ≤m−1,∵一元一次不等式1x m +£只有1个正整数解,∴11<2m £-,∴2<3m £,故答案为:2<3m £.8.D【分析】本题考查解不等式,解57x m x +³得2m x £,再由题意可得452m£<,解这个不等数组即可得出答案.【详解】解:解57x m x +³得2mx £,∵该不等式的正整数解为1、2、3、4,∴452m £<解得810m £<.故选:D .9.B【分析】本题主要考查解一元一次不等式的基本能力,解关于x 的不等式求得x m ³,根据不等式的最小整数解是2x =即可作答.【详解】解:0x m -³,移项,得:x m ³,Q 不等式的最小整数解是2x =,12m \<£,故选:B .10.A【分析】本题考查了求不等式的解集及其参数,先求出不等式组的解集,再根据不等式组有解的情况得到关于m 的不等式,求解即可,理解题意,熟练掌握求不等式组的解集是解题的关键.【详解】解:()12432x mx x -ì<-ïíï-£-î①②,解不等式①得,2x m <-,解不等式②得,1x ³,∵关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,∴21m ->,解得:3m >故选:A .11.A【分析】本题考查已知不等式的解集求参数,根据求不等式组解集的方法“大中取大,小中取小,大小小大中间找,大大小小找不到” 的原则求解即可.【详解】Q 不等式组有解,\两个不等式的解有公共部分,2.k \<故选:A .12.1a <【分析】本题考查了解一元一次不等式组,根据不等式组的解的情况求参数的取值范围,先求出不等式组的解集为243a x a -<<-,再结合题意得出243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,求解即可得出答案.【详解】解:3284a x x a ->ìí+>î①②,解不等式①得:3x a <-,解不等式②得:24x a >-,Q 不等式组有解,243a x a \-<<-,Q 每一个x 的值均不在26x -££的范围中,\243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,解得:1a <,故答案为:1a <.13.0a ³【分析】本题考查了解一元一次不等式组,不等式组解集的情况求参数,先对不等式进行求解,再根据关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解即可解答,熟练掌握知识点的应用是解题的关键.【详解】解:11340x x x a ì-³-ïíï->î①②解不等式①得,0x £,解不等式②得,x a >,∵关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解,∴0a ³,故答案为:0a ³.14.3m £-【分析】本题考查了不等式的解集,先解不等式x m m -<,然后根据不等式组无解,即可求出m 的取值范围.【详解】解:解不等式x m m -<,得2x m <,∵62x x m m -<<ìí-<î无解,∴26m £-,∴3m £-,故答案为:3m £-.15.16a £【分析】本题考查了解一元一次不等式组.熟练掌握解一元一次不等式组是解题的关键.解40x a -<得4a x <,解329x x -³-+得4x ³,由不等式组40329x a x x -<ìí-³-+î无解,可得44a £,计算求解即可.【详解】解:40329x a x x -<ìí-³-+î,40x a -<,解得,4a x <,329x x -³-+,解得,4x ³,∵不等式组40329x a x x -<ìí-³-+î无解,∴44a £,解得,16a £,故答案为:16a £.16.14m £<##41m >³【分析】本题考查不等式组的整数解问题,正确理解恰有3个整数解得意义是解题的关键.先解不等式组,写出不等式组的解集,再根据恰有三个整数解,可求出m 的范围.【详解】解:()()324122x x x m x ì-<-í-£-î①②解不等式①得:2x >-,解不等式②得:23m x +£,Q 不等式组有解,\不等式组的解集是:223m x +-<£.Q 不等式组恰好有3个整数解,则整数解是1,0,1-,\2123m +£<.14m \£<,故答案为:14m £<.17.5433m -<£-【分析】本题考查了根据一元一次不等式组解的情况求参数的取值范围,先求出不等式组的解集,再根据不等式组的解集只有3个整数解可得3322m -<+£-,解不等式即可求解,掌握解一元一次不等式组是解题的关键.【详解】解:()213644x x m x +<ìïí-³+ïî①②,由①得,x <1,由②得,32x m ³+,∴不等式组的解集为321m x +£<,∵关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,∴3322m -<+£-,即322323m m +£-ìí+>-î,解得5433m -<£-,故答案为:5433m -<£-.18.D【分析】本题主要考查了根据不等式组的解集情况求参数,先分别求出不等式组中两个不等式得解集,再根据原不等式组只有三个整数解建立关于k 的不等式组,解之即可得到答案.【详解】解:()1023544133x x k x x k +ì+>ïïí+ï+>++ïî①② 解不等式①得:25x >-,解不等式②得:2x k <,∵原不等式组恰有三个整数解,∴223k <£,∴312k £<,故选:D .19.B【分析】先求出不等式组的解,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】解:∵解不等式20x m -³得:2m x ³,解不等式30n x -³得:3n x £,∴不等式组的解集是23m n x ££,∵关于x 的不等式组的整数解仅有1-,0,1,2,∴212m -<-≤,233n £<,解得:4269m n -<£-£<,,即m 的值是32--,,n 的值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(),mn 共有6个,是()()()()()()363738262728------,,,,,,,,,,,.故选:B .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.20.3【分析】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.依据不等式组至少有两个整数解,即可得到a 5>,再根据存在以3,a ,6为边的三角形,可得39a <<,进而得出a 的取值范围是59a <<,即可得到a 的整数解有3个.【详解】解:解不等式组得:4x a £<,∵至少有两个整数解,则整数解至少为4和5,∴5a >,又∵存在以3,a ,6为边的三角形,∴39a <<,∴a 的取值范围为59a <<,∴整数a 的值为:6,7,8,有3个故答案为:3.21.D【分析】本题考查的是解一元一次不等式组,求出第一个不等式的解集,根据口诀:“同大取大、同小取小、大小小大中间找、大大小小无解”即可确定m 的范围.【详解】解:解不等式63(1)5x x -+<-得x >2,解不等式1x m ->-得1x m >-,∵解集是2x >,∴12m -£,解得3m £,故选D .22.C【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据不等式组的解集得到a 、b 的值,代入计算即可.【详解】解:220x a b x ->ìí->î①②,解①得:2x a >+,解②得:2b x <,∵不等式组220x a b x ->ìí->î的解集为11x -<<,∴2112a b +=-ìïí=ïî,解得:32a b =-ìí=î,∴()20192019()321a b +=-+=-.故选:C .23.0k ³##0k £【分析】本题考查了根据不等式组的解集求参数,先分别求解两个不等式,再根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”得出22k £+,求解即可.【详解】解:29612x x x k +>+ìí-<î①②,由①可得:2x <,由②可得:2x k <+,∵该不等式组的解集为2x <,∴22k £+,解得:0k ³,故答案为:0k ³.24.5【分析】本题主要考查解一元一次不等式组,分式方程的综合,掌握不等式的性质,不等式组的取值方法,解分式方程的方法是解题的关键.根据不等式的性质分别求解,根据不等式组的取值方法“同大取大,同小取小,大小小大中间找,大大小小无解”及不等式组的解集的情况可得04m <£,再根据解分式方程的方法得到61x m =-,由分式方程有非负数解,可得14m <<,由此即可求解.【详解】解:441113(22m x x x ->ìïí-<+ïî,解不等式44m x ->,得:44m x -<,解不等式111322x x æö-<+ç÷èø,得:72x >-,∵不等式组有且仅有三个整数解,∴4104m --<£,解得:04m <£,解关于x 的分式方程26122mx x x --=--,得:61x m =-,∵分式方程有非负数解,∴601m ³-,且621m ¹-,10m -¹,解得:1m ³且4m ¹且1m ¹,综上,14m <<,所以所有满足条件的整数m 的值为2,3,∴符合条件的所有整数m 的和为235+=.故答案为:5.25.A【分析】本题主要考查解分式方程和一元一次不等式方程组,首先解得不等式方程组的解,根据题意找到a 的范围,再解的分式方程的解,结合分式方程的解和a 的范围求得a 的可能值即可.【详解】解:2311122y a y ->ìïí+£ïî由23y a ->,解得32a y +>,由11122y +£,解得5y £,则不等式方程组的解为,352a y +<£,∵关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,∴3252a +££,解得17a ££,52211a y y --=---,去分母得,()()2152y a ---=,去括号、移项得,25y a -=-,系数化为1得,52a y -=,∵1y =为分式方程的增根,∴512a -¹,解得3a ¹,∵y 的分式方程52211a y y --=---解为非负整数,∴502a y -=³,解得5a £,∴15a £<且3a ¹,∴当1a =时,2y =;当2a =时,32y =,舍去;当3a =时,1y =,舍去;当4a =时,12y =,舍去;当5a =时,0y =;则所有满足条件的整数a 的和为156+=.故选:A .26.D【分析】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.先解分式方程,得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:解方程21144a a a+=--,得1a =,经检验,1a =是该分式方程的解,∵关于x 的不等式组x a x b >ìí£î,即1x x b >ìí£î只有2个整数解,∴34b £<.故选:D .27.D【分析】根据方程组的解的情况,以及不等式组的解集情况,求出m 的取值范围,再进行求解即可.本题主要考查了解二元一次方程组、解不等式组,求不等式的整数解等知识点,掌握解方程组和不等式组的方法是解题的关键.【详解】解:432173453x y m x y m +=+ìí+=-î①②,+①②,得:77714x y m +=+,∴2x y m +=+,∵1x y +£,∴21m +£, 解得:1m £-,解不等式50x m ->,得:5m x >, 解不等式41x -<-,得:3x <,故不等式组的解集是:35m x <<∵不等式组只有3个整数解,∴105m -£<,解得50m -£<,∴51m -££-,∴符合条件的整数m 的值的和为5432115-----=-,故选:D .28.31m -<<【分析】本题考查根据方程组的解集的情况求参数的范围,求不等式组的解集,根据方程组的解集的情况,得到关于m 的不等式组,求解即可.【详解】解:3454331x y m x y m +=-ìí+=+î①②,+①②得:7744x y m +=-,即447m x y -+=,-②①得:26x y m -=+,∵00x y x y +-,,∴4407260m m -ì<ïíï+>î∴31m -<<,故答案为:31m -<<.29.B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<ìí<+î,得:31x x m <ìí<+î,∵不等式组的解集为:3x <,∴13m +³,∴2m ≥;故选B .30.A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x >+ìí-<+î①②,由②得:3x <,解集为33m x +<<,由不等式组的整数解只有4个,得到整数解为2,1,0,1-,∴231m -£+<-,∴54m -£<-;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m -£+<-是解此题的关键.31.B【分析】此题考查了二元一次方程组的解,一元一次不等式组,①把3a =代入方程组求出解,即可做出判断;②根据题意得到0x y +=,代入方程组求出a 的值,即可做出判断;③()()()()391232106m n m n a m n m n aì++-=-ïí+--=ïî的各项和原方程成比例,故可得方程52m n m n +=ìí-=-î,即可解答;④用a 表示,x y ,可得一元一次不等式组,再根据a 的取值范围,即可解答,熟知方程的各项成比例时,两个方程的解相同,是解题的关键.【详解】解:当3a =时,原方程为343533x y x y +=-ìí-=´î,解得41x y =ìí=-î,故①错误;x 、y 的值互为相反数时,可得0x y +=,可得方程3453y y a y y a-+=-ìí--=î,方程无解,故②正确;()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïîQ 的各项和原方程成比例,故可得52m n m n +=ìí-=-î,解得3272m n ì=ïïíï=ïî,故③正确;解3453x y a x y a +=-ìí-=î,可得5212a x a y +ì=ïïí-ï=ïî,当,x y 为自然数时,可得502102a a +ì³ïïí-ï³ïî,解得51a -££且a 为奇数,故5,3,1,1a =---,即x 、y 都为自然数的解有4对,故④错误;故选:B .32.20-【分析】本题考查了分式方程的解,一元一次不等式组的整数解,由分式方程得12a x +=,由一元一次不等式组得23a y +<£-,根据不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,即可得到125a -<<-,再由12a x +=为整数,即可得到a 的值,正确掌握解一元一次不等式组和解分式方程得方法是解题的关键.【详解】解:∵23133a x x x-+=++,∴12a x +=,由1313212y y a y y +ì+³ïïí+ï<-ïî得23a y +<£-,∵不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,∴125a -<<-,∵12a x +=为整数,∴11a =-或9-或―7,又∵30x +¹,∴1302a ++¹,∴7a ¹-,∴11a =-或9-,∴所有满足条件的整数a 的值之和()11920=-+-=-,故答案为:20-.。
类比归纳专题:一元一次不等式(组)中含字母参数的问题 ——类比不同条件,体会异同◆类型一 已知解集求字母参数的值或取值范围1.已知不等式2x +★>2的解集是x >-4,则“★”表示的数是________.2.已知不等式组⎩⎪⎨⎪⎧3x -42≥1,x ≥a的解集是x ≥2,则【易错12】( ) A .a <2 B .a =2C .a >2D .a ≤23.若不等式组⎩⎪⎨⎪⎧3x -a <2,2x -b >4的解集为-2<x <3,求a +b 的值.◆类型二 已知整数解的情况求字母参数的取值范围4.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是() A .-3<b <-2 B .-3<b ≤-2C .-3≤b ≤-2D .-3≤b <-25.已知不等式组⎩⎪⎨⎪⎧x >2,x <a 的解集中共有5个整数,则a 的取值范围为() A .7<a ≤8 B .6<a ≤7C .7≤a <8D .7≤a ≤8◆类型三 已知不等式组有、无解求字母的取值范围6.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,则a 的取值范围是________.7.若不等式组⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7②有解,求实数a 的取值范围.◆类型四 方程组与不等式(组)结合求字母的取值范围8.关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =1+3a ,x +3y =1-a 的解满足不等式x +y >0,则a 的取值范围是( )A .a <-1B .a <1C .a >-1D .a >19.(2016·绵阳中考)在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )10.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求出满足条件的m 的所有正整数值.参考答案与解析1.10 2.D3.解:由⎩⎪⎨⎪⎧3x -a <2,2x -b >4得⎩⎨⎧x <a +23,x >4+b 2.∵不等式组的解集为-2<x <3,∴⎩⎨⎧a +23=3,4+b 2=-2.解得⎩⎪⎨⎪⎧a =7,b =-8.∴a +b =-1.4.D 5.A 6.a ≤17.解:解不等式①得x <a -1,解不等式②得x >-6.∵不等式组有解,∴-6<x <a -1,∴a -1>-6,∴a >-5.8.C 解析:方程组中两个方程相加得4x +4y =2+2a ,即x +y =1+a 2.又∵x +y >0,∴1+a 2>0,解得a >-1.故选C.9.C 解析:解方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m ,得⎩⎪⎨⎪⎧x =m +2,y =3-m .根据题意得⎩⎪⎨⎪⎧m +2≥0,3-m >0,解得-2≤m <3.故选C.10.解:⎩⎪⎨⎪⎧2x +y =-3m +2①,x +2y =4②,①+②,得3(x +y )=-3m +6,即x +y =-m +2,代入不等式,得-m +2>-32,解得m <72,则满足条件的m 的正整数值为1,2,3.非常感谢!您浏览到此文档。
【期末复习】浙教版八年级上册提分专题:一元一次不等式(组)常见题型类型一“程序”类问题1.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.12.75<x≤24.5B.x<24.5C.12.75≤x<24.5D.x≤24.5【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得:,解不等式①得,x≤48,解不等式②得,x≤24.5,解不等式③得,x>12.75,所以,x的取值范围是12.75<x≤24.5.故选:A.2.如图所示的是一个运算程序:例如:根据所给的运算程序可知:当x=10时,5×10+2=52>37,则输出的值为52;当x=5时,5×5+2=27<37,再把x=27代入,得5×27+2=137>37,则输出的值为137.若数x需要经过三次运算才能输出结果,则x的取值范围是()A.x<7B.﹣≤x<7C.﹣≤x<1D.x<﹣或x>7【分析】根据该程序运行三次才能输出结果,即可得出关于x的一元一次不等式组,解之即可得出结论.【解答】解:依题意得:,解得:﹣≤x<1.故选:C.3.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x后程序操作仅进行了二次就停止,则输入整数x的值可能是()A.7B.7或9C.9或11D.13【分析】根据程序操作仅进行了二次就停止,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再对照四个选项即可找出可能输入的整数值.【解答】解:依题意得:,解得:7<x≤11.又∵x为整数,∴x可以为8,9,10,11,故选:C.4.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:我们用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是,∴满足条件所有x的值是131或26或5或.故答案为:131或26或5或.类型二“字母系数”类问题5.根据不等式的基本性质,可将“mx<2”化为“x”,则m的取值范围是.【分析】利用不等式的基本性质求出m的范围即可.【解答】解:∵根据不等式的基本性质,可将“mx<2”化为“x”,∴m<0,故答案为:m<06.解关于x的不等式ax﹣x﹣2>0.解:移项、合并同类项,得(a﹣1)x>2.当a﹣1>0,即a>1 时,不等式的解集为;当a﹣1=0,即a=1时,0>2 不成立,所以原不等式无解;当 a ﹣1<0,即 a <1 时,不等式的解集为x <.【解决问题】(1)解关于x 的不等式 ax ﹣x ﹣2<0;(2)若关于x 的不等式 a (x ﹣1)>x +1﹣2a 的解集是 x <﹣1,求a 的取值范围.【分析】(1)由ax ﹣x ﹣2<0知(a ﹣1)x <2,再分a ﹣1>0、a ﹣1=0和a ﹣1<0三种情况分别求解即可;(2)原不等式依次去括号、移项、合并同类项得出(a ﹣1)x >﹣(a ﹣1),结合不等式的解集为x <﹣1得出关于a 的不等式,解之即可.【解答】解:(1)∵ax ﹣x ﹣2<0,∴(a ﹣1)x <2,当a ﹣1>0,即a >1时,x <; 当a ﹣1=0,即a =1时,0<2恒成立,不等式的解集为全体实数;当a ﹣1<0,即a <1时,x >;(2)∵a (x ﹣1)>x +1﹣2a ,∴ax ﹣a >x +1﹣2a ,∴ax ﹣x >1﹣a ,则(a ﹣1)x >﹣(a ﹣1),∵不等式的解集为x <﹣1,∴a ﹣1<0,解得a <1.类型三 “双向不等式”类问题 7.解下列双向不等式5-1214233- +≤-≤x x x x <②<①【分析】双向不等式其实就是不等式组,当只有中间有未知数时,可以直接解答,不需要拆分成不等式组;但是当两边或者三边都有未知数时,通常转化为普通一元一次不等式组来求解 【解答】解:①∵14233-<-≤x ;2310-6310-243212-412343-≤≤∴≤≤+≤≤+⨯-≤⨯x x x x 即<②原不等式可转化为⎩⎨⎧+≤②①<5-1-12x x x x ; 解不等式①得:31<x ;解不等式②得:2≥x ; ∴该不等式的解集为:312-<x ≤类型四 “新定义”类问题 8.新定义:对非负数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若,则(x )=n .如(0.46)=0,(3.67)=4.下列结论:①(2.493)=2;②(3x )=3(x );③若,则x 的取值范围是6≤x <10;④当x ≥0,m 为非负整数时,有(m +2022x )=m +(2022x );其中正确的是 (填写所有正确的序号).【分析】对于①可直接判断,②可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【解答】解:①(2.493)=2,故①符合题意;②(3x )≠3(x ),例如当x =0.3时,(3x )=1,3(x )=0,故②不符合题意;③若(x ﹣1)=1,则,解得:6≤x <10,故③符合题意;④m 为非负整数,故(m +2020x )=m +(2020x ),故④符合题意;综上可得①③④正确.故答案为:①③④.9.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)在不等式①2x ﹣1<0,②x ≤2,③x ﹣(3x ﹣1)<﹣5中,不等式x ≥2的“云不等式”是 ;(填序号)(2)若关于x 的不等式x +2m ≥0不是2x ﹣3<x +m 的“云不等式”,求m 的取值范围;(3)若a ≠﹣1,关于x 的不等式x +3≥a 与不等式ax ﹣1<a ﹣x 互为“云不等式”,求a 的取值范围.【分析】(1)根据云不等式的定义即可求解;(2)解不等式x +2m ≥0可得x ≥﹣2m ,解不等式2x ﹣3<x +m 得x <m +3,再根据云不等式的定义可得﹣2m >m +3,解不等式即可求解;(3)分两种情况讨论根据云不等式的定义得到含a 的不等式,解得即可.【解答】解:(1)不等式2x ﹣1<0和不等式x ≥2没有公共解,故①不是不等式x ≥2的“云不等式”; 不等式x ≤2和不等式x ≥2有公共解,故②是不等式x ≥2的“云不等式”;不等式x ﹣(3x ﹣1)<﹣5和不等式x ≥2有公共解,故③是不等式x ≥2的“云不等式”;故答案为:②③;(2)解不等式x +2m ≥0可得x ≥﹣2m ,解不等式2x ﹣3<x +m 得x <m +3,∵关于x 的不等式x +2m ≥0不是2x ﹣3<x +m 的“云不等式”,∴﹣2m ≥m +3,解得m≤﹣1,故m的取值范围是m≤﹣1;(3)①当a+1>0时,即a>﹣1时,依题意有a﹣3<1,即a<4,故﹣1<a<4;②当a+1<0时,即a<﹣1时,始终符合题意,故a<﹣1;综上,a的取值范围为a<﹣1或﹣1<a<4.10.设x为实数,我们用{x}表示不小于x的最小整数,如:{3.2}=4,{﹣2}=﹣2.在此规定下,任一实数都能写成x={x}﹣a的形式.(1)若﹣1.2={﹣1.2}﹣a,则a=;(2)直接写出{x}、x与x+1这三者的大小关系:;(3)满足{2x+5}=4的x的取值范围是;满足{2.5x﹣3}=4x﹣的x的取值是.【分析】(1)利用{x}表示不小于x的最小整数,可得方程﹣1.2=﹣1﹣a,解方程即可求解;(2)利用x={x}﹣b,其中0≤b<1得出0≤{x}<x+1,进而得出答案;(3)利用(2)中所求得出2x+5≤4<2x+5+1,进而得出即可;利用(2)中所求得出2.5x﹣3≤4x﹣<(2.5x﹣3)+1,进而得出即可.【解答】解:(1)∵﹣1.2={﹣1.2}﹣a,∴﹣1.2=﹣1﹣a,解得a=0.2;(2)x≤{x}<x+1,理由:∵x={x}﹣b,其中0≤b<1,∴b={x}﹣x,∴0≤{x}<x+1,∴x≤{x}<x+1;(3)依题意有2x+5≤4<2x+5+1,解得:﹣1<x≤﹣;依据题意有2.5x﹣3≤4x﹣<(2.5x﹣3)+1且4x﹣为整数,解得:﹣≤x<﹣,∴﹣≤4x﹣<﹣,∴整数4x﹣为﹣6,﹣5,解得:x=﹣或x=﹣.故答案为:0.2;x≤{x}<x+1;﹣1<x≤﹣,﹣或﹣.11.阅读与思考请仔细阅读材料,并完成相应任务.好学善思的小明和小亮同学阅读数学课外书时,看到这样一道题:解关于x的不等式:>0两位同学认为这道题虽然没学过,但是可以用已学的知识解决.小明的方法:根据“两数相除,同号得正”,可以将原不等式转化为或解得……小亮的方法:将原不等式两边同时乘以(3x﹣2),得x+1>0,解得……任务一:你认为小明和小亮的方法正确吗?若正确请补充完整解题过程;若不正确,请说明理由.任务二:请尝试利用已学知识解关于x的不等式:<2.【分析】根据两数相除,同号得正,分类讨论求出不等式的解集即可.【解答】解:任务一:小明的方法正确,根据“两数相除,同号得正”,可以将原不等式转化为或,解得x>或x<﹣1;小亮的方法错误;不符合不等式的性质.任务二:<2,整理得﹣2<0,即>0,根据“两数相除,同号得正”,可以将原不等式转化为或,解得x>﹣3或x<﹣8.类型五“含字母参数”类不等式解的问题12.已知不等式2(x+3)﹣5x+a>0的解集中恰有3个非负整数,则a的取值范围为()A.2<a≤3B.2≤a<3C.0<a≤3D.0≤a<3【分析】先求出不等式的解集,再根据其非负整数解列出不等式,解此不等式即可.【解答】解:解不等式2(x+3)﹣5x+a>0得到:x<a+2,∵不等式2(x+3)﹣5x+a>0的解集中恰有3个非负整数,∴3个非负整数解是0,1,2,∴2<a+2≤3,解得0<a≤3.故选:C.13.下面说法错误的个数有()①若m>n,则ma2>na2;②如果>,那么a>b;③x>4是不等式x+3≥6的解的一部分;④不等式两边乘(或除以)同一个数,不等号的方向不变;⑤不等式x+3<3的整数解是0.A.1个B.2个C.3个D.4个【分析】利用不等式的基本性质,解集与解的定义判断即可.【解答】解:①若m>n且a≠0,则ma2>na2,故错误,符合题意;②如果>,那么a>b,故正确,不符合题意;③∵不等式x+3≥6的解集为x≥3,∴x>4是不等式x+3≥6的解的一部分,故正确,不合题意;④不等式两边乘(或除以)同一个正数,不等号的方向不变,故错误,符合题意;⑤∵不等式x+3<3的解集为x<0,故错误,符合题意.故选:C.14.关于x的不等式3x﹣m+2>0的最小整数解为2,则实数m的取值范围是()A.5≤m<8B.5<m<8C.5≤m≤8D.5<m≤8【分析】解出不等式,然后根据不等式的最小整数解为2,即可列出关于m的不等式,从而求出m的取值范围.【解答】解:3x﹣m+2>0,3x>m﹣2,,∵不等式的最小整数解为2,∴,解得:5≤m<8,故选:A.15.已知关于x的不等式组恰有4个整数解,则m的取值范围为()A.<m<B.≤m<C.<m≤D.≤m≤【分析】根据关于x的不等式组的解集和整数解的个数确定关于m的不等式组,再求出解集即可.【解答】解:关于x的不等式组有解,其解集为8<x≤4m﹣2,∵关于x的不等式组恰有4个整数解,∴12≤4m﹣2<13,解得≤m<,故选:B.16.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为()A.﹣6<m≤﹣3或3<m≤6B.﹣6≤m<﹣3或3≤m<6C.﹣6≤m<﹣3D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.17.若实数m使得关于x的不等式组无解,则关于y的分式方程的最小整数解是.【分析】先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程,从而确定y的取值范围,即可得到答案.【解答】解:解不等式2x>2得:x>1,解不等式3x<m+1得:,∵不等式组无解,∴,解得m≤2;,去分母得2y=4﹣m,解得,∵m≤2,∴4﹣m≥2,∴,又∵y﹣1≠0,∴y>1,∴y的最小整数解为2,故答案为:2.18.若关于x的不等式组有解,且关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,则符合条件的所有整数k的和为.【分析】先根据不等式组有解得k的取值,利用方程有非负整数解,将k的取值代入,找出符合条件的k值,并相加.【解答】解:,解①得:x≥4k+1,解②得:x<5k+5,关于x的不等式组有解,∴5k+5>4k+1,∴k>﹣4,解关于x的方程kx=2(x﹣2)﹣(3x+2)得,x=﹣,因为关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,当k=﹣3时,x=3当k=﹣2时,x=6,∴﹣2﹣3=﹣5;故答案为:﹣5.类型六“分配”问题19.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山.若每人带2瓶,则剩余3瓶;若每人带3瓶,则有一人带了矿泉水,但不足2瓶,则这家参加登山的人数为()A.4人B.5人C.3人D.5人或6人【分析】设这家参加登山的人数为x人,则矿泉水有(2x+3)瓶,根据题意列出不等式组,再解即可.【解答】解:设这家参加登山的人数为x人,则矿泉水有(2x+3)瓶,由题意得:,解得:4<x<6,∵x为整数,∴x=5,故选:B.20.我校团委组织团员志愿者在重阳节乘车前往敬老院慰问孤寡老人,参加的团员志愿者不足50人,联系“小白”车若干辆,每辆车如果坐6人,就剩下18人无车可坐;每辆车坐10人,那么其余的车坐满后,仅有一辆车不空也不满.则参加次活动的团员志愿者有()名.A.54B.48C.46D.45【分析】设联系“小白”车x辆,则参加次活动的团员志愿者有(6x+18)名,根据“参加的团员志愿者不足50人,每辆车坐10人,那么其余的车坐满后,仅有一辆车不空也不满”,即可得出关于x的一元一次不等式组,解之取其正整数值即可得出结论.【解答】解:设联系“小白”车x辆,则参加次活动的团员志愿者有(6x+18)名,依题意,得:,解得:<x<.∵x为正整数,∴x=5,∴6x+18=48.故选:B.21.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式组为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数5x+12﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【解答】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.22.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了名护士护理新冠病人.【分析】设医院安排了x名护士,由题意列出不等式组,则可得出答案.【解答】解:设医院安排了x名护士,由题意得,1<4x+20﹣8(x﹣1)<8,解得,5<x<6,∵x为整数,∴x=6.故答案为:6.23.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?【分析】设有x个学生,根据“每人分3本,还余8本”用含x的代数式表示出书的本数;再根据“每人分5本,最后一人就分不到3本”列不等式.【解答】解:设有x个学生,那么共有(3x+8)本书,则:,解得5<x≤6.5,所以x=6,共有6×3+8=26本.答:有26本书,6个学生.类型七“方案设计类”问题24.2020年7月27日,金华城东东湖畈地力提升项目现场,金色的早稻田一望无际.大型收割机依次排开,在田间来回穿梭,伴随着机器轰鸣的声音,金灿灿的稻谷被尽数收入“囊中”.已知1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷.(1)每台大型收割机和小型收割机1小时可收割水稻多少公顷?(2)大型收割机每小时费用300元,小型收割机每小时费用为200元,两种型号的收割机一共10台,要求2小时完成8公顷水稻的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用【分析】(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,根据要求2小时完成8公顷水稻的收割任务且总费用不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出方案的个数,设总费用为w元,根据总费用=每台机器1小时所需费用×使用机器的数量×2,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,依题意得:,解得:.答:每台大型收割机1小时可收割水稻0.5公顷,每台小型收割机1小时可收割水稻0.3公顷.(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,依题意得:,解得:5≤m≤7.又∵m为整数,∴m可以取5,6,7,∴共有3种方案.设总费用为w元,则w=2×[300m+200(10﹣m)]=200m+4000,∵200>0,∴当m=5时,w取得最小值,最小值=200×5+4000=5000(元),即当使用5台大型收割机、5台小型收割机时,总费用最低,最低费用为5000元.25.小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?【分析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∵﹣<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600﹣3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.26.某网红蛋糕店的蛋糕十分畅销,供不应求,主原料为鸡蛋和面粉,一份蛋糕含鸡蛋和面粉共390克,鸡蛋比面粉多90克,再添加不同的辅料,做成A、B、C三款蛋糕,毛利润分别为6元、9元、8元.(1)求一份蛋糕含鸡蛋、面粉各多少克?(2)若一天卖出500份蛋糕,A款与B款的份数之和比C款多60份,毛利润为3800元,求A款、B款、C款各卖了多少份?(3)若一天卖出n份蛋糕,A款与B款的份数之比为3:4,毛利润为4200元,且每款蛋糕的份数不少于145份,则n的最小值是(直接写出答案).【分析】(1)设一份蛋糕含鸡蛋x克,面粉y克,根据“一份蛋糕含鸡蛋和面粉共390克,鸡蛋比面粉多90克”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A款蛋糕卖了a份,B款蛋糕卖了b份,C款蛋糕卖了c份,根据“三款蛋糕共卖出500份,A款与B 款的份数之和比C款多60份,毛利润为3800元”,即可得出关于a,b,c的三元一次方程组,解之即可得出结论;(3)设卖出A款蛋糕3m份,则卖出B款蛋糕4m份,卖出C款蛋糕(n﹣7m)份,根据毛利润为4200元,即可得出关于m,n的二元一次方程,变形后可用含m的代数式表示出n值,结合每款蛋糕的份数不少于145份,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合3m,4m,(525+m)均为正整数,即可得出m的值,进而可得出n的值,取n的最小值即可得出结论.【解答】解:(1)设一份蛋糕含鸡蛋x克,面粉y克,依题意得:,解得:.答:一份蛋糕含鸡蛋240克,面粉150克.(2)设A款蛋糕卖了a份,B款蛋糕卖了b份,C款蛋糕卖了c份,依题意得:,解得:.答:A款蛋糕卖了160份,B款蛋糕卖了120份,C款蛋糕卖了220份.(3)设卖出A款蛋糕3m份,则卖出B款蛋糕4m份,卖出C款蛋糕(n﹣7m)份,依题意得:6×3m+9×4m+8(n﹣7m)=4200,∴n=525+m.又∵每款蛋糕的份数不少于145份,∴,即,解得:≤m≤,又∵3m,4m,(525+m)均为正整数,∴m可以为52,56,∴n的值为538或539.答:n的最小值为538.27.某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元.(1)求甲、乙型号手机每部进价各为多少元?(2)该店计划购进甲乙两种型号的手机销售,预计用不多于5.52万元且不少于5.28万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若甲型号手机的售价为4500元,乙型号手机的售价为4200元,为了促销,无论采取哪种进货方案,公司决定每售出一台乙型号手机,返还顾客相同现金a元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.【分析】(1)设甲型号手机每部进价为x元,乙型号手机每部进价为y元,根据“若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲型号手机m部,则购进乙型号手机(20﹣m)部,根据总价=单价×数量结合总价不多于5.52万元且不少于5.28万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m的整数即可得出进货方案的数量;(3)设获得的利润为w元,根据总利润=单部利润×数量,即可得出w关于m的函数关系式,由w的值与m 无关,即可求出a值.【解答】解:(1)设甲型号手机每部进价为x元,乙型号手机每部进价为y元,依题意,得:,解得:.答:甲型号手机每部进价为3000元,乙型号手机每部进价为2400元.(2)设购进甲型号手机m部,则购进乙型号手机(20﹣m)部,依题意,得:,解得:8≤m≤12,∵m为整数,∴m=8,9,10,11,12,∴共有5种进货方案.(3)设获得的利润为w元,依题意,得:w=(4500﹣3000)m+(4200﹣2400﹣a)(20﹣m)=(a﹣300)m+36000﹣20a,∵w的值与m无关,∴a﹣300=0,解得:a=300.答:a的值为300.28.在利川市开展“六城同创”城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如表:A地B地C地运往D地(元/立方米)222020运往E地(元/立方米)202221在(2)的条件下,请说明哪种方案的总费用最少?【分析】(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)根据C地运往D地的数量小于A地运往D地的2倍,其余全部运往E地,且C地运往E地不超过12立方米列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(2)中的两种方案分别求出其费用,比较即可.【解答】解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,则2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+30×20+22×10+39×20+11×21=2873(元),第二种方案共需费用:22×22+28×20+30×20+22×10+38×20+12×21=2876(元),所以,第一种方案的总费用最少.29.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x个,需要长方形纸板张,正方形纸板张(请用含有x的式子表示);(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a 的值.【分析】(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,根据每个长方形、正方形纸板使用长方形、正方形纸板的数量,即可得出结论;(2)根据使用正方形纸板不超过162张、长方形纸板不超过340张,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为整数,即可得出各生产方案;(3)设可以生产竖式纸盒m个,横式纸盒个,得出a关于m的函数关系式,结合290<a<300,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出结论.【解答】解:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,∴长方形纸板用了(x+300)张,正方形纸板用了(200﹣x)张.故答案为:(x+300),(200﹣x);(2)依题意得:,解得38≤x≤40.∵x为整数,∴x=38,39,40,∴共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)设可以生产竖式纸盒m个,横式纸盒个,依题意得:a=4m+=m+243.∵290<a<300,∴,解得18.8<m<22.8,∵m为正整数,∴m=20,22,∴a=293,298.答:a的值为293或298.。
七年级数学下册解法技巧思维培优专题11 一元一次不等式(组)中的参数问题题型一 解集求参数的值【典例1】〔2021•綦江区期末〕假设不等式组{x +2a >32x −b <1解集为1<x <2,那么〔a +2〕〔b ﹣1〕值为 .【点拨】首先解不等式组求得不等式组的解集,然后根据不等式组的解集即可求得a 、b 的值,然后代入代数式求值即可.【典例2】〔2021•巴南区期中〕如果关于x 的不等式组{x−m2>0x−23−x <−2的解集为x >2,且式子√3−|m|的值是整数,那么符合条件的所有整数m 的个数是〔 〕 A .5B .4C .3D .2【点拨】先解不等式组,得出m ≤2,再由式子√3−|m|的值是整数,得出|m |=3或2,于是m =﹣3,+3,﹣2,2,由m ≤2,得m =﹣3,﹣2,2.题型二 解集的情况求参数的取值范围【典例3】〔2021•鄂州一模〕假设关于x 的不等式组{2x >3x −33x −a >5有实数解,那么a 的取值范围是〔 〕A .a <4B .a ≤4C .a >4D .a ≥4【点拨】分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a 的不等式,求出a 的取值范围即可.【典例4】〔2021•滨湖区校级期末〕设关于x 的不等式组{2x −m >23x −2m <−1无解,求m 的取值范围.【点拨】先解每个不等式,再根据不等式组{2x −m >23x −2m <−1无解,推出m 的值.题型三 整数解的情况求参数的值或取值范围【典例5】〔2021•万州区期末〕使得关于x 的不等式组{−x2≤−m2+1−2x +1≥4m −1有解,且使得关于y 的方程1+〔m﹣y 〕=2〔y ﹣2〕有非负整数解的所有的整数m 的个数是〔 〕 A .0个B .1个C .2个D .3个【点拨】根据关于x 的不等式组{−x2≤−m2+1−2x +1≥4m −1有解,可以求得m 的取值范围,再根据关于y 的方程1+〔m ﹣y 〕=2〔y ﹣2〕有非负整数解可以求得m 的值,从而可以解答此题.【典例6】〔2021•西城区校级期中〕如果关于x 的不等式组{2x+23<x +a x+52>x −3只有3个整数解,求a 的取值范围. 【点拨】首先利用不等式的根本性质解不等式组,再从不等式的解集中找出适合条件的整数解,在确定字母的取值范围即可.【典例7】〔2021•东营模拟〕关于x 的不等式组{4(x −1)+2>3x x −1<6x+a 7,有且只有三个整数解,求a 的取值范围.【点拨】先解两个不等式得到x >2和x <a +7,由于不等式组有解,那么2<x <a +7,由不等式组有且只有三个整数解,所以5<a +7≤6,然后在解此不等式组即可.【典例8】〔2021•大石桥市校级月考〕假设关于x 的不等式组{x+152>x −32x−23>x +a 的正整数解只有2个,求a 的取值范围.【点拨】首先解两个不等式,根据不等式有两个正整数解即可得到一个关于a 的不等式组,从而求得a 的范围.稳固练习1.〔2021•百色〕不等式组{12−2x <203x −6≤0的解集是〔 〕A .﹣4<x ≤6B .x ≤﹣4或x >2C .﹣4<x ≤2D .2≤x <4 2.〔2021•济南二模〕假设关于x 的不等式组{2x +7>4x +1x −k <2的解集为x <3,那么k 的取值范围为〔 〕A .k >1B .k <1C .k ≥1D .k ≤13.〔2021•沙坪坝区校级期末〕如果关于x 的不等式组{x−m2≥2x −4≤3(x −2)的解集为x ≥1,且关于x 的方程m3−1−x 3=x ﹣2有正整数解,那么所有符合条件的整数m 的值之和是〔 〕A .﹣3B .﹣4C .﹣8D .﹣94.〔2021•道外区期末〕不等式组{5−2x ≥1−2x <4的解集是 .5.〔2021•成都校级月考〕求不等式组{1−(x −2)>05x+12+1≥2x−13的正整数解.6.〔2021•松桃县期末〕求不等式组{2x −6<6−2x 2x +1>3+x 2的整数解.7.〔2021•邻水县期末〕是否存在整数k ,使方程组{2x +y =kx −y =1的解中,x 大于1,y 不大于1,假设存在,求出k 的值,假设不存在,说明理由.。
一元一次不等式组含参问题一元一次不等式组含参问题是指在一元一次不等式组中引入一个或多个参数,求解参数使得不等式组成立或不成立的问题。
解决这类问题的一般方法是通过对参数的取值范围进行讨论,将不等式系统转化为关于参数的方程或不等式,然后解方程或不等式来确定参数的取值范围。
下面通过几个例子来说明如何解决一元一次不等式组含参问题。
【例1】求参数m的取值范围,使得不等式组 3x - 2 < mx + 1和 2x + 3 < 4m + 1 同时成立。
解:首先,我们可以通过将不等式组化简来得到关于参数m的方程组,然后解方程来确定参数的范围。
将不等式组化简得到:3x - mx < 3 + 2 和 2x - 4m < -2。
化简后的不等式组可以写成关于参数m的方程组:3 - m > 0和 -4m - 2 < 2x。
解这个方程组可以得到参数m的取值范围。
对不等式3 - m > 0,我们可以将m移到左边得到m < 3。
因此,参数m的取值范围是m < 3。
这是因为当m小于3时,不等式3 - m > 0成立。
对于不等式-4m - 2 < 2x,我们可以将m移到右边得到2x > -4m - 2,再除以2得到x > -2m - 1。
这说明在参数m小于3时,也必须满足x > -2m - 1,才能使得不等式组成立。
综上所述,参数m的取值范围是m < 3,并且在这个范围内,x > -2m - 1。
【例2】求参数a的取值范围,使得不等式组 2x + a - 1 < 3 和5 - 3x < 2a 同时成立。
解:首先,我们可以通过将不等式组化简来得到关于参数a的方程组,然后解方程来确定参数的范围。
化简不等式组得到:a + 2x < 4 和 3x + 5 < 2a。
化简后的不等式组可以写成关于参数a的方程组:a - 4 < -2x和 2a - 3x > 5。
第04讲解题技巧专题:一元一次不等式(组)中含参数问题(7类热点题型讲练)目录【考点一根据一元一次不等式的定义求参数的值】 (1)【考点二根据一元一次不等式的解集求参数】 (2)【考点三利用一元一次不等式的整数解求参数的取值范围】 (4)【考点四利用一元一次不等式组的整数解求参数的取值范围】 (6)【考点五根据一元一次不等式组的解集的情况求参数的取值范围】 (10)【考点六整式方程(组)与一元一次不等式结合求参数的问题】 (12)【考点七整式方程(组)与一元一次不等式组结合求参数的问题】 (15)【考点一根据一元一次不等式的定义求参数的值】故答案为:1 .【点睛】本题主要考查一元一次不等式的定义,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.【变式训练】【考点二根据一元一次不等式的解集求参数】例题:(2023下·湖南衡阳·七年级校考期中)若关于x 的不等式 11m x m 的解集为1x ,则m 的取值范围是()A .m >0B .1m C .1m D .0m 【答案】C【分析】根据不等式的性质可知两边同时除以的数是负数即可求解.m ,【详解】解:根据题意得10m ,∴1故选C.【点睛】本题考查了不等式的性质,解题关键是掌握不等式的两边同时乘以或除以同一个负数,不等号的方向发生改变.【变式训练】【点睛】本题考查了不等式的性质.注意:不等式两边同除以同一个负数时,不等号的方向改变.同理,【考点三利用一元一次不等式的整数解求参数的取值范围】【变式训练】的取值范围是解题的关键.【考点四利用一元一次不等式组的整数解求参数的取值范围】解得610a ,故答案为:610a .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2023下·吉林长春·七年级校考期末)对x ,y 定义一种新运算M ,规定: ,M x y mx ny (其中m ,n 均为非零常数).例如: 1,1M m n ,已知 1,19M , 3,17M .(1)求m ,n 的值;(2)若关于t 的不等式组 ,2216,2,232M t t M t t a恰好有3个整数解,求a 的取值范围.【答案】(1)4m ,5n (2)21a 【分析】(1)根据题意得关于m ,n 二元一次方程组,解之即可;(2)根据题中新定义得不等式组45(22)16425(2)32t t t t a ①②,解不等式组后再根据不等式组恰好有3个整数解,求出a 的范围即可.【详解】(1)解:由题意得937m n m n ,解得45m n,4m ,5n ;(2)由(1)知 ,45M x y x y ,由题意得,45(22)16425(2)32t t t t a①②,解不等式①得,1t ,解不等式②得,4t a ,不等式组的解集为14t a ,∵恰好有3个整数解,,a243解得21.a【点睛】本题考查二元一次方程组,以及一元一次不等式组的整数解,弄清题中的新定义是解决本题的关键.【考点五根据一元一次不等式组的解集的情况求参数的取值范围】【考点六整式方程(组)与一元一次不等式结合求参数的问题】①-②,得21x y k ,∵3x y ,∴213k ,解得2k ,故答案为:2k .【点睛】本题考查了解二元一次方程组和解不等式,熟练掌握解不等式的方法是解题的关键.【考点七整式方程(组)与一元一次不等式组结合求参数的问题】。
浙教版《一元一次不等式》知识要点及典型例题、习题讲解一、知识点要求1、理解不等式的概念和基本性质、一元一次不等式的概念、不等式的解集(不等式的解)2、会解一元一次不等式,并能在数轴上表示不等式的解集;熟练掌握解一元一次不等式的一般步骤和根据;掌握一元一次不等式的应用题的解法3、理解一元一次不等式组的概念,及不等式组的解的概念(组成不等式组的各个不等式的解的公共部分);会解一元一次不等式组,并能在数轴上表示不等式组的解,进一步得出不等式组解的规律:①同大取大,②同小取小,③比大得小,比小得大取中间,④比大得大,比小得小,不等式组无实数解;掌握一元一次不等式组的应用题。
二、重要的数学思想:1、通过将实际生活问题转化成不等式等数学模型,领会转化的数学思想。
2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。
3、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。
在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。
2、不等式的解与方程的解的类比3、不等式解法与方程的解法类比。
注意:解一元一次不等式与解一元一次方程的步骤虽然完全相同,但是要注意如果乘数或除数是负数时,解不等式时要改变不等号的方向。
典型例题一、解不等式的通法与技巧解一元一次不等式的五个基本步骤和根据如下:5同学们在熟练掌握一元一次不等式解法的五个步骤后,可结合一元一次不等式的特点,采取一些灵活、简捷的方法与技巧,能使解题事半功倍。
(一)、凑整法例1.解不等式。
分析:根据不等式性质,两边同乘以适当的数,将小数转化为整系数。
解:两边同乘以-4,得x+30<-2-x.∴x<-16.(二)、化分母为整数例2.解不等式。