所以样品x=2.5判归 1. 判归G 因0.5218>0.3798>0.0984,所以样品 所以样品 判归
8
第五章 判别分析
5 − 3 设总体Gi 的均值为µ ( i ) (i = 1,2),同协差阵Σ. 1 ′µ (1) + a′µ ( 2 ) ), (其中a = Σ −1 ( µ (1) − µ ( 2) )), 记µ = (a 2 试证明(1)E(a′X | G1 ) > µ ; (2)E(a′X | G2 ) < µ . 1 (1) 1 (1) (2) ′X | G1) − µ = a′µ − (a′µ + a′µ ) = (a′µ(1) − a′µ(2) ) 解: E(a 2 2 1 (1) (2) −1 (1) (2) = (µ − µ )′Σ (µ − µ ) > 0, (因Σ > 0) 2 1 (1) (2) −1 (1) (2) 类似可证: E(a′X | G2 ) − µ = − (µ − µ )′Σ (µ − µ ) < 0,. 2 即 E(a′X | G1) > µ, E(a′X | G2 ) < µ .
第五章 判别分析
所以 q1 f1 ( x) = 0.1613, 类似可得 q2 f 2 ( x) = 0.0304, q3 f 3 ( x) = 0.1174,
所以样品x=2.5判归 1. 判归G 因0.1613>0.1174>0.0304,所以样品 所以样品 判归
7
第五章 判别分析
解三:后验概率判别法 解三 后验概率判别法, 后验概率判别法 计算样品x已知 已知,属 的后验概率: 计算样品 已知 属Gt的后验概率 qt f t ( x) P(t | x) = 3 (t = 1,2,3) ∑ qi fi ( x) 当样品x=2.5时,经计算可得 时 当样品