2019最新人教版小升初数学专题复习讲义
- 格式:docx
- 大小:2.05 MB
- 文档页数:85
数学专题一数论考点扫描数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数。
1.数的奇偶性奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数奇数个奇数相加=奇数偶数个奇数相加=偶数(只要式子中含有偶数,那么相乘结果就是偶数)2.数的整除,常见的数的整除特征(1)2:个位是偶数;(2)3:各个数位之和是3的倍数;(3)5:个位是 0或5;(4)4、25:后两位可以被4(25)整除;(5)8、125:后三位可以被8(125)整除;(6)9:各个数位之和是9的倍数;(7)7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数;(8)11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;(9)13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除;(10)17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
3.余数的性质(1)余数的可加性:和的余数等于余数的和;(2)余数的可减性:差的余数等于余数的差;(3)余数的可乘性:积得余数等于余数的积;(4)同余的性质:对于同一个余数,如果有两个整数余数一样,那么它们的差就一定能被这个除数整除;对于同一个除数,如果有两个整数余数一样,那么它们的乘方就一定能被这个除数整数。
抛砖引玉[例1]下列各数中,()同时是3和5的倍数.A.18 B.102 C.45[解析]同时是3和5的倍数必须满足:末尾是0或5,并且各个数位上的和能被3整除;进而得出结论.18个位上是8,不是5的倍数,102个位上是2,不是5的倍数,45是5的倍数,4+5=9,是3的倍数。
人教版数学小升初知识点汇总一、数与代数。
1. 数的认识。
- 整数。
- 整数的意义:像 -3、-2、-1、0、1、2、3……这样的数统称为整数。
整数包括正整数、0和负整数。
- 整数的读法和写法:读数时,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零;写数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
- 数的大小比较:先看位数,位数多的数大;如果位数相同,从最高位比起,相同数位上的数大的那个数就大。
- 小数。
- 小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。
- 小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
- 小数的读法和写法:读小数时,整数部分按照整数的读法来读,小数点读作“点”,小数部分顺次读出每一位上的数字;写小数时,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
- 小数的大小比较:先比较整数部分,整数部分大的数大;如果整数部分相同,再比较十分位,十分位上数大的数大;如果十分位相同,再比较百分位,依次类推。
- 分数。
- 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
- 分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
- 分数的分类:分数分为真分数(分子小于分母)和假分数(分子大于或等于分母),假分数可以化成带分数或整数。
- 分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
- 分数的大小比较:同分母分数相比较,分子大的分数大;同分子分数相比较,分母小的分数大;异分母分数比较大小,先通分再比较。
- 百分数。
- 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。
百分数通常不写成分数形式,而采用百分号“%”。
2019最新人教版小升初数学知识要点汇总第一部份数与代数(一)数的认识整数【正数、0、负数】一、一个物体也没有,用0表示。
0和1、2、3……都是自然数。
自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。
“+4”读作正四。
“-4”读作负四。
+4也可以写成4。
四、像 +4、19、+8844这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
人教版小升初数学基础知识点整理
本文将介绍人教版小学数学基础知识点,用于小学生小升初考试复备考。
数的认识
自然数
1. 自然数的概念
2. 自然数的认识
3. 自然数的顺序
整数
1. 整数的概念
2. 整数的加减法
分数
1. 分数的概念
2. 分数的加减法(同分母、异分母)
3. 分数的乘除法
小数
1. 小数的概念
2. 小数的加减法
3. 小数的乘除法
计算
算式
1. 算式的组成
2. 算式的性质
整数四则运算
1. 整数加减法
2. 整数乘除法
分数四则运算
1. 分数加减法
2. 分数乘除法
小数四则运算
1. 小数加减法
2. 小数乘除法
除法中的整除和余数
1. 除法中的基本概念
2. 除法中的整除和余数概念
3. 整除和余数的应用
几何
图形的认识
1. 点、线、面的概念
2. 常见图形的认识:三角形、矩形、正方形、圆
长度
1. 长度的概念
2. 常用长度单位
面积
1. 面积的概念
2. 常见图形的面积公式:三角形、矩形、正方形、圆容积和质量
1. 容积的认识和常用容积单位
2. 质量的认识和常用质量单位
数据统计
统计图表
1. 直方图的认识
2. 条形图的认识
3. 折线图的认识
数据的处理
1. 数据的收集和整理
2. 数学中的平均数:平均数的概念和计算方法
以上是人教版小升初数学基础知识点的整理,希望对小学生小升初考试复备考有所帮助。
小升初数学总复习资料一、基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数)。
倍数和因数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的因数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
2019最新人教版小升初数学专题复习讲义专题一数论考点扫描数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数。
1.数的奇偶性奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数奇数个奇数相加=奇数偶数个奇数相加=偶数(只要式子中含有偶数,那么相乘结果就是偶数)2.数的整除,常见的数的整除特征(1)2:个位是偶数;(2)3:各个数位之和是3的倍数;(3)5:个位是 0或5;(4)4、25:后两位可以被4(25)整除;(5)8、125:后三位可以被8(125)整除;(6)9:各个数位之和是9的倍数;(7)7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数;(8)11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;(9)13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除;(10)17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
3.余数的性质(1)余数的可加性:和的余数等于余数的和;(2)余数的可减性:差的余数等于余数的差;(3)余数的可乘性:积得余数等于余数的积;(4)同余的性质:对于同一个余数,如果有两个整数余数相同,那么它们的差就一定能被这个除数整除;对于同一个除数,如果有两个整数余数相同,那么它们的乘方就一定能被这个除数整数。
抛砖引玉【例1】下列各数中,()同时是3和5的倍数.A.18 B.102 C.45【解析】同时是3和5的倍数必须满足:末尾是0或5,并且各个数位上的和能被3整除;进而得出结论.18个位上是8,不是5的倍数,102个位上是2,不是5的倍数,45是5的倍数,4+5=9,是3的倍数。
答案:C.【例2】能同时被2、3、5整除的最小两位数是,能同时被2、3整除的最小三位数是,最大三位数是.【解析】(1)根据2、3、5的倍数的倍数特征可知;同时是2、3、5的倍数的倍数,只要是个位是0,十位满足是3的倍数即可,十位满足是3的倍数的有3、6、9,其中3是最小的,解答即可;(2)根据是2、3的倍数的数的特征:是2的倍数的数的个位都是偶数,是3的倍数的数各个位上的数相加所得的和能被3整除,所以能同时被2、3整除的最小三位数,百位应是1,十位是0、个位是2;然后要使能同时被2、3整除的三位数最大,则百位和十位上是9,个位上的数是偶数,而且能被3整除,只能是6,所以最大的三位数是996,解答即可答案:30;102;996.【例3】2309至少加上是3的倍数,至少减去才是5的倍数。
【解析】根据能被2整除的特征:个位上是0、2、4、6、8的数,能被5整除的数的特征:个位上的数字是0或者5的数,解答即可.由分析可知:2+3+9=14;因为15能被3整除,所以至少应加上1;因为2309的个位是9,只有个位数是0或5时,才能被5整除,所以至少减去4。
答案:1;4.【例4】三个连续偶数的和是90,这三个数分别是、、.【解析】自然数中,相邻的两个偶数相差2,由此可设和为90的三个连续偶数中的最小的一个为x,则另两个分别为x+2,x+4,由此可得等量关系式:x+x+2+x+4=90.解此方程即可。
答案:28;30;32.【例5】养鸡场一天收160千克鸡蛋,每18千克鸡蛋装一箱,可以装多少箱?还剩多少千克?【解析】要求160千克鸡蛋可以装几箱,还剩多少千克,也就是求160里面有几个18,用除法计算,得到的商是箱数,余数就是剩下的千克数.答案:解:160÷18=8(箱)…16(千克);答:可以装8箱,还剩16千克。
沙场点兵1.从0、1、5、7四个数中任选三个数组成一个三位数,这个数既是2的倍数,又是3的倍数,还是5的倍数,这样的三位数有()个。
A.2 B.3 C.42.一列队伍,从第一个人向后按1至6顺序循环报数,最后一个人报的是3,这支队伍的人数一定是()的倍数。
A.2 B.3 C.5 D.63.三个连续偶数的和是120,其中最大的一个数是.4.同学们献爱心捐款,有五名同学共捐了410元,他们的捐款数恰好是5个连续的偶数,这五名同学各捐了多少钱?5.一根绳子长21米,剪8米做一根长跳绳,剩下的每2米做一根短跳绳.可以做多少根短跳绳?还剩下多少米?实战演练1.(2016•广州)一个两位数除以5余3,除以7余5,这个两位数最大是()A.72 B.37 C.33 D.682.(2016•长沙)某同学在计算一道除法时,误将除数35写成53,所得的商是35余12,正确的商与余数的和是.3.(2016•东莞)三个连续奇数的和是645.这三个奇数中,最小的奇数是.4.(2017•漳州)既能被2整除,又能被3整除的最大两位数是,既能被3整除,又能被5整除的最小三位数是.5.(2017•枞阳县)列式计算:一个数除以99,商是10,余数是整数,这个数最大是多少?6.(2017•德化县)学校进行团体操表演,每行站20人,正好站24排.如果要站成16排,那么每行需要站多少人?专题二数的运算考点扫描1.四则运算的意义(1)整数加法、小数加法、分数加法的意义:把两个数合成一个数的运算;(2)整数减法、小数减法、分数减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算;(3)整数乘法的意义:求几个相同加数的和的简便运算;(4)小数乘法的意义:小数乘整数与整数乘法的意义相同;一个数乘小数,就是求这个数的十分之几、百分之几……是多少;(5)整数乘分数的意义:一个数乘分数,就是求这个数的几分之几是多少;(6)分数乘整数的意义:分数乘整数,就是求几个相同分数的和的简便运算;(7)整数除法、小数除法、分数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.四则运算的计算方法(1)加减法的计算方法①整数的加法:相同数位对齐,从低位加起,哪一位上的数相加满十,就要向前一位进一;②整数的减法:相同数位对齐,从低位减起,哪一位上的数不够减要从前一位上退一,在本位上加上10再减;③小数的加减法:计算小数加减法时,先把小数点对齐(也就是相同的数位对齐),再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点,点上小数点;④分数的加减法:同分母的分数相加减,分母不变,只把分子相加减;异分母的分数相加减,先通分,然后按照同分母分数加减法的法则进行计算。
(2)乘法的计算方法①整数的乘法:从低位到高位分别用因数的每一位去乘另一个因数;用一个因数的哪一位去乘,求得的数的末位就要和那一位对齐;然后把几次求得的积加起来;②小数乘法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点;③分数乘法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(3)除法的计算方法①整数的除法:从被除数的高位除起,除数有几位就先看被除数的前几位,如果前几位比除数小,就多取一位再除,除到哪一位,商就写在那一位的上面;每次除得的余数必须比除数小;在求出商的最高位以后,如果被除数的哪一位上不够商1,就在那一位上写0;②小数除法:除数是整数时,按照整数除法进行计算,商的小数点要与被除数的小数点对齐。
除数是小数时,要先把除数转化成整数,同时把被除数扩大相同的倍数,然后按照除数是整数的除法进行计算;③分数的除法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
3.整数四则运算中各部分间的关系(1)加法:和=加数+加数;加数=和-另一个加数(2)减法:差=被减数-减数;减数=被减数-差;被减数=减数+差(3)乘法:积=因数×因数;一个因数=积÷另一个因数(4)除法:商=被除数÷除数;除数=被除数÷商;被除数=除数×商4.四则运算定律、运算性质(1)运算定律加法结合律:两个数相加,交换加数的位置,它们的和不变。
即:a+b=b+a加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后面两个数相加,再和第一个相加,它们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)乘法交换律:两个数相乘,交换因数的位置,它们的积不变。
即:a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。
即:a×b×c=(a×b)×c=a×(b×c) 乘法分配律:两个数的和与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积加起来。
即:(a+b)×c=a×c+b×c;a×(b+c)=a×b+a×c(2)运算性质减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c除法的运算性质(除数不为0):a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c5.四则混合运算的顺序四则运算分为两级:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
(1)在没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,再做第一级运算;(2)在有括号的算式里,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
抛砖引玉【例1】求几个加数的和的简便运算叫做乘法。
(判断对错)【解析】本题考察整数的乘法及应用。
由乘法的意义可得:求几个相同加数和的简便运算叫乘法。
答案:错误【例2】在一道减法算式中,被减数、减数与差的和是48,被减数是()A.24 B.12 C.16 D.18【解析】本题考察整数的加法和减法。
根据被减数=减数+差,可得被减数、减数与差的和是被减数的2倍,用48除以2,求出被减数是24,48÷2=24。
答案:A.【例3】750÷90等于()A.商是8余3 B.商是80余2 C.商是8余30【解析】本题考察有余数的除法。