车辆防撞系统设计
- 格式:docx
- 大小:436.96 KB
- 文档页数:32
基于单片机的倒车防撞预警系统毕业设计倒车防撞预警系统是一种能够帮助驾驶员在倒车过程中避免碰撞的设备。
本文基于单片机设计了一种倒车防撞预警系统,并进行了详细的介绍。
该系统主要由倒车传感器、控制电路、显示屏和蜂鸣器组成。
其中,倒车传感器用于检测车辆周围的障碍物,通过将传感器输出的数据传给控制电路进行处理。
控制电路根据接收到的传感器数据,计算出障碍物与车辆的距离,并控制显示屏和蜂鸣器发出相应的警报。
在设计中,我们选择了超声波传感器作为倒车传感器,因为它能够准确地测量障碍物与车辆的距离。
我们将超声波传感器固定在车辆的后部,并将其与单片机相连。
当车辆开始倒车时,超声波传感器开始工作,并将检测到的障碍物距离传给单片机。
单片机接收到传感器数据后,根据一定的算法计算出车辆与障碍物的距离,并根据距离的大小决定是否发出警报。
为了方便驾驶员了解障碍物的距离,我们在车辆驾驶室内安装了一个显示屏,用于显示障碍物与车辆的距离。
当障碍物与车辆的距离小于一定值时,系统还会通过蜂鸣器发出警报,提醒驾驶员注意。
在系统的设计过程中,我们考虑到了多种因素。
首先,我们要确保传感器的数据准确性,要选择合适的传感器并进行校准。
其次,我们要考虑到驾驶员对系统的操作是否方便,要保证显示屏和蜂鸣器能够清晰地传达信息。
最后,我们还要考虑系统的可靠性和稳定性,要进行充分的测试和优化。
倒车防撞预警系统可以提高驾驶安全性,避免驾驶员在倒车过程中因为盲区而发生碰撞。
我们通过基于单片机的设计,实现了一个简单有效的倒车防撞预警系统。
通过这个设计,我们还深入了解了单片机的应用和原理。
希望这个设计能够对相关领域的研究和开发工作提供一些参考和启示。
基于超声波测距的汽车倒车防撞报警系统设计汽车倒车防撞报警系统是一种基于超声波测距技术的安全辅助设备,能够帮助驾驶员在倒车时避免与障碍物发生碰撞,提高行车安全性。
本文将对该系统的设计进行详细介绍。
首先,该系统主要由超声波传感器、控制器和报警器组成。
超声波传感器负责探测车辆周围的障碍物距离,传输给控制器进行处理。
控制器根据传感器的数据判断是否存在碰撞的风险,并通过报警器向驾驶员发出警告信号,提醒其采取正确的行动。
在系统的设计过程中,首先需要选择合适的超声波传感器。
传感器的选择应考虑其测距范围、精度和对环境的适应性等方面。
一般来说,超声波传感器在测距范围内可以提供较高的测量精度,并且对大多数障碍物均有良好的适应性。
接下来,控制器的设计是系统中的关键部分。
控制器需要实时接收传感器上传的距离数据,并进行数据处理和决策。
控制器可以使用嵌入式系统来实现。
在数据处理方面,可以使用一些常见的算法,如滤波算法、虚拟线算法等,来进行数据处理和障碍物的识别。
在决策方面,可以设置适当的距离阈值,当距离低于该阈值时触发警报。
最后,报警器的设计需要考虑其音量和可靠性。
对于音量,报警器应具备足够的声音大小,以确保驾驶员能够听到警报并及时做出反应。
对于可靠性,报警器应具备较长的寿命和稳定的性能,以确保系统能够长时间稳定运行。
此外,为了提高系统的可用性,还可以考虑加入其它功能,如图像显示功能。
通过搭载摄像头和显示器,可以将车辆周围的情况实时显示在显示器上,使驾驶员更加直观地了解障碍物的位置和距离。
总之,基于超声波测距的汽车倒车防撞报警系统是一种重要的安全辅助设备。
通过合理选择超声波传感器、设计有效的控制器和报警器,并加入其它功能,可以实现对倒车过程的有效监控和警示,提高驾驶员的行车安全性。
汽车防撞报警系统_毕业论文设计汽车防撞报警系统引言随着汽车技术的不断发展,汽车安全问题引起了广泛关注。
尤其是近年来,由于交通事故造成的人员伤亡和经济损失越来越大,汽车防撞技术成为了汽车安全的重要组成部分。
汽车防撞报警系统是目前较为成熟的汽车主动安全技术之一,可以通过多种传感器来感知车辆周围的环境和动态信息,及时发出报警信号,避免或减小交通事故的发生。
本文主要介绍汽车防撞报警系统设计的相关技术原理和实现方法,旨在提高汽车行驶的安全性,为驾驶员提供更加安全、舒适的驾驶环境。
一、汽车防撞报警系统设计原理1.1 汽车防撞报警系统概述汽车防撞报警系统是一种集多种传感器、现代信息技术、控制单元等技术于一体的汽车安全保护装置。
它通过多种传感器来实时监测汽车周围的环境和动态信息,比如车速、车距等,一旦检测到有碰撞的危险,控制单元就会立即发出报警信号,提醒驾驶员注意,避免或减小交通事故的发生。
1.2 系统技术原理汽车防撞报警系统包括多个部分,主要有传感器、控制单元、报警器等,其技术原理如下:1)传感器传感器是汽车防撞报警系统的重要组成部分,其作用是感知车辆周围的环境和动态信息,将数据传递给控制单元。
通常用于汽车防撞报警系统的传感器主要有如下几种:(1)超声波传感器超声波传感器是一种常用的距离检测传感器,可以检测车辆前方的障碍物,计算出与前车的距离,从而判断是否存在碰撞危险。
(2)摄像头摄像头是一种视觉传感器,在汽车防撞报警系统中主要用于识别路标、车道和车辆等信息,同时也可以用于行人识别和交通信号灯感知。
(3)雷达传感器雷达传感器是一种远距离检测传感器,可以检测周围车辆的行驶状态,计算出与前车的距离和速度,从而判断是否存在碰撞危险。
(4)惯性传感器惯性传感器可以检测车辆的加速度、速度和方向等信息,常用于制动系统和 ESC (电子稳定控制系统)中。
2)控制单元控制单元是汽车防撞报警系统的核心部分,其作用是通过计算传感器传来的数据,判断车辆是否存在碰撞危险,并根据需要发出报警信号。
目录摘要 (1)目录 (1)绪论 (3)第一章汽车防撞报警系统设计简介 (4)1.1 设计概要 (4)1.1.1设计任务与要求 (4)1.1.2研究方法 (4)1.1.3解决的关键问题 (4)1.2 汽车防撞报警系统设计的意义 (5)第二章设计思路分析 (7)2.1 系统总体方案 (7)2.2 工作原理 (8)2.3 控制器AT89C2051的功能特点 (8)第三章系统硬件电路设计 (9)3.1 系统硬件方案设计 (9)3.2 遥控器控制框图 (10)3.3 工作原理剖析 (11)3.3.1传感器的选择 (11)3.3.2超声波的发射与接收电路 (11)3.3.3测速原理 (12)3.4 实物设计所能达到的功能及操作说明 (12)第四章系统软件电路设计 (14)4.1 主程序 (14)4.2 串口通信模块——transplant.C (15)4.3 程序编写 (16)第五章调试与测试 (18)总结 (19)参考文献 (20)附录1 (20)附录2 (22)致谢 (25)绪论随着时代的发展及社会的进步,越来越多的汽车进入了普通人的家庭。
汽车逐渐成为人们生活中不可缺少的一部分。
尽管公路条件在不断地改进,但仍然避免不了公路上汽车拥挤的现状,再加上设计车速不断提高,恶性交通事故无时无刻不在发生,给人们和社会带来了巨大的生命与财产损失。
汽车防撞报警系统也因此应用而生。
汽车防撞报警系统是一种当汽车离障碍物较近时向司机预先发出报警信号的装置,通常系统的各个探测器安装于汽车的几个关键的车身部位,能探测到接近车身的行人、车辆和周围的障碍物,能向司机或乘客提前发出即将发生撞车危险的信号,促使司机甚至撇开司机采取应急措施处理特殊险情,避免损失。
同时当汽车发生故障时,可以通过按动警示信号键向过往的车辆发送无线警示信号,提醒过往车辆的司机注意,从而更有效地避免交通事故的发生。
汽车的各种方便性正不断地被人们所接受,现如今如同是一般的家用电器一样地进入平常百姓的家中,开发本系统,可以广泛地安装于各种家用轿车、客车、货车等,如与车载微型电脑相配合,可以实现更多的人工智能化操作,是实现汽车无人驾驶必不可少的一个组成部分,也是未来汽车的发展方向,因此运用前景是相当可观。
汽车防撞预警系统设计一、系统概述汽车防撞预警系统主要由传感器、控制器、报警装置和执行机构四部分组成。
传感器负责实时监测车辆周围的环境信息,控制器对收集到的信息进行处理和分析,判断是否存在碰撞风险,如有风险,立即启动报警装置并控制执行机构进行干预。
二、传感器选型与布局1. 传感器选型为实现全天候、全方位的监测,本系统选用毫米波雷达、摄像头和超声波传感器三种传感器。
毫米波雷达具有穿透力强、抗干扰能力强等优点,适用于雨雾等恶劣天气;摄像头可识别道路标志、行人和车辆等目标;超声波传感器则用于检测车辆周围的近距离障碍物。
2. 传感器布局根据车辆结构和行驶需求,本系统将传感器均匀分布在车辆的前后左右四个方向,确保无死角监测。
具体布局如下:(1)前方:安装两个毫米波雷达,分别位于车辆前保险杠两侧,覆盖前方120°的监测范围。
(2)后方:安装一个毫米波雷达,位于车辆后保险杠中央,覆盖后方60°的监测范围。
(3)左右两侧:各安装一个摄像头,分别位于车辆左右两侧,覆盖左右两侧60°的监测范围。
(4)四周:安装四个超声波传感器,分别位于车辆前后保险杠和左右两侧,用于检测近距离障碍物。
三、控制器设计1. 算法设计(1)数据预处理:对传感器采集到的数据进行去噪、滤波等处理,提高数据质量。
(2)目标检测与识别:通过摄像头识别道路标志、行人和车辆等目标,结合毫米波雷达和超声波传感器数据,确定目标的位置、速度等信息。
(3)碰撞风险评估:根据目标的位置、速度等信息,计算与本车的相对距离和相对速度,预测未来一段时间内可能发生的碰撞情况。
(4)预警决策:根据碰撞风险评估结果,判断是否触发预警。
2. 硬件设计控制器硬件部分主要包括处理器、存储器、通信接口等。
处理器选用高性能、低功耗的嵌入式芯片,满足系统实时性和稳定性的需求;存储器用于存储算法模型和运行数据;通信接口负责与传感器、报警装置和执行机构进行数据交互。
汽车防撞预警系统毕业设计论文汽车防撞预警系统是一种基于先进传感技术和智能算法的车辆安全辅助系统,可以在汽车行驶过程中检测潜在的碰撞风险,并在情况危急时向驾驶员发出警示,起到保障行车安全的作用。
本论文旨在介绍汽车防撞预警系统的设计原理和实现方法,并通过仿真实验验证其效果。
首先,本论文将阐述汽车防撞预警系统的需求分析。
通过调研市场上已有的类似产品以及分析汽车事故的原因和危害,确定汽车防撞预警系统需要具备的功能和性能指标。
本文将重点讨论系统对前方障碍物的识别和跟踪能力、碰撞风险评估算法的准确性和实时性,以及警示手段的有效性等方面。
其次,本论文将详细介绍汽车防撞预警系统的设计原理。
系统主要由传感器模块、信号处理模块和警示模块组成。
传感器模块负责采集车辆周围环境的信息,包括摄像头、雷达和超声波传感器等。
信号处理模块负责对传感器采集的数据进行处理和分析,提取出障碍物的特征并进行跟踪,同时计算出碰撞风险评估值。
警示模块负责向驾驶员发出警示信号,可以通过声音、光线和振动等方式进行。
然后,本论文将探讨汽车防撞预警系统的实现方法。
针对传感器模块,本文将介绍摄像头、雷达和超声波传感器的工作原理和选型方法,并给出传感器的布置方案。
对于信号处理模块,本文将详细介绍特征提取和跟踪算法的设计原理和实现方法,以及碰撞风险评估算法的建立。
对于警示模块,本文将介绍警示信号的设计原则和警示手段的选择。
最后,本论文将通过仿真实验验证汽车防撞预警系统的效果。
通过搭建仿真平台,模拟不同场景下的碰撞风险,评估系统对障碍物的识别和跟踪准确性,以及碰撞风险评估算法的实时性和准确性。
同时,还将评估警示手段对驾驶员行为的影响,以及系统的用户友好性。
综上所述,本论文旨在通过设计和实现一种基于先进传感技术和智能算法的汽车防撞预警系统,为驾驶员提供更加安全和便捷的驾驶体验。
本论文将通过理论分析和仿真实验,验证系统的可行性和有效性。
基于激光雷达汽车防撞预警系统的设计与实现全文共四篇示例,供读者参考第一篇示例:随着交通工具的普及和道路交通的日益繁忙,交通事故成为了一个不容忽视的问题。
为了降低交通事故的发生率,提高交通安全水平,汽车防撞预警系统应运而生。
而基于激光雷达的汽车防撞预警系统因其高精度、高可靠性等优点受到了广泛的关注。
1. 激光雷达技术的应用激光雷达是一种利用激光来测量目标距离、速度和方向的传感器。
它具有测距精度高、反应速度快、不受光照影响等优点,在汽车防撞预警系统中得到了广泛的应用。
激光雷达通过发射一束激光束,当激光束碰撞到障碍物时,激光束就会反射回来,通过检测激光束的反射时间和角度等信息,就可以确定障碍物的位置、距离以及速度等参数,从而实现对障碍物的检测和预警。
2. 汽车防撞预警系统的设计基于激光雷达的汽车防撞预警系统主要由激光雷达传感器、控制单元、驾驶员预警装置等部分组成。
激光雷达传感器负责实时监测车辆前方的道路情况,控制单元负责处理传感器采集的数据并进行分析,而驾驶员预警装置则负责向驾驶员发出预警信号。
整个系统通过这三个部分的协作,可以实现对车辆前方障碍物的及时监测和预警,从而帮助驾驶员避免碰撞事故的发生。
3. 实现过程在汽车防撞预警系统的实现过程中,需要克服一些技术难题。
首先是激光雷达传感器的精度和稳定性问题,由于激光雷达传感器需要在复杂的道路环境中工作,因此需要保证传感器具有足够的精度和稳定性来应对各种复杂情况。
其次是控制单元的算法设计和实时性要求,算法要能够对传感器采集的数据进行实时处理和分析,并且能够准确地对障碍物进行识别和预警。
最后是驾驶员预警装置的设计和人机交互性能,预警装置需要能够准确地向驾驶员发出预警信号,并且要求操作简单、易懂,不会影响驾驶员的正常驾驶。
4. 系统测试为了验证汽车防撞预警系统的可靠性,需要进行一系列的系统测试。
首先是在实验室中对系统的各个部分进行功能测试,包括激光雷达传感器的测距精度、控制单元的数据处理能力、以及驾驶员预警装置的预警效果等。
基于单片机的倒车防撞预警系统设计倒车防撞预警系统是一种广泛应用于汽车上的辅助设备,可以帮助驾驶员在倒车过程中避免与障碍物发生碰撞。
本文将介绍一个基于单片机的倒车防撞预警系统的设计。
一、系统设计方案1.硬件设计部分:(1)超声波传感器:用于检测倒车车辆后方距离的变化,一般使用多个超声波传感器进行检测。
(2) 单片机(如Arduino):用于接收超声波传感器的信号并进行处理,同时控制显示器和蜂鸣器发出预警信号。
(3)显示器:用于显示倒车车辆后方的障碍物距离,可以使用LCD显示屏。
(4)蜂鸣器:用于发出声音预警信号,提醒驾驶员注意。
2.软件设计部分:(1)超声波传感器信号处理:单片机接收超声波传感器的信号,并进行滤波和幅值处理,得到障碍物距离值。
(2)倒车距离显示:将障碍物距离值显示在LCD屏幕上,可以设计多级警戒区,显示不同距离范围内的预警信息。
(3)声音预警:当距离过近时,单片机控制蜂鸣器发出声音预警信号,提醒驾驶员注意。
二、系统实现步骤1.硬件实现:(1)连接超声波传感器:按照超声波传感器的规格书连接传感器与单片机。
(2)连接LCD显示屏:将LCD显示屏连接到单片机。
(3)连接蜂鸣器:将蜂鸣器连接到单片机。
2.软件实现:(1)单片机初始化:初始化单片机,设置IO口的输入输出模式和引脚功能。
(2)读取超声波传感器信号:通过IO口读取超声波传感器的信号,并进行幅值处理,得到障碍物距离值。
(3)显示距离信息:将障碍物距离值显示在LCD显示屏上,可以设计多级警戒区,显示不同距离范围内的预警信息。
(4)发出声音预警信号:当距离过近时,单片机控制蜂鸣器发出声音预警信号,提醒驾驶员注意。
三、系统测试和优化1.测试:将倒车防撞预警系统连接到倒车车辆上,进行实际测试。
测试过程中要注意校准超声波传感器和LCD显示屏的正确读数,以及蜂鸣器声音的预警效果。
2.优化:根据实际测试结果优化系统设计,可考虑加入其他传感器,如摄像头等,提高系统的准确性和可靠性。
毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
山东农业大学
毕业论文
基于路面条件的跟车距离检测与预警系统设计
院部机械与电子工程学院
专业班级车辆工程二班
届次 2017届
学生姓名刘立成
学号 ********
指导教师吕钊钦教授
二О一七年六月十一日
目录
摘要 (1)
Abstract (2)
1绪论 (3)
1.1 课题的提出及意义 (3)
1.2 课题研究现状 (3)
1.3 课题研究的内容和预期目标 (4)
2系统设计的理论依据 (5)
2.1 安全跟车距离 (5)
2.2 制动距离 (5)
2.2.1 制动过程分析 (5)
2.2.2 制动距离计算 (6)
2.2.3 不同路面条件下的制动距离建模 (7)
3系统硬件设计 (7)
3.1 系统的总体设计 (7)
3.2 微处理器 (8)
3.2.1 微处理器的选择 (8)
3.2.2 单片机最小硬件系统电路设计 (8)
3.3 测速模块 (9)
3.3.1 测速传感器的选择 (9)
3.3.2 测速电路设计 (10)
3.3.3 速度的计算模型 (11)
3.4 雨滴感应模块 (11)
3.5 测雨量模块 (11)
3.5.1 雨量传感器的选择 (12)
3.5.2 雨量传感器检测原理 (12)
3.5.3 雨量传感器发射电路 (13)
3.5.4 雨量传感器接收电路 (14)
3.6 声光报警模块 (14)
3.7 测距模块 (15)
3.7.1 测距传感器的选择 (15)
3.7.2 测距模块电路设计 (16)
3.8 稳压电路 (17)
4软件设计 (18)
4.1 测速子系统程序设计 (18)
4.2 测距子系统程序设计 (18)
4.3 软件的调试 (18)
5总结 (19)
参考文献 (20)
致谢 (21)
附录 (22)
Contents
Abstract (2)
1 Introduction (3)
1.1 Proposition and significance of the subject (4)
1.2 Current research situation (4)
1.3 Content and expectation of the research (4)
2 Theoretical basis of system design (5)
2.1 Safe following distance (6)
2.2 Braking distance (6)
2.2.1 Braking process analysis (6)
2.2.2 Braking distance calculation (6)
2.2.3 Modeling of braking distance under different road conditions (7)
3 System hardware design (8)
3.1 Overall design of the system (8)
3.2 Microprocessor (8)
3.2.1 Microprocessor options (9)
3.2.2 Single chip microcomputer, minimum hardware system, circuit design9
3.3 Tachometer module (9)
3.3.1 Selection of speed sensor (10)
3.3.2 Speed measuring circuit design (10)
3.3.3 Calculation model of velocity (11)
3.4 Raindrop sensing module (12)
3.5 Rainfall measuring module (12)
3.5.1 Selection of rain sensors (13)
3.5.2 Detection principle of rain sensor (13)
3.5.3 Rain sensor transmitting circuit (14)
3.5.4 Receiving circuit of rain sensor (14)
3.6 Acoustooptic alarm module (14)
3.7 Ranging module (15)
3.7.1 Range sensor selection (16)
3.7.2 Circuit design of ranging module (16)
3.8 Voltage stabilizing circuit (17)
4 Software design (18)
4.1 Speed subsystem program (18)
4.2 Ranging subsystem (18)
4.3 Software debugging (18)
5 Summary (19)
Reference (20)
Thank (21)
Appendix (22)。