高中物理天体运动(超经典) ()
- 格式:doc
- 大小:505.00 KB
- 文档页数:8
高一物理天体运动知识点总结一、天体运动的基本概念天体运动是指天体在空间中的运动过程,包括行星、卫星、恒星等天体的运动。
天体运动是宇宙中的基本现象之一,研究天体运动可以揭示宇宙的本质和规律。
二、天体运动的基本规律1. 开普勒定律开普勒定律是描述行星运动的基本规律,包括开普勒第一定律(行星绕太阳运动的轨道是一个椭圆)、开普勒第二定律(行星在轨道上的面积速率是恒定的)和开普勒第三定律(行星公转周期的平方与轨道长轴的立方成正比)。
2. 轨道运动天体在宇宙中的运动基本上都是绕着某个中心进行的,这个中心可以是恒星、行星或其他天体。
天体绕中心运动的轨道有椭圆、圆、抛物线和双曲线四种类型。
3. 万有引力定律万有引力定律是描述天体之间相互作用的基本规律,它表明任何两个物体之间都存在引力,且引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。
万有引力定律是描述天体运动的重要依据。
三、天体运动的影响因素1. 天体的质量天体的质量决定了其对其他天体的引力大小,质量越大,引力越大。
2. 天体之间的距离天体之间的距离越近,它们之间的引力就越大,反之亦然。
3. 初始速度天体在开始运动时的初始速度也会影响其轨道形状,初始速度越大,轨道越开放,初始速度越小,轨道越封闭。
四、天体运动的应用1. 行星轨道计算利用开普勒定律和万有引力定律,可以计算行星的轨道形状、周期等参数,从而更好地了解行星的运动规律。
2. 卫星发射与轨道设计在卫星发射过程中,需要根据地球的引力和速度等因素,确定卫星的发射角度和速度,以使卫星进入预期的轨道。
3. 天文观测与导航系统天体运动的知识可以帮助天文学家进行天文观测,研究宇宙的演化和变化。
此外,天体运动的规律也是导航系统中的重要基础,如全球定位系统(GPS)就是基于卫星运动的原理来实现位置定位的。
五、天体运动的未解之谜尽管我们对天体运动有了深入的研究,但仍有一些未解之谜。
例如,黑洞的运动规律、宇宙的扩张速度等问题,仍需要进一步的研究和探索。
高中物理天体运动知识点详解01开普勒的行星运动三定律开普勒第一定律开普勒第一定律即为椭圆轨道定律,其内容为:所有的行星围绕太阳运动的轨道是椭圆,太阳处在所有椭圆的一个焦点上,如图。
此定律说明不同行星的椭圆轨道是不同的。
开普勒第二定律开普勒第二定律又叫面积定律,其内容为:连接太阳和行星的连线(矢径)在相等的时间内扫过相等的面积,如图。
此定律说明行星离太阳越近,其运行速率越大。
开普勒第三定律开普勒第三定律即为周期定律,其内容为:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常数。
即,其中r代表椭圆轨道的半长轴,T代表行星运动的公转周期,k是一个与行星无关的常量。
对的认识:在图中,半长轴是AB间距的一半,不要认为a等于太阳到A 点的距离;T是公转周期,不要误认为是自转周期,如地球的公转周期是一年,不是一天。
说明(1)在以后的计算问题中,我们都把行星的轨道近似为圆,把卫星的运行轨道也近似为圆,这样就使问题变得简单,计算结果与实际情况也相差不大。
(2)在上述情况下,的表达式中,a就是圆的半径R,利用的结论解决某些问题很方便。
注意①比例系数k是一个与行星无关的常量,但不是恒量,在不同的星系中,k值不相同。
②在太阳系中,不同行星的半长轴都不相同,故其公转周期也不相等。
③卫星绕地球转动、地球绕太阳转动遵循相同的运动规律。
易错点在认识行星做椭圆运动时的向心力大小及速度大小时易错,行星的运动符合能量守恒定律,它们离太阳近时半径小,速度大,向心力也大;离太阳远时半径大,速度小,向心力也小,另一个易错点是找椭圆的半长轴时易错,许多同学在初学时,往往将2倍的半长轴代入题中进行运算。
忽略点本节中的行星运动的轨道为椭圆,是曲线运动,行星在轨道上任一点的速度方向沿该点的切线方向,速度方向易忽略,如:有部分同学认为行星的速度方向垂直于行星与太阳的连线,这种认识是错误的,是将行星的运动视为圆周运动,而实质上其轨道为椭圆。
02卡文迪许扭称实验卡文迪许设计了扭称实验来测量万有引力常量,下图是扭称实验的原理图。
高中物理天体运动知识点在高中物理的学习中,天体运动是一个重要且有趣的部分。
它不仅帮助我们理解宇宙中天体的运行规律,还为我们打开了探索未知世界的大门。
接下来,让我们一起深入了解天体运动的相关知识点。
一、开普勒定律开普勒定律是描述天体运动的基本规律,包括三条重要内容:1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
这意味着行星的轨道不是完美的圆形,而是椭圆形,且太阳并非位于中心,而是在焦点之一的位置。
2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
简单来说,就是行星在靠近太阳时运动速度较快,远离太阳时运动速度较慢,但单位时间内扫过的面积相同。
3、开普勒第三定律(周期定律):所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等。
用公式表示为:$\frac{a^3}{T^2} = k$,其中$a$是轨道半长轴,$T$是公转周期,$k$是一个对所有行星都相同的常量,但对于不同的恒星系统,$k$值不同。
二、万有引力定律万有引力定律是由牛顿发现的,它指出:任何两个物体之间都存在相互吸引的力,其大小与这两个物体的质量乘积成正比,与它们之间距离的平方成反比。
公式为:$F = G\frac{m_1m_2}{r^2}$,其中$F$是两个物体之间的引力,$G$是引力常量,约为$667×10^{-11} N·m^2/kg^2$,$m_1$和$m_2$分别是两个物体的质量,$r$是两个物体质心之间的距离。
万有引力定律是天体运动的核心定律,它解释了天体之间的相互作用和运动规律。
例如,地球围绕太阳公转就是因为受到太阳对地球的万有引力作用。
三、天体质量和密度的计算1、利用万有引力定律计算天体质量对于绕中心天体做匀速圆周运动的天体,可根据万有引力提供向心力来计算中心天体的质量。
假设一个天体$m$绕中心天体$M$做匀速圆周运动,轨道半径为$r$,周期为$T$,则有:$G\frac{Mm}{r^2} =m\frac{4\pi^2}{T^2}r$,解得中心天体质量$M =\frac{4\pi^2r^3}{GT^2}$。
天体运动(经典版)一、开普勒运动定律1、开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.2、开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.二、万有引力定律1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2、公式:F =G mm ^淇中G =6.67x 10-11N -m 2/kg 2,称为为有引力恒量。
r 23、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.4、万有引力与重力的关系:合力与分力的关系。
三、卫星的受力和绕行参数(角速度、周期与高度)1、由G 严、=m 占戸,得v =:再^,・••当hf ,vj (r +h J 2\r+h 丿\{r +h ) 2、由G mM =m®2(r+h ),得①=[GM ,•:当hf ,roj (r +h T 2\(r +h T 34 第一宇宙速度是在地面附近(h VV r ),卫星绕地球做匀速圆周运动的最大速度.(2) 第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速度.(3) 第三宇宙速度(逃逸速度):v 3=16.7km/s ,使卫星挣脱太阳引力束缚的最小发射速度.四、两种常见的卫星1、近地卫星3由=m 处(r +h ),得T 二严2°+h “・••当hf ,Tf (+h )2T 2\GM注:(1)卫星进入轨道前加速过程,卫星上物体超重.(2)卫星进入轨道后正常运转时,卫星上物体完全失重.4三种宇宙速度(1) 第一宇宙速度(环绕速度):V ]=7.9km/s ,人造地球卫星的最小发射速度。
高中物理天体运动知识编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理天体运动知识)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理天体运动知识的全部内容。
“万有引力定律”习题归类例析.一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 得。
(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为 L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为设初始平抛小球的初速度为v,则水平位移为x=vt.有○1当以2v的速度平抛小球时,水平位移为x’= 2vt.所以有②在星球表面上物体的重力近似等于万有引力,有mg=G ③联立以上三个方程解得而天体的体积为,由密度公式得天体的密度为。
2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()A。
高中物理天体运动总结:天体高中物理运动高中物理天体运动公式高中物理天体公式大全高中物理天体运动专题篇一:谈谈高中物理天体运动的-七个三-谈谈高中物理天体运动的”七个三”深邃浩瀚的宇宙奇妙而神秘,吸引无数颗聪明的头脑去研究它!而支配其运动的规律却并不复杂--开普勒三定律描述天体运动的运动学规律,牛顿运动定律及万有引力定律则揭示出天体运动的动力学原因.本文针对中学物理中的天体运动问题,进行系统而有序的分类,总结为”七个三”,以期帮助我们全面准确地掌握这类问题.1.区分描述重点,理解开普勒三定律开普勒第一定律,也称椭圆定律;也称轨道定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律,也称面积定律:在相等时间内,太阳和运动中的行星的连线(向量半径)所扫过的面积都是相等的。
开普勒第三定律,也称调和定律;也称周期定律:各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。
由这一定律不难导出:行星与太阳之间的引力与半径的平方成反比。
开普勒三定律详细地描绘出太阳系各行星的运动特点,也同样适用于行星及其卫星系统.三定律描述的侧重点不同:第一定律遵循日心说的同时指出了日心说的不足:行星运动轨道不是正圆而是椭圆,太阳的位置不在中心而在椭圆的焦点上;第二定律着重刻画行星在轨道上的运动细节,否定了日心说中的匀速率,指出行星的运动应是变速运动,速率的大小取决于它与太阳间的距离,具体数值由”面积定律”确篇二:高中物理天体运动热点难点重点卫星变轨问题深度解析(包教会)卫星变轨问题引例:飞船发射及运行过程:先由运载火箭将飞船送入椭圆轨道,然后在椭圆轨道的远地点A实施变轨,进入预定圆轨道,如图所示,飞船变轨前后速度分别为v1、v2,变轨前后的运行周期分别为T1、T2,飞船变轨前后通过A点时的加速度分别为a1、a2,则下列说法正确的是A.T1<T2,v1<v2,a1<a2B.T1<T2,v1<v2,a1=a2C.T1>T2,v1>v2,a1<a2D.T1>T2,v1=v2,a1=a2解答:首先,同样是A点,到地心的距离相等,万有引力相等,由万有引力提供的向心力也相等,向心加速度相等。
3万有引力模块一开普勒定律知识导航1.开普勒第一定律所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2.开普勒第二定律 对任何一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
这个定律告诉我们,行星 在绕太阳运动的时候,由于行星到太阳的距离会发生改变,所以行星的运动速度也会发生改变。
3.开普勒第三定律所有行星的轨道的半长轴的三次方跟他的公转周期的二次方的比值都相等,即 a T 2圆轨道半长轴,T 代表公转周期, K 是一个对所有行星都相同的常量。
= K 其中 a 代表椭任意两颗行星绕太阳转动,如果两颗行星的周期分别为T A 和 T B 他们轨道半长轴分别为 a A 和 a B 根据⎛ T ⎫ 开普勒第三定律可知 A 2 3⎛ a ⎫ = A ⎪ ⎪⎝ T B ⎭ ⎝ a B ⎭实战演练【例1】 对太阳系中各个行星绕太阳的公转,有以下一些说法。
其中正确的是( )A .所有行星绕太阳运动的轨道都是椭圆B .所有行星绕太阳运动的轨道都是正圆C .不同的行星绕太阳运动的周期均相同D .不同的行星绕太阳运动的轨道不同【例2】 一颗人造地球卫星绕地球做椭圆运动,地球位于椭圆轨道的一个焦点上,如图所示,卫星距离地球的近地点 a 的距离为 L ,距离地球的远地点 b 的距离为 s ,求卫星在 a 点和 b 点的速率之比【例3】 对于开普勒第三定律中行星的运动公式 a T 2A . k 是一个与行星无关的常量B . a 代表行星运动的轨道半径C . T 代表行星运动的自转周期D . T 代表行星运动的公转周期= k ,以下理解正确的是()【例4】 如图所示,飞船沿半径为 R 的圆周绕着地球运动,其运动周期为 T 。
如果飞船沿椭圆轨道运动 直至要下落返回地面,可在轨道的某一点 A 处将速率降低到适当数值,从而使飞船沿着以地心 O 为焦点的椭圆轨道运动,轨道与地球表面相切于 B 点。
求飞船由 A 点运动到 B 点的时间。
天体运动(经典版)一、开普勒运动定律1、开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.2、开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二、万有引力定律1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2、公式:F =G221rm m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.4、万有引力与重力的关系:合力与分力的关系。
三、卫星的受力和绕行参数(角速度、周期与高度) 1、由()()22mMv G m r h r h =++,得()GMv r h =+,∴当h↑,v↓2、由G()2h r mM+=mω2(r+h ),得ω=()3h r GM+,∴当h↑,ω↓3、由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h↑,T↑ 注:(1)卫星进入轨道前加速过程,卫星上物体超重. (2)卫星进入轨道后正常运转时,卫星上物体完全失重. 4、三种宇宙速度(1)第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
也是人造卫星绕地球做匀速圆周运动的最大速度。
计算:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.()21v mg m r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s第一宇宙速度是在地面附近(h <<r ),卫星绕地球做匀速圆周运动的最大速度. (2)第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速度. (3)第三宇宙速度(逃逸速度):v 3=16.7km/s ,使卫星挣脱太阳引力束缚的最小发射速度. 四、两种常见的卫星 1、近地卫星近地卫星的轨道半径r 可以近似地认为等于地球半径R ,其线速度大小为v 1=7.9×103m/s ;其周期为T =5.06×103s=84min 。
它们分别是绕地球做匀速圆周运动的人造卫星的最大线速度和最小周期。
神舟号飞船的运行轨道离地面的高度为340km ,线速度约7.6km/s ,周期约90min 。
2、同步卫星“同步”的含义就是和地球保持相对静止,所以其周期等于地球自转周期,即T =24h 。
由式G()2h r mM+=m ()h r v +2= m 224Tπ(r+h )可得,同步卫星离地面高度为 h =3224πGMT -r =3·58×107 m 即其轨道半径是唯一确定的离地面的高度h =3.6×104km ,而且该轨道必须在地球赤道的正上方,运转方向必须跟地球自转方向一致即由西向东。
同步卫星的线速度 v=hr GM+=3.07×103m/s通讯卫星可以实现全球的电视转播,一般通讯卫星都是地球同步卫星。
五、人造天体在运动过程中的能量关系 1、卫星动能:rGMmE K2=2、卫星势能:rGMm E P -=(以无穷远处引力势能为零,M 为地球质量,m 为卫星质量,r 为卫星轨道半径。
由于从无穷远向地球移动过程中万有引力做正功,所以系统势能减小,为负。
) 3、卫星机械能:rGMmE 2-=,可见,同样质量的卫星在不同高度轨道上的机械能不同,轨道半径越大,即离地面越高,卫星具有的机械能越大,发射越困难。
【例】开普勒第三定律及其应用1.飞船沿半径为R 的圆周绕地球运动,如图所示,其周期为T ,如果飞船要返回地面,可在轨道上某一点A 处将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆和地球表面相切于B 点,设地球半径为R 0,问飞船从A 点返回到地面上B 点所需时间为多少?2.【2013江苏】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积3.关于开普勒第三定律的公式32R K T=,下列说法中正确的是( )A .公式只适用于绕太阳做椭圆轨道运行的行星B .公式中的T 表示行星自转的周期C .式中的k 值,对所有行星(或卫星)都相等D .式中的k 值,对围绕同一中心天体运行的行星(或卫星)都相同4.【2014浙江卷】长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 km ,则它的公转周期T 2最接近于( ) A .15天 B .25天 C .35天 D .45天1、30221+8R TR();2、C ; 3、D ; 4、B【例】计算中心天体的质量、密度1.已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g 。
某同学根据以上条件,提出一种估算地球质量M 的方法:同步卫星绕地球作圆周运动,由h T m h Mm G 2222⎪⎪⎭⎫ ⎝⎛=π得23224GT h M π=⑴判断以上结果是否正确,并说明理由。
如不正确,给出正确的解法和结果。
⑵请根据已知条件再提出两种估算地球质量的方法并解得结果。
2.宇航员站在某一星球表面某高处,沿水平方向抛出一小球。
经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。
若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为3L 。
已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。
求该星球质量M 。
3.2003年10月16日北京时间6时34分,中国首次载人航天飞行任务获得圆满成功。
据报道,中国首位航天员杨利伟乘坐的“神舟”五号载人飞船,于北京时间十月十五日九时,在酒泉卫星发射中心用“长征二号F ”型运载火箭发射升空。
此后,飞船按照预定轨道环绕地球十四圈,在太空飞行约二十一小时,若其运动可近似认为是匀速圆周运动,飞船距地面高度约为340千米,已知万有引力常量为G=6.67×10-11牛·米2/千克2,地球半径约为6400千米,且地球可视为均匀球体,则试根据以上条件估算地球的密度。
(结果保留1位有效数学)4.中子星是恒星演化过程的一种可能结果,它的密度很大。
现有一中子星,观测到它的自转周期为T =1/30s 。
问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。
计算时星体可视为均匀球体。
(引力常数G =6.67⨯1011-m 3/kg.s 2)5.【2014·新课标Ⅱ卷】假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( ) A.3πGT 2·g 0-g g 0B.3πGT 2·g 0g 0-gC.3πGT 2D.3πGT 2·g 0g 1、略;2、2223=3LRM Gt ;3、33323106)(3mkg R GT h R ⨯=+=πρ 4、3142/1027.13m kg GT ⨯==πρ; 5、B 【例】卫星运动和宇宙速度1.(卫星轨道)如图所示的三个人造地球卫星,下列说法正确的是( )①卫星可能的轨道为a 、b 、c ②卫星可能的轨道为a 、c ③同步卫星可能的轨道为a 、c ④同步卫星可能的轨道为aA .①③是对的B .①④是对的C .②③是对的D .②④是对的2.(环绕参数)【2013上海】小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动。
则经过足够长的时间后,小行星运动的( ) A .半径变大B .速率变大C .角速度变大D .加速度变大3.2007年10月24日,我国发射的“嫦娥一号”探月卫星简化后的路线示意图如图,卫星由地面发射后经过发射轨道进入停泊轨道,然后在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道,卫星开始对月球进行探测。
已知地球与月球的质量之比为a ,卫星的停泊轨道与工作轨道的半径之比为b ,卫星在停泊轨道和工作轨道上均可视为做匀速圆周运动,则卫星( )A .在停泊轨道和工作轨道运行的速度之比为abB .在停泊轨道和工作轨道运行的周期之比为ab 3C .在停泊轨道运行的速度大于地球的第一宇宙速度D .从停泊轨道进入到地月转移轨道,卫星必须加速4.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步轨道3。
轨道1、2相切于Q 点,轨道2、3相切于P 点(如图),则卫星分别在1、2、3轨道上正常运行时,以下说法正确的( ) A .卫星在轨道3上的速率大于在轨道1上的速率 B .卫星在轨道3上的角速度小于在轨道1上的角速度C .卫星在轨道1上经过Q 点时的速率小于它在2上经过Q 点的速率D .卫星在轨道2上经过P 点时的加速度等于它在3上经过P 点的加速度5.月球绕地球做匀速圆周运动的向心加速度大小为a ,设月球表面的重力加速度大小为g 1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g 2,则( )A . a g g ==21B .12g a g ≠=C .2161g a g == D .21g a g =+6.(同步卫星)在地球(看作质量均匀的球体)上空有许多同步卫星,下面说法中正确的是( )A .它们的质量可能不同B .它们的速度可能不同C .它们的向心加速度可能不同D .它们离地心的距离可能不同7.【2014天津】研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大8.【2013四川】太阳系外行星大多不适宜人类居住,绕恒星“Glicsc581”运行的行星“Gl-581c ”却很值得我们期待。