生物脱氮除磷工艺
- 格式:doc
- 大小:358.00 KB
- 文档页数:6
几种生物脱氮除磷工艺的区分一、四段Bardenpho脱氮工艺图1 四段Bardenpho脱氮工艺示意图如图1所示,四段Bardenpho脱氮工艺的设计目标是在不投加碳源时脱氮效率达到90%以上。
沉淀池的污泥回流到缺氧池1,同时,好氧池1的混合液也回流到缺氧池1。
沉淀池污泥回流比设计为100%,主要脱氮作用发生在缺氧池1,可实现脱氮70%。
缺氧池2的停留时间可以达到内源呼吸要求,靠微生物的内源呼吸作用去除好氧池1出水中的硝态氮。
BOD去除、氨氮氧化、磷的吸收主要发生在好氧池1。
磷得不到充分地释放,生物除磷效果较差。
二、五段Bardenpho脱氮除磷工艺图2 五段Bardenpho脱氮除磷工艺示意图为了改善四段Bardenpho脱氮工艺的生物除磷效率,发展了五段Bardenpho脱氮除磷工艺。
如图2所示,五段Bardenpho脱氮除磷工艺的设计特点是在首端增加了厌氧池,沉淀池的污泥回流到厌氧池强化了生物除磷,污泥回流比设计为100%。
好氧池1的混合液回流到缺氧池1,好氧池1的混合液回流比设计为400%。
缺氧池2的反硝化效率明显低于缺氧池1,没有发挥显著的脱氮作用。
三、UCT脱氮除磷工艺图3 UCT脱氮除磷工艺示意图如图3所示,UCT脱氮除磷工艺的设计目的之一是减小沉淀池回流的活性污泥对生物除磷效率的影响,因为活性污泥中含有硝酸盐,如果回流到厌氧池,会影响磷的释放,所以改为回流到缺氧池。
建立缺氧池出水混合液回流到厌氧池,降低厌氧池的硝态氮负荷。
厌氧池污泥浓度偏低。
如果进水的TKN/COD的比值大于0.12~0.14,除磷效果较差。
四、改良UCT脱氮除磷工艺图4 改良UCT脱氮除磷工艺示意图如图4所示,改良UCT脱氮除磷工艺将缺氧池一分为二,沉淀池的活性污泥回流到缺氧池1,好氧池的混合液回流到缺氧池2,反硝化脱氮作用主要发生在缺氧池2。
厌氧池污泥浓度偏低。
要求进水的TKN/COD的比值不大于0.11。
五、A/O除磷工艺图5 A/O除磷工艺示意图A/O除磷工艺为了保证进水与回流的活性污泥混合后仍然保持一个厌氧状态,所以好氧池的水力停留时间设计非常短,在1.5~2.5小时。
生物脱氮除磷工艺生物脱氮除磷工艺是一种通过微生物代谢作用来减少废水中氮和磷的浓度的工艺。
该工艺逐渐被广泛应用于城市污水处理、农业生产、工业废水处理等领域。
生物脱氮除磷工艺涉及多个过程,包括生物脱氮池、一/二级沉淀池、生物滤池、化学除磷装置等。
其中生物脱氮池和生物滤池是主要的过程单元。
生物脱氮池是一个特殊的好氧反应器,主要是使用异养菌为营养基础,利用硝化反应将氨氮和有机氮转化为硝态氮,然后通过反硝化反应将硝态氮还原为氮气排出。
为了使池内的好氧环境被保持,池内需要提供足够的氧气。
生物滤池是一个非常重要的污水处理单位,它是通过微生物群落代谢作用,利用吸附作用来吸附废水中的氮和磷元素。
微生物生长在滤料表面,铺设在水平或者竖直的格栅上,滤料可以是沙砾、玄武岩等物质。
滤料的特殊结构、表面特性和自备的微生物群落成为生物滤池内的去除污染物的主要手段。
废水在流经滤料层时,氮和磷元素在滤料表面被吸附,吸附到细胞表面的氮被异养菌氧化为氮气,磷元素则随着污泥浓度增加,在池内逐步沉积。
生物脱氮除磷工艺的优点在于原理简单,适用范围广泛,处理效率高,成本较低,不需要大量的化学物质,并且不会产生二次污染。
然而,这种工艺也存在一些缺陷。
例如,处理后的产物含有大量的氮和磷,商业利用它们困难,造成浪费;污水中如果有过多的脂肪和油脂,可能会对生物脱氮除磷工艺产生影响,导致工艺失效。
总之,生物脱氮除磷工艺是一种受到广泛关注的废水处理方案。
未来,随着社会对环境保护意识的不断提高,生物脱氮除磷工艺势必会在更多的领域得到应用,成为减少污染物排放的重要手段。
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
脱氮除磷的水污染处理工艺近几十年来,水污染问题日益严重。
其中,氮和磷的排放是造成水体富营养化的主要原因之一。
为了解决这个问题,脱氮除磷的水污染处理工艺被广泛应用。
本文将对脱氮除磷的工艺进行详细介绍。
一、脱氮工艺1.生物法生物法是目前广泛使用的脱氮工艺。
主要包括生物硝化脱氮和生物反硝化技术两种方式。
生物硝化脱氮:通过硝化作用将氨氮先转化为亚硝酸盐,然后进一步转化为硝酸盐,最终转化成氮气释放。
生物硝化脱氮技术适合于高温和中温条件下的工业和城市污水处理。
生物反硝化技术:通过微生物将污水中的硝态氮还原成分子态氮。
生物反硝化技术在低温条件下和含有高浓度有机物或有毒物质的废水中有着较好的效果。
2.生物化学联合法生物化学联合法是将化学脱氮和生物脱氮相结合的方法。
将化学氮移除和Nitrifier-Denitrifier反应器相结合,可以同时去除废水中的氨氮、硝酸盐和有机氮。
二、除磷工艺1.生物法生物法反应器中添加特定的微生物种类,通过细胞内聚磷体的形成来去除废水中的磷。
生物法可以采用常温条件下的生物除磷法和PRB(磷酸根还原菌)方法。
生物除磷法:将一部分有机质转化为聚磷体,降低了废水中的磷浓度。
其中产生的胞外聚磷体通过化学加药破坏,从而将磷元素移除。
PRB技术:利用磷酸酯酶降解废水中的聚磷体,释放出其身上的磷元素,然后在还原本身成为无磷物质。
2.化学法化学法是使用化学物质来去除废水中的磷。
包括化学沉淀法和吸附法。
化学沉淀法:添加化学药剂,生成难溶的沉淀物,从而使废水中的磷以沉淀物的形式存在,达到去除的效果。
吸附法:利用化学吸附剂吸附废水中的磷元素,将其移除。
在吸附剂表面形成的吸附床与污水中的磷发生交换,达到去除的效果。
三、联合工艺脱氮除磷联合工艺是将脱氮和除磷相结合的工艺。
其中包括生物化学联合法、化学-生物工艺和物理化学-生物工艺。
联合工艺相比于单纯的脱氮或除磷工艺,具有去除效率高、运行稳定等优势。
综上所述,脱氮除磷是解决水污染的重要手段之一。
生物脱氮除磷机理及新工艺
生物脱氮除磷是指利用生物学原理对水体中的氮和磷进行去除的一种技术。
其基本原理是将含有氮、磷的有机物通过生物降解转化为氮气和磷酸盐,从而达到净化水体的目的。
生物脱氮除磷技术的应用非常广泛,包括城市污水处理、工业废水处理、农业面源污染治理等领域。
生物脱氮除磷的主要机理是利用微生物的代谢活动来进行脱氮除磷。
在生物脱氮过程中,利用硝化菌将氨氮转化为亚硝酸盐和硝酸盐,进而转化为氮气排放。
在生物除磷过程中,利用聚磷菌将水体中的磷转化为无机磷酸盐,进而去除。
生物脱氮除磷技术是一种相对成熟的技术,其优点包括高效、经济、环保等。
近年来,随着科技的不断发展,新型的生物脱氮除磷工艺也得到了广泛应用。
这些新型工艺包括厌氧氨氧化工艺、硝化除磷工艺、硝酸盐还原工艺等。
其中,厌氧氨氧化工艺是一种新兴的脱氮技术,具有高效、节能等优点。
硝化除磷工艺则是将氮素和磷素同时通过硝化反应进行去除,能够达到较高的脱氮除磷效率。
硝酸盐还原工艺则是通过还原反应将水体中的硝酸盐转化为氨氮,从而达到脱氮的效果。
总的来说,生物脱氮除磷技术是一种非常重要的污水处理技术,对于保护水环境具有重要的意义。
未来随着科技的不断发展,生物脱氮除磷技术也将不断完善和发展,为净化水体、改善环境质量做出更大的贡献。
废水脱氮除磷工艺
废水脱氮除磷工艺是一种用于处理含有高浓度氮和磷的废水的技术,旨在减少这些有害污染物的排放,以满足环保标准。
以下是常见的废水脱氮除磷工艺:
1.生物脱氮除磷工艺:
生物脱氮(BNR):生物脱氮是通过在废水处理系统中引入一些特定的微生物,将废水中的氮转化为氮气的过程。
这通常包括硝化和反硝化两个阶段,其中氨氮首先被氧化成亚硝酸盐,然后转化为氮气。
生物除磷(BPR):生物除磷是通过引入能够吸附磷的微生物,将废水中的磷物质吸附并沉淀出来的过程。
2.化学脱氮除磷工艺:
化学沉淀:添加化学药剂,如氧化铁、氧化铝等,与废水中的磷形成沉淀物,从而实现除磷的效果。
这一过程通常被称为磷酸盐的化学沉淀。
硝化-脱硝:使用化学方法将废水中的氨氮氧化成硝酸盐,然后再还原成氮气。
3.物理化学脱氮除磷工艺:
生物物理化学一体化工艺:将生物处理、物理处理和化学处理结合在一起,以提高脱氮除磷效果。
膜分离技术:利用膜过滤技术,如超滤、反渗透等,从废水中去除氮和磷。
4.湿地处理:
人工湿地:利用植物和微生物的协同作用,通过湿地过程去除废水中的氮和磷。
自然湿地模拟:模仿自然湿地的生态系统,利用湿地中的植物和微生物去除废水中的有机和无机污染物。
生物脱氮除磷原理及工艺1 引言氮和磷是生物旳重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增长,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大旳危害。
然而, 国内既有旳都市污水解决厂重要集中于有机物旳清除,污(废)水一级解决只是除去水中旳沙砾及悬浮固体;在好氧生物解决中,生活污水经生物降解,大部分旳可溶性含碳有机物被清除。
同步产生N NH -3、N NO --3和-34PO 和-24SO ,其中25%旳氮和19%左右旳磷被微生物吸取合成细胞,通过排泥得到清除;二级生物解决则是清除水中旳可溶性有机物,能有效地减少污水中旳5BOD 和SS , 但对N 、P 等营养物只能清除10%~ 20% , 其成果远不能达到二级排放原则。
因此研究开发经济、高效旳, 适于既有污水解决厂改造旳脱氮除磷工艺显得尤为重要。
2 生物脱氮除磷机理2.1 生物脱氮机理污水生物脱氮旳基本原理就是在将有机氮转化为氨态氮旳基本上,先运用好氧段经硝化作用,由硝化细菌和亚硝化细菌旳协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即,将3NH 转化为N NO --2和N NO --3。
在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将N NO --2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮旳循环。
水中含氮物质大量减少,减少出水旳潜在危险性,达到从废水中脱氮旳目旳[1]。
○1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+−−−→−+亚硝酸菌 3225.0HNO HNO O −−→−+硝酸菌 ○2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+][35.122233H O H N HNO NH ++→+反硝化——厌氧氨反硫化脱氮:O H S N SO H NH 2242342++→+废水中氮旳清除还涉及靠微生物旳同化作用将氮转化为细胞原生质成分。
生物脱氮除磷工艺简介1、生物脱氮除磷工艺的进展从20世纪60年代开始,美国曾系统地进行了脱氮除磷物化方法研究,结果认为该法的主要缺点是药耗量大,产生的污泥多,特别对处理大量城市污水时,处理成本高。
因此,转入研究生物脱氮除磷工艺。
从20世纪70年代开始,在活性污泥法脱氮工艺(A/0工艺)逐步实现工业化,并在此基础上研究开发出了生物脱氮除磷工艺(如A2/0工艺等)。
以后,随着微生物学和细胞学在污水生化处理上的新应用,又不断出现了多种变形的生物脱氮除磷工艺,如MSBR等。
我国从20世纪80年代初开始生物脱氮除磷研究,80年代后期实现了工业化流程。
污水脱氮除磷可供选择的工艺通常有生物处理和物理化学处理两大类。
后者由于需要投加相当数量的化学药剂,存在运行费用高,残渣量大和运行管理难度大等缺陷,因此,城市污水处理中一般不推荐采用。
而一般生物处理又分为活性污泥和生物膜法两种。
目前对城市污水的生物脱氮除磷工艺,指的是活性污泥生物脱氮除磷工艺。
目前已实用的几种生物脱氮除磷工艺有:A2/O、氧化沟、SBR工艺以及以上三种工艺的系列改良工艺。
2、生物脱氮除磷的工艺原理简述(1)生物脱氮首先,污水中的蛋白质和尿素等在水解酶和尿素酶的作用下转化为氨氮,而后在有氧条件下和在硝化菌的作用下,氨氮被氧化为硝酸盐,这阶段称为硝化(即氨氮转化为硝酸盐)。
再以后,在缺氮条件和反硝化菌的参与作用,并有外加碳源提供能量,硝酸盐还原成气态氮(N2)逸出,这阶段称为反硝化(即硝酸盐的氮转化为氮气)。
整个脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在脱氮过程中,硝化菌增长速度较缓慢,所以要有足够的污泥泥龄。
反硝化菌的生长主要在缺氧条件下进行,还要有充裕的碳源提供能量,才可能使反硝化作用顺利进行。
除上述条件以外,影响脱氮效率的因素还有溶解氧,温度和PH 值等。
硝化阶段,应有足够的溶解氧,其值一般应大于2g/L。
反硝化阶段为缺氧条件,溶解氧值宜为0.4mg/L左右。
生物脱氮除磷原理及工艺生物脱氮的原理主要是利用微生物中的硝化和反硝化过程。
首先,硝化细菌通过氧化氨将氨氮转化为亚硝酸盐,然后亚硝酸盐进一步被亚硝酸盐脱氢酶转化为硝酸盐。
这个过程被称为硝化作用。
反硝化过程是指在缺氧或低氧条件下,反硝化细菌通过还原硝酸盐来释放出氮气。
生物脱磷的原理主要是利用微生物中的磷酸盐积累和释放过程。
一些细菌和藻类能够以有机物的形式从水中吸收和积累磷酸盐,并在一定条件下释放出来。
这个过程被称为磷酸盐吸收和释放作用。
通过调节水体中的氧气、有机负荷和pH值等条件,可以促进微生物的磷酸盐吸收和释放过程,从而实现生物脱磷。
非曝气法主要是在低氧或缺氧条件下进行处理。
这种方法的优点是能够节省能源和减少氧气需求,适用于中小型处理单位。
常见的非曝气法包括:厌氧氨氧化-硝化还原法(Anammox-Detritus-Anoxia法)、系统内侧流间歇式处理法(SCT法)和单球状厌氧硝化反硝化法等。
曝气法主要是通过加氧来提供充足的氧气供给,促进硝化和反硝化过程。
这种方法的优点是处理效果稳定可靠,适用于大型处理装置。
常见的曝气法包括:AO法(活性污泥法)、A2/O法(改良后的活性污泥法)和SBR法(顺序批处理法)等。
在实际的生物脱氮除磷工程中,通常会采用多级处理工艺。
例如,可以将生物脱氮和生物除磷结合起来,构建生物反硝化除磷工艺(SND)。
这种工艺可以同时去除水体中的氮和磷,效果较好。
总的来说,生物脱氮除磷通过利用微生物的生长和代谢活动,可以有效地降低水体中的氮和磷浓度,改善水质,保护生态系统。
不同的工艺可以根据具体情况选择和组合,以达到最佳的去除效果。
aao生物脱氮除磷工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!生物脱氮除磷工艺是一种通过微生物代谢作用将废水中的氮和磷元素转化为无害物质的技术。
污水生物脱氮除磷工艺生物脱氮除磷传统工艺脱氮的传统工艺自然界中氮一般有四种形态:有机氮,氨氮,亚硝酸盐氮,硝酸盐氮等生活污水中的氮主要形态是有机氮和氨氮。
有机氮占生活污水含氮量的40-60%,氨氮占50-60%,亚硝酸盐和硝酸盐氮仅占0-5%。
污水生物脱氮的可能途径传统上,通过两步生物反应,即硝化(NH+4→ NO-3)与反硝化(NO-3→N2),实现污水的生物脱氮。
硝化反应可表示为:亚硝化反应NH4+ + O2 + HCO3- → NO2- + H2O + H2CO3+ 亚硝酸菌硝化反应NO2- + NH4+ + H2CO3 + HCO3-+ O2 → NO3- + H2O + 硝酸菌总反应NH4+ + O2 + HCO3- → NO3- + H2O + H2CO3 + 微生物细胞反硝化反应如下:NO3- + CH3OH + H2CO3 →N2↑+H2O + HCO3-+微生物细胞生物脱氮工艺传统生物脱氮存在哪些问题?首先,需要充分地氧化氨氮到硝酸氮,要消耗大量能源(因为曝气);其次,还需要有足够碳源(COD)来还原硝酸氮到氮气。
除磷传统工艺磷最常见的形式有:无机磷: 磷酸盐(H2PO4-、HPO42-、PO43-);聚磷酸盐;有机磷。
生活污水中的含磷量一般在10-15mg/L左右,其中70%是可溶性的。
活性污泥在好氧、厌氧交替条件下时,活性污泥中可产生所谓的“聚磷菌”。
聚磷菌在好氧条件下从废水中过量摄取磷,形成多聚磷酸盐作为贮藏物质。
排放的剩余污泥中的含磷量在6%左右(污泥干重)。
A/O除磷工艺系统为防止水体富营养化,一般污水处理既需要脱氮,也需要除磷,是否可以把两者结合起来实现氮磷同时去除?A/O工艺生物除磷脱氮生化代谢模型脱氮除磷的新工艺脱氮新工艺1.中温亚硝化(SHARON)亚硝化/反硝化脱氮即(NH4+ → NO2-) ,(NO2- → N2)硝化作用NH4+ + 1.5O2 →→→→ NO2- + H2O + 2H +NH4+ + 2O2 →→→→ NO3- + H2O + 2H+节约O2 25%脱氮作用6 NO2- + 3CH3OH + 3CO2 →→→→ 3N2 + 6HCO3- + 3H2O6 NO3- + 5CH3OH + CO2 →→→→ 3N2 + 6HCO3- + 7H2O节约 CH3OH 40%亚硝化细菌和硝化细菌的最小污泥龄与温度关系SHARON工艺的基本工作原理便是利用温度高有利于亚硝化细菌增殖这一特点,使硝化细菌失去竞争。
生物脱氮除磷工艺
第一节 概述
一、营养元素的危害
氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧;
氨氮会与氯反应生成氯胺或氮气,增加氯的用量;
含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”;
加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。
二、脱氮的物化法
1、氨氮的吹脱法:
-++⇔+OH NH O H NH 423
2
O H H Cl NH HOCl NH 224++→+++
+-+++→+H O H Cl N HOCl Cl NH 332222
每mgNH 4+--N 被氧化为氮气,至少需要7.5mg
3、选择性离子交换法去除氨氮:
采用斜发沸石作为除氨的离子交换体。
出水
折点加氯法脱氯工艺流程
三、除磷的物化法(混凝沉淀法) 1、铝盐除磷
4343AlPO PO Al →++
+
一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2)
2、铁盐除磷:FePO 4 Fe(OH)3
一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3
3、石灰混凝除磷
O H PO OH Ca HPO OH Ca 23452423))((345+→++--+
向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。
第二节 生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺
1、Barth 提出的三级活性污泥法流程:
第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值;
第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。
该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。
2、两级活性污泥法脱氮工艺
与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。
二、缺氧——好氧活性污泥法脱氮系统(A—O工艺)
该流程与两级活性污泥工艺相比,是将缺氧的反硝化反应器设置在好氧反应器的前面,因此常被称为“前置式反硝化生物脱氮系统”。
其主要特征有:反硝化反应器设置在流程的前端,而去除BOD、进行硝化反应的综合好氧反应器则设置在流程的后端;因此,可以实现进行反硝化反应时,可以利用原废水中的有机物直接作为有机碳源,将从好氧反应器回流回来的含有硝酸盐的混合液中的硝酸盐反硝化成为氮气;而且,在反硝化反应器中由于反硝化反应而产生的碱度可以随出水进入好氧硝化反应器,补偿硝化反应过程中所需消耗碱度的一半左右;好氧的硝化反应器设置在流程的后端,也可以使反硝化过程中常常残留的有机物得以进一步去除,无需增建后曝气池。
目前,A-O工艺是实际工程中较常见的一种生物脱氮工艺。
三、其它生物脱氮工艺
1、氧化沟工艺
由于氧化沟的运行工艺特征,会在其反应沟渠内的不
同部位分别形成好氧区、缺氧区,使得氧化沟内的活性污
泥分别经过好氧区和缺氧区,从而可以实现生物脱氮功
能。
2、生物转盘生物脱氮工艺
控制每级生物转盘的运行工况,使其分别
处于好氧状态和缺氧状态,即在整个流程中需
要分别采用好氧生物转盘和厌氧生物转盘,在
不同的好氧生物转盘中分别实现BOD的去除
和氨氮的硝化,而在厌氧生物转盘中则主要实
现反硝化,其原理类似于前述的三级活性污泥
生物脱氮工艺,只是在本工艺中实现各级功能
是依靠生物转盘来完成的。
第三节废水生物除磷工艺与技术
一、厌氧—好氧生物除磷工艺(A-O工艺)
实际上是另外一种意义上的“A—O工艺”,其中的“A”指的是“厌氧anaerobic”,它是直接根据生物除磷的基本原理出发而设计出来的一个工艺,其特点有:水力停留时间为3~6h;曝气池内的污泥浓度一般在2700~3000mg/l;磷的去除效果好(76%),出水中磷的含量低于1mg/l;污泥中的磷含量约为4%,肥效好;污泥的SVI小于100,易沉淀,不易膨胀。
二、Phostrip除磷工艺
实际上是一种生物除磷与化学除磷相结合的工艺,其特点有:除磷效果好,处理出水的含磷量一般低于1mg/l;污泥的含磷量高,一般为2.1~7.1%;石灰用量较低,介于21~31.8mgCa(OH)2/m3废水之间;污泥的SVI低于100,污泥易于沉淀、浓缩、脱水,污泥肥分高,不易膨胀。
第四节同步生物脱氮除磷工艺
一、Bardenpho同步脱氮除磷工艺
其工艺特点:各项反应都反复进行两次以上,各反应单元都有其首要功能,同时又兼有二、三项辅助功能;脱氮除磷的效果良好。
二、A—A—O同步脱氮除磷工艺
AAO工艺是目前较为常见的同步脱氮除磷工艺,其工艺特点主要是:工艺流程比较简单;厌氧、缺氧、好氧交替运行,不利于丝状菌繁殖,无污泥膨胀之虞;无需投药,运行费用低。
该工艺的主要设计参数可以参见下表:
水力停留时间(h)厌氧反应器0.5~1.0 缺氧反应器0.5~1.0 好氧反应器 3.5~6.0
污泥回流比(%) 50~100
混合液内循环回流比(%) 100~300
混合液悬浮固体浓度(mg/l) 3000~5000
F/M(kgBOD5/kgMLSS.d) 0.15~0.7
好氧反应器内DO浓度(mg/l) ≥2
BOD5/P 5~15(以>10为宜)
三、UCT同步脱氮除磷工艺
在前述的两种同步脱氮除磷工艺中,都是将回流污泥直接回流到工艺前端的厌氧池,其中不课避免地会含有一定浓度的硝酸盐,因此会在第一级厌氧池中引起反硝化作用,反硝化细菌将与除磷菌争夺废水中的有机物而影响除磷效果,因此提出UCT(Univercity of Cape Town)工艺。
UCT工艺将二沉池的回流污泥回流到缺氧池,使污泥中的硝酸盐在缺氧池中进行反硝化脱氮,同时,为弥补厌氧池中污泥的流失以及除磷效果的降低,增设从缺氧池到厌氧池的污泥回流,这样厌氧池就可以免受回流污泥中硝酸盐的干扰。
回流1 回流2
四、Phoredox 同步脱氮除磷工艺
本工艺的特点是在缺氧反应器之前再加一座厌氧反应器,以强化磷的释放,从而保证在好氧条件下,有更强的吸收磷的能力,提高除磷效果。
第五节 废水生物脱氮除磷工艺的应用实例
一、国内某些废水处理厂 1、昆明兰花沟废水处理厂
TP(mg/l) TN(mg/l) 原废水 2~4 30
处理水
< 1.0
NH 3-N < 1.0
TKN < 6
2、广州大坦沙废水处理厂
水力停留时间
(h ) 溶解氧(mg/l ) 污泥回流比 (%)
混合液内循环回流比(%)
A A O A A O 1
2
5
0.2
0.5
1.5~
2.0
25~100
100~200
BOD 5 (mg/l) SS (mg/l) TN (mg/l) TP (mg/l) 原废水 200 250 40 5 处理出水
< 20
< 30
< 15
< 2
厌氧池 缺氧池 缺氧池 好氧池
回流污泥
剩余污泥。