生物脱氮除磷原理及工艺
- 格式:pptx
- 大小:1.07 MB
- 文档页数:49
生物脱氮除磷工艺生物脱氮除磷工艺是一种通过微生物代谢作用来减少废水中氮和磷的浓度的工艺。
该工艺逐渐被广泛应用于城市污水处理、农业生产、工业废水处理等领域。
生物脱氮除磷工艺涉及多个过程,包括生物脱氮池、一/二级沉淀池、生物滤池、化学除磷装置等。
其中生物脱氮池和生物滤池是主要的过程单元。
生物脱氮池是一个特殊的好氧反应器,主要是使用异养菌为营养基础,利用硝化反应将氨氮和有机氮转化为硝态氮,然后通过反硝化反应将硝态氮还原为氮气排出。
为了使池内的好氧环境被保持,池内需要提供足够的氧气。
生物滤池是一个非常重要的污水处理单位,它是通过微生物群落代谢作用,利用吸附作用来吸附废水中的氮和磷元素。
微生物生长在滤料表面,铺设在水平或者竖直的格栅上,滤料可以是沙砾、玄武岩等物质。
滤料的特殊结构、表面特性和自备的微生物群落成为生物滤池内的去除污染物的主要手段。
废水在流经滤料层时,氮和磷元素在滤料表面被吸附,吸附到细胞表面的氮被异养菌氧化为氮气,磷元素则随着污泥浓度增加,在池内逐步沉积。
生物脱氮除磷工艺的优点在于原理简单,适用范围广泛,处理效率高,成本较低,不需要大量的化学物质,并且不会产生二次污染。
然而,这种工艺也存在一些缺陷。
例如,处理后的产物含有大量的氮和磷,商业利用它们困难,造成浪费;污水中如果有过多的脂肪和油脂,可能会对生物脱氮除磷工艺产生影响,导致工艺失效。
总之,生物脱氮除磷工艺是一种受到广泛关注的废水处理方案。
未来,随着社会对环境保护意识的不断提高,生物脱氮除磷工艺势必会在更多的领域得到应用,成为减少污染物排放的重要手段。
生物脱氮除磷的原理与工艺设计生物脱氮除磷是一种通过生物转化过程,将废水中的氮和磷去除掉的方法。
生物脱氮除磷工艺的基本原理是利用特定微生物(硝化细菌、反硝化细菌和磷积累菌)的活性,分别将废水中的氨氮和亚硝酸氮氧化为亚硝酸盐和硝酸盐,然后利用反硝化微生物将硝酸盐还原为氮气;同时,磷酸盐通过生物转化过程被吸附于生物体内,从而实现废水中氮、磷的去除。
1.污水处理系统的设计:包括进水口、沉淀池(或消化池)、氧化池、沉砂池(或沉淀池)、出水口等。
不同的生物脱氮除磷工艺,需要设计不同的系统结构,以确保废水能够顺利流动,并进行相应的生物转化过程。
2.微生物的引进和培养:选择适当的微生物菌种,引进到废水处理系统中。
常见的微生物菌种包括:硝化细菌(如亚硝化细菌、硝化细菌等)、反硝化细菌和磷积累菌。
培养好的微生物菌种,能够提高废水处理系统的处理效果。
3.溶解氧供应:废水中的生物脱氮除磷过程需要一定的溶解氧供应,以维持微生物的正常活性。
通过增加氧气供应、搅拌设备等方式,提高溶解氧浓度,促进微生物的生长和代谢。
4.碳源的添加:废水处理过程需要适量的有机碳源(如甲烷、乙酸等)供给微生物菌种进行生长和代谢。
通过添加碳源,可以提高微生物的活性,增强废水中氮、磷的去除效果。
5.控制系统的建立:根据不同的废水处理系统要求,建立相应的监测和控制系统。
通过监测废水中氨氮、亚硝酸氮、硝酸盐和磷酸盐等指标的含量,调整废水处理过程中的操作参数,实现最佳的脱氮除磷效果。
6.污泥的处理和回用:生物脱氮除磷过程中会产生大量的污泥。
合理处理和回用污泥,可以降低处理成本,并减少对环境的污染。
通过科学的生物脱氮除磷工艺设计,可以高效地去除废水中的氮、磷污染物,实现废水的净化和资源化利用。
然而,不同的废水特性和处理需求可能需要不同的工艺设计,因此,需要根据实际情况进行具体的工艺优化和改进。
脱氮除磷工艺指南一、引言脱氮除磷是水处理工艺中非常重要的环节,它能有效地去除废水中的氮和磷,减少对环境的污染。
本文将介绍脱氮除磷的工艺原理、常用方法和设备以及操作注意事项,以帮助读者更好地了解和应用该工艺。
二、工艺原理脱氮除磷的原理是利用生物和化学方法将废水中的氮和磷转化为氮气和无机磷,从而实现去除的目的。
生物脱氮除磷是利用硝化细菌和反硝化细菌的作用,将废水中的氨氮和亚硝酸盐氮转化为氮气释放到大气中。
化学脱氮除磷是利用化学药剂与废水中的氮结合形成沉淀物,从而去除氮。
除磷主要是通过化学沉淀、吸附和生物吸附等方式将废水中的磷去除。
三、常用方法1. 生物脱氮除磷工艺生物脱氮除磷工艺主要包括A2O法、SBR法、AO法等。
其中,A2O法是指将好氧区、缺氧区和厌氧区结合在一起的工艺,通过不同区域中的细菌作用实现脱氮除磷。
SBR法是指在同一反应器中通过不同阶段的工作实现脱氮除磷。
AO法是指通过好氧区和厌氧区结合的方式,分别去除氮和磷。
2. 化学脱氮除磷工艺化学脱氮除磷工艺主要包括化学沉淀法和化学吸附法。
化学沉淀法是通过加入适量的化学药剂,使废水中的氮和磷形成沉淀,然后通过沉淀物的分离去除。
化学吸附法是利用一些特殊的吸附材料,如活性炭、氧化铁等,将废水中的氮和磷吸附在表面,从而实现去除。
四、常用设备1. 好氧池和厌氧池好氧池和厌氧池是生物脱氮除磷工艺中常用的设备。
好氧池提供氧气和充足的微生物,促进氮的氧化和磷的吸附,而厌氧池则提供缺氧条件,促进氮的还原和释放。
2. 沉淀池沉淀池是化学脱氮除磷工艺中常用的设备。
通过加入化学药剂,废水中的氮和磷形成沉淀物,在沉淀池中进行沉淀分离,然后排出清水。
3. 吸附装置吸附装置是化学吸附法中常用的设备。
利用特殊吸附材料,将废水中的氮和磷吸附在表面,然后进行分离和去除。
五、操作注意事项1. 控制好氧和厌氧条件,保证生物脱氮除磷工艺的正常运行。
2. 加入化学药剂时,要注意药剂的种类和用量,避免过量使用或不足。
利用好氧和厌氧组合来进行生物脱氮和除磷的原理生物脱氮和除磷是现代污水处理过程中常用的处理方法,利用好氧和厌氧组合来进行生物脱氮和除磷可以有效去除废水中的氮和磷,使得废水达到排放标准。
生物脱氮的原理是通过好氧和厌氧综合作用,将废水中的氨氮和硝态氮转化为氮气释放到大气中,从而达到去除氮的目的。
该过程分为两个阶段:厌氧阶段和好氧阶段。
在厌氧阶段,通过加入硝化抑制剂来抑制硝化菌的生长,同时利用厌氧条件下的反硝化菌将废水中的硝态氮还原成氮气。
反硝化菌利用废水中的有机物作为电子供体,将硝态氮还原成氮气,并释放到大气中。
在好氧阶段,通过加入缺氧条件下的硝化菌来将废水中的氨氮氧化为硝态氮。
硝化菌利用废水中的氨氮作为电子供体,同时吸收氧气,将氨氮氧化成亚硝态氮,再经过氧化反应转化为硝态氮。
硝化过程产生的亚硝酸会进一步被反硝化菌氧化为N2,释放到大气中。
除磷的原理是通过好氧条件下的磷菌将废水中的磷转化为细菌形成的磷酸盐,从而实现磷的去除。
除磷过程可分为生物吸附和矿化两个阶段。
在生物吸附阶段,废水中的有机物作为磷菌的营养源,磷菌在好氧条件下吸附废水中的磷成为细菌形成的有机磷,从而将磷去除。
在矿化阶段,废水中的磷经过好氧条件下的生物氧化反应,被磷菌转化为无机磷酸盐,并与废水中的钙、铝等金属离子结合形成不溶于水的磷酸钙或磷酸铝沉淀物。
这些沉淀物可以通过沉淀或过滤的方式去除。
好氧和厌氧组合的生物脱氮和除磷方法相辅相成,通过两者的配合可以实现高效去除废水中的氮和磷。
好氧和厌氧条件下的细菌互相依赖,在厌氧阶段,反硝化菌利用废水中的硝态氮作为电子供体进行反硝化作用,产生氮气;在好氧阶段,硝化菌利用废水中的氨氮作为电子供体进行硝化作用,产生硝态氮。
同时,在除磷过程中,磷菌在好氧条件下吸附废水中的磷,然后通过好氧条件下的生物氧化反应转化为无机磷酸盐,形成沉淀物。
通过好氧和厌氧组合的生物脱氮和除磷方法可以实现高效的废水处理,不仅能够去除废水中的氮和磷,还能够减少能源消耗和化学药剂的使用。
生物脱氮除磷机理及新工艺
生物脱氮除磷是指利用生物学原理对水体中的氮和磷进行去除的一种技术。
其基本原理是将含有氮、磷的有机物通过生物降解转化为氮气和磷酸盐,从而达到净化水体的目的。
生物脱氮除磷技术的应用非常广泛,包括城市污水处理、工业废水处理、农业面源污染治理等领域。
生物脱氮除磷的主要机理是利用微生物的代谢活动来进行脱氮除磷。
在生物脱氮过程中,利用硝化菌将氨氮转化为亚硝酸盐和硝酸盐,进而转化为氮气排放。
在生物除磷过程中,利用聚磷菌将水体中的磷转化为无机磷酸盐,进而去除。
生物脱氮除磷技术是一种相对成熟的技术,其优点包括高效、经济、环保等。
近年来,随着科技的不断发展,新型的生物脱氮除磷工艺也得到了广泛应用。
这些新型工艺包括厌氧氨氧化工艺、硝化除磷工艺、硝酸盐还原工艺等。
其中,厌氧氨氧化工艺是一种新兴的脱氮技术,具有高效、节能等优点。
硝化除磷工艺则是将氮素和磷素同时通过硝化反应进行去除,能够达到较高的脱氮除磷效率。
硝酸盐还原工艺则是通过还原反应将水体中的硝酸盐转化为氨氮,从而达到脱氮的效果。
总的来说,生物脱氮除磷技术是一种非常重要的污水处理技术,对于保护水环境具有重要的意义。
未来随着科技的不断发展,生物脱氮除磷技术也将不断完善和发展,为净化水体、改善环境质量做出更大的贡献。
生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。
其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。
1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。
氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。
这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。
2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。
反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。
3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。
硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。
生物法脱氮除磷的原理1. 生物法脱氮除磷啊,说白了就是让小微生物们帮我们干活!这些小家伙可厉害了,就像一群勤劳的清洁工,专门处理水里的氮和磷。
2. 说到脱氮过程,得先让氨氮变成亚硝态氮,再变成硝态氮。
这就像小微生物在打接力赛,一棒接一棒地把氮素传递下去。
硝化菌在这个过程中可忙活了,它们在有氧环境下可卖力啦!3. 接下来是反硝化过程,这时候得把氧气关小点,让那些厌氧菌出马。
它们把硝态氮变成氮气,就像变魔术一样,嘭的一下,氮就跑到空气中去啦!4. 除磷的过程更有意思啦!磷积累菌就像是小储蓄罐,在有氧条件下疯狂吃磷,吃得肚子都鼓鼓的。
这些小家伙特别贪吃,比它们需要的还要多吃好多磷呢!5. 要让这些微生物干活卖力,温度可得控制好。
它们最喜欢二十到三十度的环境,太冷太热都会让它们懒洋洋的,干活效率直线下降。
6. 酸碱度也得合适,就像我们喝水要喝温的一样。
这些微生物最喜欢中性环境,酸碱度在六点五到八点五之间最好。
要是太酸太碱,它们就会闹脾气不干活啦!7. 溶解氧的控制可有讲究啦!硝化过程需要的氧气比较多,得保持在二到三毫克每升。
反硝化的时候就得把氧气关小点,让厌氧菌能好好发挥。
8. 整个处理过程像是一台精密的生物机器,需要不同的小区域。
好比一个工厂,有的车间要多送氧气,有的车间要少送,各个环节都得配合好。
9. 污泥龄也很重要,就是让这些微生物在系统里待多久。
待得太短,小家伙们还没开始干活就被冲走了;待得太长,又会产生太多剩余污泥。
10. 碳源的补充也不能少,这就像给微生物们加餐。
没有足够的碳源,它们就没力气干活了。
有时候还得额外加点甲醇或者醋酸盐当零食。
11. 整个系统运行起来就像个小生态圈,各种微生物你帮我、我帮你。
有的负责吃氨氮,有的专门处理硝态氮,还有的主攻磷,配合得可默契啦!12. 这种生物处理方法可环保啦!不用加化学药剂,全靠微生物的自然降解。
处理后的水质好,成本还低,简直就是污水处理界的环保卫士!。
废水生物脱氮除磷原理
废水生物脱氮除磷是一种利用微生物代谢作用的方法,通过生物碳、氮、磷循环,去除废水中的氨氮和磷的过程。
其原理可以分为以下几
个方面:
1. 生物脱氮原理
废水中的氨氮通过硝化、反硝化等微生物代谢过程,最终转化为氮气
释放到大气中。
具体过程如下:
硝化菌利用氨氮和氧气生成亚硝酸盐,反应式为:NH4++2O2→NO2^-
+2H++H2O。
亚硝酸盐在氧气存在下被反硝化菌还原为氮气,反应式为:2NO2^-
+O2→2NO3^-。
2. 生物除磷原理
废水中的磷通过生物吸附、释放等方式去除。
具体过程如下:
生物体内的磷酸盐被菌体代谢,通过吸附释放等过程沉积到废水处理
系统,从而实现磷的去除。
同时,选择合适的填料并维持水体曝气,可以提高微生物的附着能力
和生长条件,使生物脱氮除磷效果更好。
3. 优化废水处理过程
为了使废水生物脱氮除磷过程更加高效、稳定,需要注意以下几个方面:
(1)控制废水中的C/N/P比例,一般适宜比例为100:5:1。
(2)生物反应器运行过程中,维持一定的曝气量,保证氧气充足。
(3)监测废水中的温度、pH、DO等关键参数,及时调整水质和操作
方式。
(4)在废水生物脱氮除磷过程中,加入一定的外源碳源和磷去除剂,
有助于提高去除效果。
废水生物脱氮除磷技术是一种效果良好、操作简单的处理废水的方法,具有很大的应用前景。
生物脱氮除磷原理及工艺生物脱氮的原理主要是利用微生物中的硝化和反硝化过程。
首先,硝化细菌通过氧化氨将氨氮转化为亚硝酸盐,然后亚硝酸盐进一步被亚硝酸盐脱氢酶转化为硝酸盐。
这个过程被称为硝化作用。
反硝化过程是指在缺氧或低氧条件下,反硝化细菌通过还原硝酸盐来释放出氮气。
生物脱磷的原理主要是利用微生物中的磷酸盐积累和释放过程。
一些细菌和藻类能够以有机物的形式从水中吸收和积累磷酸盐,并在一定条件下释放出来。
这个过程被称为磷酸盐吸收和释放作用。
通过调节水体中的氧气、有机负荷和pH值等条件,可以促进微生物的磷酸盐吸收和释放过程,从而实现生物脱磷。
非曝气法主要是在低氧或缺氧条件下进行处理。
这种方法的优点是能够节省能源和减少氧气需求,适用于中小型处理单位。
常见的非曝气法包括:厌氧氨氧化-硝化还原法(Anammox-Detritus-Anoxia法)、系统内侧流间歇式处理法(SCT法)和单球状厌氧硝化反硝化法等。
曝气法主要是通过加氧来提供充足的氧气供给,促进硝化和反硝化过程。
这种方法的优点是处理效果稳定可靠,适用于大型处理装置。
常见的曝气法包括:AO法(活性污泥法)、A2/O法(改良后的活性污泥法)和SBR法(顺序批处理法)等。
在实际的生物脱氮除磷工程中,通常会采用多级处理工艺。
例如,可以将生物脱氮和生物除磷结合起来,构建生物反硝化除磷工艺(SND)。
这种工艺可以同时去除水体中的氮和磷,效果较好。
总的来说,生物脱氮除磷通过利用微生物的生长和代谢活动,可以有效地降低水体中的氮和磷浓度,改善水质,保护生态系统。
不同的工艺可以根据具体情况选择和组合,以达到最佳的去除效果。
脱氮除磷原理及过程脱氮除磷是指将水中的氮和磷等营养盐去除,以达到净化水体的目的。
其原理和过程如下:脱氮原理:脱氮主要是通过微生物的作用来实现的。
在水体中,氮主要以氨氮、硝态氮和有机氮的形式存在。
在底泥和有机物的分解过程中,产生的氨氮(NH3)被硝化细菌氧化成亚硝酸盐(NO2-),然后再被另一类硝化细菌氧化成硝酸盐(NO3-)。
硝酸盐是稳定的氮化合物,不易向大气中释放。
但通过特定条件下的反硝化作用,脱氮可以发生。
反硝化是一种厌氧细菌作用,将水中的硝酸盐还原成氮气(N2),释放到大气中,从而实现去除氮的目的。
脱磷原理:脱磷主要是通过化学沉淀和吸附等方式来实现的。
在水体中,磷主要以无机磷(溶解态磷)和有机磷(悬浮态磷、溶解态磷)的形式存在。
添加化学物质如铝盐、铁盐等能与磷发生反应生成固体沉淀,从而将磷从水中去除。
此外,还可以使用一些吸附性材料,如活性炭等,将水中的磷物质吸附到材料表面,实现去除磷的目的。
脱氮过程:脱氮过程通常涉及两个主要步骤:硝化和反硝化。
在硝化过程中,氨氮被氧化成亚硝酸盐和硝酸盐,通过微生物的作用完成。
然后,在反硝化过程中,硝酸盐被厌氧细菌还原成氮气,从而从水体中去除氮。
脱磷过程:脱磷过程通常包括化学沉淀和吸附等步骤。
在化学沉淀中,将适当的化学物质添加到水体中,与磷发生反应生成固体沉淀,从而将磷从水中去除。
而在吸附过程中,将具有较强吸附性的材料,如活性炭,放入水体中,吸附水中的磷,实现脱磷的目的。
总的来说,脱氮除磷是通过微生物的作用(硝化和反硝化)和化学物质的处理(化学沉淀和吸附)来实现的。
这些过程能有效去除水体中的氮和磷,从而净化水体。
生物膜法脱氮除磷原理
生物膜法脱氮除磷是一种相对较新的处理废水的技术,将生物膜巧妙地应用在废水处理过程中,可以除去有害物质,保护环境。
生物膜法脱氮除磷是一种有效的方法,它将具有污染物质的废水经过生物技术处理后,可以彻底把有害物质(主要是氮和磷类物质)移除,达到净水的效果。
生物膜法脱氮除磷是由一层生物活性物质夹层叠加和穿孔生物膜而形成的。
穿孔生物膜可以阻滞胞外污染物,而生物活性物质夹层在形成生物膜夹层的同时,也可以吸附污染物并将其阻滞。
由于水分子和有机物分子的大小穿过穿孔生物膜的比例不同,水分子的穿过速度往往快于有机物分子,有机分子则得不到有效的清除。
同时,由于生物夹层上表面能位的存在,可以有效的吸附污染物,进一步减少污染物的浓度。
生物膜法脱氮除磷不但占用空间少,耗能量低,而且可以有效的除去氮和磷类物质,不会造成二次污染。
随着环境保护意识的增强,人们对污染物处理技术提出了更高的要求。
生物膜法脱氮除磷技术能够有效地去除水中的污染物,在废水处理领域有着崭新而有效地技术。
污水生物脱氮除磷的基本原理1.生物脱氮废水中存在着有机氮、NH3-N、NxO--N等形式的氮,而其中以NH3-N和有机氮为主要形式。
生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程。
进行生物脱氮可分为氨化-硝化-反硝化三个步骤。
由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。
1.1. 氨化作用氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。
参与氨化作用的细菌称为氨化细菌。
在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。
另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。
RCH(NH2)COOH→RCH2COOH+NH1CH3CH(NH2)COOH→CH3CH(OH)COOH+NH3CH2(OH)CH(NH2)COOH→CH3COCOOH+NH31.2. 硝化作用硝化作用是指将NH3-N氧化为NxO--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。
亚硝酸菌和硝酸菌统称为硝化菌。
发生硝化反应时细菌分别从氧化NH3-N和N2O--N 的过程中获得能量,碳源来自无机碳化合物,如CO2-3、HCO-、CO2等。
硝化过程的三个重要特征:⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2;⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季;⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化需要碱度5.57g(以NaCO3计)。
1.3. 反硝化作用反硝化作用是指在厌氧或缺氧(DO<0.3-0.5mg/L)条件下,NOx--N及其它氮氧化物被用作电子受体被还原为氮气或氮的其它气态氧化物的生物学反应,这个过程由反硝化菌完成[3--4]。
生物脱氮除磷原理 It was last revised on January 2, 2021生物脱氮除磷原理国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。
因此,城市污水处理厂一般不推荐采用。
从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。
我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步实现工业化流程。
目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。
生物脱氮原理生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。
随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。
整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。
反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。
由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:(1)硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。
(2)反硝化阶段:硝酸盐的存在,缺氧条件DO值在L左右,充足碳源(能源),合适的PH条件。
生物除磷原理磷常以磷酸盐(H2PO4-、HPO42-和H2PO43-)、聚磷酸盐和有机磷的形式存在于废水中,生物除磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。
生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。