小升初数学讲义之——行程问题
- 格式:docx
- 大小:23.67 KB
- 文档页数:13
第十六讲行程问题(专项复习讲义)小升初数学专项复习讲义(苏教版)(含答案)第十六讲行程问题(专项复习讲义)(知识梳理+专项练习)1、行程问题行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
2、解题关键及规律同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
一、选择题1.从家到学校,小明要走8分钟,小红要走12分钟,则小明与小红的速度比为()A.8:12 B.2:3 C.3:2 D.12:82.平平骑自行车从甲地到乙地,开始时0.2时骑了3千米,剩下的路又以每分钟0.3千米的速度骑了18分钟,平平从甲地到乙地骑自行车的平均速度是()千米/时。
A.8.4 B.12 C.14 D.16.83.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200 B.1200×2-200 C.(1200+200)×2 D.(1200-200)×24.小明由家去学校然后又按原路返回,去时每分钟行a米,回来时每分钟行b米,求小明来回的平均速度的正确算式是()。
A.(a+b)÷2 B.2÷(a+b)C.1÷(+)D.2÷(+)5.芳芳和媛媛各走一段路.芳芳走的路程比媛媛多,芳芳用的时间比媛媛多,芳芳和媛媛的速度比是( ).A.5:8 B.8:5 C.27:20 D.16:156.船在水中行驶的时候,水流增加对船的行驶时间()。
A.增加B.减小C.不增不减D.都有可能二、填空题7.甲、乙二人分别从,两地出发相向而行.如果二人同时出发,则12小时相遇;如果甲先出发2小时后,乙再出发,则3小时后二人共走完全程的.甲、乙二人的速度比是( ).8.从甲城到乙城,汽车要8小时,客车要10小时,则汽车的速度比客车快25%。
六年级下小升初典型奥数之行程问题在小学六年级的数学学习中,行程问题一直是一个重点和难点,也是小升初奥数考试中经常出现的题型。
今天,咱们就来好好探讨一下这类问题。
行程问题主要涉及速度、时间和路程这三个量之间的关系。
基本的公式就是:路程=速度×时间。
而常见的行程问题类型有相遇问题、追及问题、流水行船问题等等。
咱们先来说说相遇问题。
比如说,甲从 A 地出发,速度是每小时 5千米;乙从 B 地出发,速度是每小时 3 千米。
A、B 两地相距 16 千米,两人相向而行,问经过多长时间两人相遇。
解决这个问题,我们可以先算出两人的速度和,也就是 5 + 3 = 8千米/小时。
然后用总路程除以速度和,就能得到相遇时间:16÷8 = 2小时。
再来看一个稍微复杂点的相遇问题。
甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲每小时走 4 千米,乙每小时走 6 千米,经过 3 小时两人相遇。
A、B 两地相距多远?这时候我们就可以先算出甲 3 小时走的路程是 4×3 = 12 千米,乙 3 小时走的路程是 6×3 = 18 千米。
然后把两人走的路程相加,12 + 18= 30 千米,就是 A、B 两地的距离。
接下来是追及问题。
比如甲在乙前面 10 千米处,甲的速度是每小时 3 千米,乙的速度是每小时 5 千米,问乙多长时间能追上甲。
因为乙的速度比甲快,所以每小时乙能比甲多走 5 3 = 2 千米。
而两人一开始的距离差是 10 千米,所以追上甲需要的时间就是 10÷2 = 5 小时。
再看一个例子,甲、乙两人同时同向出发,甲在前,乙在后。
甲每小时走 2 千米,乙每小时走 5 千米。
出发 4 小时后,乙追上甲。
一开始两人相距多远?我们先算出乙 4 小时走的路程是 5×4 = 20 千米,甲 4 小时走的路程是 2×4 = 8 千米。
因为乙追上了甲,所以一开始两人的距离差就是乙比甲多走的路程,即 20 8 = 12 千米。
必备小升初数学知识点之行程问题在历年小升初数学测试中,行程效果是很多孩子失分的中央,很多同窗对行程效果都模糊不清甚至坚持,下面为大家分享小升初数学知识点之行程效果,希望对大家有协助!综合行程知识点:基本概念:行程效果是研讨物体运动的,它研讨的是物体速度、时间、路程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键效果:确定运动进程中的位置和方向。
相遇效果:速度和×相遇时间=相遇路程(请写出其他公式) 追及效果:追及时间=路程差÷速度差(写出其他公式)流水效果:顺水行程=(船速+水速)×顺水时间顺水行程=(船速-水速)×顺水时间顺水速度=船速+水速顺水速度=船速-水速静水速度=(顺水速度+顺水速度)÷2水速=(顺水速度-顺水速度)÷2流水效果:关键是确定物体所运动的速度,参照以上公式。
过桥效果:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法基此题型:路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中恣意两个量,求第三个量。
经典例题:1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,如今羊已跑出30米,马末尾追它。
问:羊再跑多远,马可以追上它?解:依据〝马跑4步的距离羊跑7步〞,可以设马每步长为7x 米,那么羊每步长为4x米。
依据〝羊跑5步的时间马跑3步〞,可知同一时间马跑3*7x 米=21x米,那么羊跑5*4x=20米。
可以得出马与羊的速度比是21x:20x=21:20依据〝如今羊已跑出30米〞,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,如今求马的21份是多少路程,就是30÷(21-20)×21=630米2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?答案720千米。
小升初行程问题本文介绍了常见的行程问题公式,包括一般行程问题公式、相遇问题公式、追及问题公式、火车过桥公式和流水行船公式等。
同时,还给出了一些例题,供读者练。
一般行程问题公式很简单,即速度×时间=路程,路程÷时间=速度,路程÷速度=时间。
相遇问题公式是速度和×相遇时间=相遇路程,相遇路程÷相遇时间=速度和,相遇路程÷速度和=相遇时间。
追及问题公式是速度差×追及时间=追及距离,追及距离÷追及时间=速度差,追及距离÷速度差=追及时间。
火车过桥公式是火车速度×过桥时间=车长+桥长。
流水行船公式是顺水速度=船速+水速,逆水速度=船速-水速,船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2,顺水速度=逆水速度+水速×2,逆水速度=顺水速-水速×2.下面给出一些例题供读者练:例1:甲乙二人同时从两地出发,相向而行。
走完全程,甲需要60分钟,乙需要40分钟。
出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。
甲再次出发,多长时间后两人相遇?例2:两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地多用1小时的时间。
如果两车同时开出,那么相遇时快车比慢车多行40千米。
求甲、乙两地的距离。
例3:一艘轮船顺流航行120千米,逆流航行80千米共用了16小时,逆流航行120千米也用了16小时。
求水流速度。
例4:已知某铁路长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用了120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。
例5:甲乙二人在操场的400米跑到上练竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙。
假设两人的速度都保持不变,问:出发时甲在乙身后多少米?例6:甲乙两车分别从A、B两地同时出发,在A、B之间不断往返行驶。
小学数学中的行程问题【基本公式】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
小升初数学行程问题必考题型摘要:一、行程问题基本概念及关键要素二、常见行程问题题型及解题方法1.两人相遇及追及问题2.多人相遇追及问题3.多次相遇追及问题4.流水行船问题5.环形跑道问题6.钟面行程问题7.火车过桥问题8.猎狗追兔问题三、解题技巧与注意事项正文:随着小升初考试的日益临近,行程问题作为小学数学应用题中的基本问题,越来越受到同学们的重视。
行程问题包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等。
虽然题型繁多,但万变不离其宗,皆离不开路程、速度和时间这三个基本要素。
首先,我们要了解行程问题的基本概念。
行程问题是物体匀速运动的应用题,不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为路程速度时间。
在解答行程问题前,我们需要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,以便于观察和思考。
接下来,我们来分析常见的行程问题题型。
1.两人相遇及追及问题:当两个物体在同一直线上运动时,相遇和追及是常见的题型。
相遇时,两个物体所走的路程之和等于两者的初始距离;追及时,追及者与被追及者的速度差乘以时间等于两者的初始距离。
2.多人相遇追及问题:在多人相遇追及问题中,我们需要注意多个物体之间的相对速度和时间。
通过画图和分析,可以找到各个物体之间的相遇和追及关系。
3.多次相遇追及问题:多次相遇追及问题通常涉及到物体在一段时间内多次相遇和追及。
解题时,要关注物体在每次相遇和追及后的速度和时间变化。
4.流水行船问题:流水行船问题涉及到水流与船的相对运动。
通过分析水流速度、船速和水流中的距离关系,可以找到船在水中行驶的实际速度。
5.环形跑道问题:在环形跑道上,物体的速度和时间关系会受到圆周长的影响。
解题时,要关注物体在环形跑道上的速度和时间。
6.钟面行程问题:钟面行程问题是关于钟表上时针和分针的运动问题。
通过分析钟面上时针和分针的速度和时间,可以找到两者之间的相遇和追及关系。
17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。
小升初经典数学行程问题及解析在小学数学课中,老师常会问一些行程问题,尤其是有关小升初考试的行程问题,这些问题经常使学生陷入困境。
解决这些问题,学生需要掌握丰富的知识和解题技巧,熟练掌握这些技巧对小升初考试数学题目的解答至关重要。
小升初行程问题大致涵盖五大类,即基本行程、定向行程、分类行程、分段行程和条件行程。
基本行程是最基本的行程问题,主要讨论行程的总人数、总距离、总时间和单位移动距离等,其典型问题如下:A、B、C三位同学用一辆汽车从北京出发,在西安中途停留一天,从西安到成都,最后到达芒市,总行程3000公里,他们每天行驶500公里,汽车平均每小时行驶50公里,请问他们需要多少时间才能完成此次行程?定向行程是指行程中有一定方向的行驶,需要讨论行程的总距离、行程中每个地点与开始地点间的距离、行程中每个地点与结束地点间的距离等,典型问题如下:三位同学从池州出发,分别前往丽水、青岛、福州,其中丽水与池州的距离为400公里,青岛与福州的距离为1300公里,每小时行驶50公里,请问他们总共需要多少时间完成此次行程?分类行程是指行程中包括了不同速度行程,需要讨论行程的总距离、总时间、段间行驶距离等,典型问题如下:三位同学从深圳出发开车去广州,深圳到广州的距离为500公里,其中上午行驶200公里,下午行驶300公里,每小时上午行驶50公里,下午行驶70公里,请问他们总共需要多少时间完成此次行程?分段行程是指行程中包含了行驶和停留两种状态,需要讨论行程的总距离、总时间、行驶距离和停留时间等,典型问题如下:三位同学从济南出发,沿途停留两次,每次停留一天,最后到达平顶山,总行程1000公里,每小时行驶50公里,请问他们总共需要多少时间完成此次行程?条件行程是指行程中有某些条件限制,典型问题如下:三位同学从南京出发,沿途停留两天,最后到达武汉,总行程2000公里,第三天开始每小时行驶60公里,请问他们需要多少时间才能完成此次行程?小升初行程问题的解法通常有以下几种:第一种解法是用“思维框架”(Mind Mapping)的方法,即将问题按照步骤分解,再一步步解决;第二种解法是利用推理法,即根据给出的信息,作出推测并得出结论;第三种解法是利用数学知识求解,即用适当的数学公式解决问题。
小升初行程问题必考题型讲解在小升初考试中,行程问题是一个必考题型,考查学生对时间、距离、速度等概念的理解以及解题能力。
下面我将详细讲解行程问题的解题思路和方法,帮助学生更好地应对考试。
首先,行程问题通常涉及到两个物体同时或分别运动的情况,要求学生根据已知条件计算出各种参数。
解决行程问题的关键在于建立清晰的思维框架,将问题分解成具体的步骤,依次求解。
下面我将以几个例题来说明解题思路。
例题1:甲、乙两车同时从A、B两地出发,相向而行,相遇时甲车行驶的时间是乙车的1.5倍,已知甲车的速度是乙车的1.5倍,求两车的速度。
解题思路:设甲车速度为v,乙车速度为1.5v,甲车行驶时间为t,则乙车行驶时间为1.5t,根据行程问题的基本公式:距离=速度×时间,可得出方程:vt + 1.5v1.5t = AB的距离,解方程得到甲车速度为3km/h,乙车速度为2km/h。
例题2:甲、乙两车相向而行,甲车比乙车快10km/h,相遇后,乙车行驶了4小时,求两车的速度。
解题思路:设乙车速度为v,甲车速度为v+10,相遇后,乙车行驶了4小时,根据行程问题的基本公式,得出方程:4v + 4(v+10) = AB的距离,解方程可得甲车速度为30km/h,乙车速度为20km/h。
通过以上例题的解析,可以看出,解决行程问题的关键在于建立方程,根据已知条件逐步求解,最终得到问题的答案。
在考试中,学生需要灵活运用行程问题的解题方法,加强练习,提高解题速度和准确度。
除了以上的基础题型,行程问题还可能出现一些变形题,如相遇问题、追及问题、交叉问题等,需要学生掌握更多的解题技巧。
在解题过程中,学生还应注意单位的转换,避免计算错误,提高解题的准确性。
总的来说,行程问题是小升初考试中的一个必考题型,学生需要加强对行程问题的理解和掌握,多做练习,熟练掌握解题方法,提高解题的速度和准确度,以应对考试的挑战。
希望以上讲解对学生们有所帮助,祝大家考试顺利,取得好成绩!。
小升初——行程问题行程问题(一)行程问题是小学、初中的重难点,行程问题关系复杂,而多数小学生的分析能力还未能达到理想的水平。
体会相遇、追及问题的特点,并灵活运用列方程、比例等方法解行程问题,训练假设法、守恒等数学思维。
行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
1.一辆客车和一辆货车同时分别从A、B两城相对开出,客车每小时行9 5千米,货车每小时行8 5千米,相遇时客车比货车多行了3 0千米,求A、B两城相距多少千米?2.甲、乙二人在同一条公路上,他们相距100米,二人同时出发,朝各自的方向前进,甲的速度为每分钟100米,乙的速度为每分钟80米,问:经过多长时间两人相距200米?3.ABCD是一个边长为6米的正方形模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进,结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?4.小明去学校,去时速度为15千米/小时,返回时速度为10千米/小时,那么平均速度为多少?5.已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途经C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途经C地时甲车比乙车早到1个半小时,那么AB距离时多少?6.甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。
甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那么这条长街的长度是米?7.甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60 米。
当乙从A处返回时走了10米第二次与甲相遇。
A、B相距多少米?8.甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。
如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?9.大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车.如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车.问:小轿车实际上每小时行多少千米?10.乌龟与小白兔赛跑,比赛场地从起点到插小旗处为104米,比赛规定,小白兔从起点出发跑到插小旗处马上返回,跑到起点又返回,……,如此继续下去。
已知小白兔每秒跑10.2米,乌龟每秒跑0.2米。
如果从起点出发算第一次相遇,问:(1)出发后多长时间他们第二次相遇?(2)第三次相遇距起点多远?(3)乌龟爬到50米时,他们共相遇多少次?1.甲乙两人的步行速度之比是13:11,甲乙两人分别从A,B两地同时出发,相向而行,0.5小时后相遇,如果他们同向而行,甲追上乙需要多少小时。
2.星期天早晨,哥哥和弟弟都要到奶奶家去,弟弟先走5分,哥哥出发后25分追上了弟弟,如果哥哥每分多走5米,那么出发后20分就可以追上弟弟,弟弟每分走多少米?3.ABCD四人同时分别从甲乙两地出发相向而行,其中AC从甲地去乙地,BD从乙地去甲地,已知AD两人出发后20分钟相遇,5分钟后A与B相遇,同时C,D 也相遇,则再过几分钟后B,C相遇。
4.甲、乙两车先后以相同的速度从A站开出,10点整,甲距A的距离是乙距A距离的3倍,10点10分甲距A的距离是乙距A距离的2倍,问甲车是何时从A站开出的?5.甲乙两人在环形自行车赛场上训练,已知甲乙两人骑一圈的时间分别是23秒和27秒,如果两人同时从起点出发,背向而行,那么他们再次相遇需要多长时间?如果是同向行,那么甲超过乙需要多长时间?6.小明以每分钟50米得速度从学校步行到家,12分钟后,小强从学校出发,骑自行车以每分钟125米得速度去追小明,那么小强多少分钟后可以追上小明?7.某小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生。
已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时4千米,为使两个年级的学生在最短的时间内到达。
求三年级学生与一年级学生步行的距离之比。
8.甲乙两车6:15从A、B出发,相向而行,7:45相遇,乙8:03到了终点,那么甲什么时候到终点?9.小强骑自行车从家到学校去,平常只用20分钟。
由于途中有2千米正在修路,只,结果用了36分钟才到学校。
小强家到学校有好推车步行,步行速度只有骑车的13多少千米?10.小灵通和爷爷同时从这里出发回家,小灵通步行回去,爷爷在前4的路程中乘车,7车速是小灵通步行速度的10倍.其余路程爷爷走回去,爷爷步行的速度只有小灵通步行速度的一半,猜一猜爷孙俩谁先到家?11.客车和货车同时从甲、乙两城之间的中点向相反的方向行驶,3小时后,客车到达,甲、乙两城相距多甲城,货车离乙城还有30千米.已知货车的速度是客车的34少千米?12.小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。
有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。
那么小明每天步行上学需要时间多少分钟?13.甲、乙两人进行200米赛跑,当甲到达终点时,乙在甲后面40米处:如果两人各自的速度不变,要使甲、乙两人同时到达终点,甲的起跑线应比原来的起跑线后移多少米14.甲乙两车分别从A、B两站同时相向开出,2小时24分钟相遇,此时甲车比乙车多行驶9.6千米,已知甲车以相同速度走完全程需要4小时30分钟,求A、B两地距离。
15.小文从家去学校,如果每分钟走50米,就要迟到3分钟;如果每分钟走60米,就可以提前2分钟到校,那么小文家离学校的距离是多少米?16.甲乙两车同时从A开往B,甲车到达B地后立即返回,在离B地45千米处与乙车相遇。
甲乙两车的速度比是3:2,相遇时甲车行了多少千米?17.一辆快车和一辆慢车同时从甲乙两站相对而行,经过10小时相遇。
相遇后,快车又行了8小时到达乙站,慢车还要多长时间才能到达甲站?18.甲乙丙三人进行万米跑比赛,当甲到达终点时,乙还有1千米,丙还有2千米。
如果三人都是匀速跑步,甲跑完全程要54分钟,乙、丙跑完全程要多少分钟?19.甲乙两车分别从A、B两地同时开出,相向而行,当甲车已行的路程和剩下的路程.当甲乙两车相遇的时候,乙车行了全程的几分之比是2:5时,乙车距离A地还有58几?20.邮递员从甲地到乙地原计划用5.5小时,由于雨水的冲刷,途中有3.6千米的道路出现泥泞,走这段路时速度只有原来的3,因此比原计划晚到12分钟,从甲地到4乙地的路程是多少千米?21.一艘轮船所带的柴油最多可用6小时,驶出时顺风,每小时行驶30千米;驶回时。
这艘轮船最多行驶出多远就应该返航了?逆风,每小时行驶的路程是顺风时的4522.东东从家去学校,平时总是7:50到校。
有一天他起晚了,结果晚出发了10分钟。
为了不至于迟到,他将速度提高了五分之一,跑步前往学校,最后在7:55到校。
请问:东东这天几点出发的?行程问题(二)火车过桥和流水行船也是非常经典的两类行程问题,不仅在重点中学的考试中也频繁出现,在初中数学的内容中也会有所体现。
所以掌握这两类问题的特点和分析方法是至关重要的!一、火车过桥过桥问题的一般数量关系有:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速桥长=车速×通过时间−车长车长=车速×通过时间−桥长1、铁路线旁边有一条沿铁路方向的公路,公路上一辆汽车正以每小时40千米的速度行驶,这时一列长375米的火车以每小时67千米的速度从后面开过来。
问:火车从车头到车尾经过汽车旁边需要多少秒?2、甲乙两人在铁路旁边以相同的速度相向而行,恰好有一辆火车经过,整个火车经过甲身边用了18秒,2分钟后,又用15秒经过了乙,问:1:火车的速度是甲的速度的几倍?2:火车经过乙身边后,甲乙两人还需多长时间才能相遇?3、一列慢车车身长125公尺,车速是每秒17公尺;一列快车车身长140公尺,车速是每秒22公尺,慢车在前面行驶,快车从后面追上到完全超过需要多少秒?4、某人沿着铁路边的便道步行。
一列客车从身后开来,在身旁通过的时间是15秒钟。
客车长135公尺,每小时行36公里。
求行人的步行速度.二、流水行船解答这类题的要素有下列几点:水速、流速、划速、距离,解答这类题与和差问题相似。
划速相当于和差问题中的大数,水速相当于小数,顺流速相当于和数,逆流速相当于差速。
划速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=划速+水速;逆流船速=划速—水速;顺流船速=逆流船速+水速×2;逆流船速=逆流船速—水速×2。
1、某船顺水而行每小时20千米,逆水而行每小时15千米。
已知该船在此航道的甲、乙两港之间往返一次用时21小时。
甲乙两港之间相距多少千米?2、一艘轮船顺流航行80千米,逆流航行48千米共用9小时;顺流航行64,逆流航行96共用时12小时,求轮船的速度。
3、一个人在河中游泳,逆流而上,在A处将帽子丢失,他向前游了15分后,才发现帽子丢了,立即返回去找,在离A处15千米的地方追到了帽子,则他返回来追帽子用了多少分.4、某河上下两港相距80千米,每天定时有甲乙艘船速相等的客轮从两港相向而行,甲船顺水而行每小时行12千米,乙船逆水每小时行8千米。
这天甲船在出发时,从船上掉下一物,此物顺水漂流而下,当甲乙两船相遇时,此物距相遇地点有多远?1、甲火车长370米,每秒行15米;乙火车长350米,每秒行21米。
两车同时同向行驶,乙车从追上甲车到完全超过甲车需要多长时间?2、许三多所在的钢七连队伍长450米,以每秒1.5米的速度行进。
许三多以每秒3米的速度从队尾跑到队头需要多长时间?然后从队头返回队,又尾需要多长时间?3、有一列客车和一列货车,客车上400米,每秒行驶20米;货车长800米,每秒行驶10米。
试问:如果两车相向而行,它们从相遇到错开需要多长时间?如果两车同向而行,客车赶超货车(从追上到完全超过)需要多长时间?4、A、B两港相距560千米,甲船在两港间往返一次需105小时,其中逆流航行比顺流航行多用了35小时。