常见手动变速器结构介绍
- 格式:ppt
- 大小:12.87 MB
- 文档页数:125
发动机是汽车的心脏,它为车辆的行驶提供源源不断的动力,车辆变速器的主要作用就是改变传动比,将合适的牵引力通过传动轴输出到车轮上以满足不同车辆在工况下的需求。
可以说,一台变速箱的好坏,会对车辆动力性能产生直接的影响。
最近20年,汽车变速箱也进入了百花争鸣的时代,市面上各式各样的变速器种类也让消费者的选择面前所未有的丰富起来,而市面上手动挡,自动挡,CVT无级变速,DSG双离合,AMT等不同种类的变速器都拥有一定的优势和不足,车168将陆续带大家了解市面上几种不同类型变速箱的原理和特性。
首先,我们需要先简单了解一下变速器产生的原因。
一般来说,汽车的发动机是通过燃烧燃油来获取动力的,而发动机在怠速和最高转速之间时才能输出动力。
而在整个转速范围内,发动机输出的扭矩和功率并不能保持一致,其相应的最大值只能在规定的转速出现。
从车辆对驱动力的需求上看,单纯依靠发动机产生的扭矩不能满足汽车行驶中的各个阶段对驱动力的需求。
比如在起步阶段,需要较大的扭矩和较低的转速,但是发动机在较低的转速下却无法提供足够的扭矩输出,在高速巡航时,需要较高的转速却对扭矩要求较低,而此时发动机保持高转速运转无疑会造成燃油的无谓消耗。
由于现代发动机的这种不完美的特性,变速箱便应运而生。
变速器在不同的工况下使用不同的速比,从而使得车辆和发动机在各种工况下都可以发挥其最佳的动力性能。
最常见的两轴5速手动变速箱解剖图下面,我们就从结构最简单最传统的手动变速器说起。
一般的手动变速箱的基本结构包括了动力输入轴和输出轴这两大件,再加上构成变速箱的齿轮,这就是一个手动变速箱最基本的组件。
动力输入轴与离合器相连,从离合器传递来的动力直接通过输入轴传递给齿轮组,齿轮组是由直径不同的齿轮组成的,不同的齿轮组合则产生了不同的齿比,平常驾驶中的换挡也就是指换齿轮比。
输入轴的动力通过齿轮间的传递,由输出轴传递给车轮,这就是一台手动变速箱的基本工作原理。
接下来,让我们通过一个简单的模型来给大家讲讲,手动变速箱换挡的原理。
第二节手动变速器的变速传动机构结合挂图、教具演示变速传动机构主要由一系列相互啮合的齿轮副及其支承轴以及壳体组成,其主要作用是改变发动机曲轴输出的转速、转矩和转动方向。
下面分别介绍三轴式和二轴式变速器的结构和工作原理。
一、三轴式变速器三轴式变速器广泛用于发动机前置、后轮驱动的汽车上,其特点是传动比的范围大;具有直接档,使传动效率提高。
其变速传动机构包括壳体、第一轴(输入轴)、第二轴(输出轴)、中间轴、倒档轴、各档齿轮和轴承等。
1、基本结构图4-4所示为解放CAl092型汽车六档变速器的结构图,它有三根轴:第一轴1、中间轴20和第二轴26,其传动机构示意图如图4-5所示。
①第一轴1为输入轴,前端用向心球轴承支承在曲轴后端的中心孔内,后端则利用圆柱滚子轴承在变速器壳体上,并进行轴向定位。
第一轴前面花键部分安装离合器的从动盘,以接受发动机的动力。
后端的齿轮2与轴制成一体,与中间轴上的齿轮38构成一对常啮合齿轮,将动力传递给中间轴,作为变速器各档(除直接档)的第一级齿轮传动。
②中间轴30的两端均由圆柱滚子轴承支承在壳体上、轴上的所有齿轮都与之固定。
除齿轮38外,中间轴上的其他齿轮都为主动齿轮,与第二轴上相应的齿轮啮合,构成变速器各档的二级齿轮传动。
③第二轴26为变速器的输出轴,其后端通过凸缘43与万向传动装置相连,将动力输出,其前端轴颈用滚针轴承支承在第一轴后端的轴承孑L内,后端轴颈则由圆柱滚子轴承支承在壳体后壁的轴承孑L内。
后端轴承外圈也装有弹性挡圈,对第二轴进行轴向定位。
第二轴上的各档齿轮都通过衬套或滚针轴承空套在轴上,与中间轴上的各档齿轮均为常啮合。
为了使这些空套的齿轮与第二轴联接起来传递动力,在各齿轮的一侧均制有接合齿圈,并在第二轴相应的位置装有花键毂和接合套(或同步器)等到换档机构,为了防止各档齿轮的轴向移动,在第二轴与齿轮端面之间装有卡环对齿轮进行轴向定位。
另外,第二轴后轴承盖内还装有车速里程表驱动蜗杆42及蜗轮。
第二节手动变速器的结构与维修
一、桑塔纳2000系列轿车手动变速器的结构
桑塔纳2000系列轿车采用五档手动变速器,由传动机构、操纵机构、变速器壳体等组成,其结构紧凑、噪声低、操作灵活可靠。
该变速器的五个前进档均装有锁环惯性式同步器,换档轻便,所有档位都采用防跳档措施。
桑塔纳2000系列轿车五档手动变速器的结构如图5-32所示。
图5-33为桑塔纳2000系列轿车五档变速器传动原理图。
当驾驶员挂上某一档位时,动力由输入轴传入变速器,通过相啮合的齿轮副将动力由输出轴传至主减速器,在变速器中实现了变速、变扭的作用。
变速器设置有超速档(传动比小于1),主要用于在良好路面或空车行驶时,提高汽车的燃料经济性。
桑塔纳2000系列轿车五档手动变速器的性能参数见表5-3所示。
图5-32 变速器的结构
1-变速器壳体 2-输入轴三档齿轮 3-倒档齿轮 4-倒档轴 5-输入轴一档齿轮 6-输入轴五档齿轮 7-输出轴二档齿轮 8-输出轴四档齿轮 9-输出轴 10-输入轴
图5-33 变速器传动原理图
表5-3 桑塔纳2000系列轿车五档手动变速器的性能参数。
手动变速箱工作原理手动变速箱是汽车传动系统中的一个重要组成部分,它的作用是根据车速和发动机转速的变化,通过不同的齿轮组合来调整车辆的速度和动力输出。
手动变速箱的工作原理相对复杂,涉及到许多机械原理和工程技术。
本文将从手动变速箱的结构、工作原理和调整方式等方面进行详细介绍。
手动变速箱的结构。
手动变速箱通常由输入轴、输出轴、齿轮组、离合器和换挡机构等部件组成。
输入轴连接发动机,输出轴连接车轮,齿轮组则是调节输入轴和输出轴之间的传动比。
离合器的作用是将发动机和变速箱分离,以便进行换挡操作。
换挡机构则是用来控制齿轮组的组合,从而实现不同档位的切换。
手动变速箱的工作原理。
手动变速箱的工作原理主要涉及到齿轮组的工作原理和换挡机构的工作原理。
齿轮组是手动变速箱中最重要的部件,它由不同大小的齿轮组成,通过不同的组合来实现不同的传动比。
当齿轮组处于不同的组合状态时,输入轴和输出轴之间的传动比也会发生改变,从而影响车辆的速度和动力输出。
换挡机构则是用来控制齿轮组的组合,实现不同档位的切换。
换挡机构通常由换挡杆、换挡叉和同步器等部件组成。
当驾驶员通过换挡杆操作时,换挡叉会将齿轮组进行相应的组合,从而实现档位的切换。
而同步器则是用来协调不同齿轮之间的转速,以便实现平稳的换挡操作。
手动变速箱的调整方式。
手动变速箱的调整方式通常包括离合器的调整、换挡机构的调整和齿轮组的调整等。
离合器的调整主要是调整离合器的接触点和分离点,以确保离合器能够正确地分离和接合。
换挡机构的调整则是调整换挡杆和换挡叉的位置,以确保换挡操作的准确性和平稳性。
而齿轮组的调整则是调整齿轮的啮合间隙和轴向间隙,以确保齿轮组的正常工作。
总结。
手动变速箱是汽车传动系统中的一个重要组成部分,它通过不同的齿轮组合来调整车辆的速度和动力输出。
手动变速箱的工作原理涉及到齿轮组的工作原理和换挡机构的工作原理,以及离合器的调整、换挡机构的调整和齿轮组的调整等。
只有了解手动变速箱的工作原理,才能更好地维护和修理手动变速箱,确保汽车的正常运行。
手动变速器结构原理解析【图】展开余下全文(1/14)2发动机结构种类解析回顶部发动机作为汽车的动力源泉,就像人的心脏一样。
不过不同人的心脏大小和构造差别不大,但是不同汽车的发动机的内部结构就有着千差万别,那不同的发动机的构造都有哪些不同?下面我们一起了解一下。
● 汽车动力的来源汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。
发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。
● 气缸数不能过多一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实不然,随着汽缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。
所以,汽车发动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。
像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。
● V型发动机结构其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。
V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。
而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不好的是必须要使用两个气缸盖,结构相对复杂。
虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。
● W型发动机结构将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。
W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。
缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。
图解变速箱,一篇看懂全部结构汽车变速器,是一套用于来协调发动机的转速和车轮的实际行驶速度的变速装置,用于发挥发动机的最佳性能。
变速器可以在汽车行驶过程中,在发动机和车轮之间产生不同的变速比。
手动变速器手动变速器就是必须用手拨动变速器杆,才能改变传动比的变速器。
手动变速器主要由壳体、传动组件(输入输出轴、齿轮、同步器等)、操纵组件(换挡拉杆、拨叉等)。
手动变速器构造变速器原理变速器为什么可以调整发动机输出的转矩和转速呢?其实这里蕴含了齿轮和杠杆的原理。
变速器内有多个不同的齿轮,通过不同大小的齿轮组合在一起,就能实现对发动机转矩和转速的调整。
用低转矩可以换来高转速,用低转速则可以换来高转矩。
变速器原理变速器的作用主要表现在三方面:第一,改变传动比,扩大驱动轮的转矩和转速的变化范围;第二,在发动机转向不变的情况下,实现汽车倒退行驶;第三,利用空挡,可以中断发动机动力传递,使得发动机可以启动、怠速。
手动变速器原理手动变速器的工作原理,就是通过拨动变速杆,切换中间轴上的主动齿轮,通过大小不同的齿轮组合与动力输出轴结合,从而改变驱动轮的转矩和转速。
发动机的动力输入轴是通过一根中间轴,间接与动力输出轴连接的。
中间轴的两个齿轮(红色)与动力输出轴上的两个齿轮(蓝色)是随着发动机输出一起转动的。
但是如果没有同步器(紫色)的接合,两个齿轮(蓝色)只能在动力输出轴上空转(即不会带动输出轴转动)。
图中同步器位于中间状态,相当于变速器挂了空挡。
简单变速器结构5挡手动变速器5挡手动变速器原理5挡手动变速器剖面图5挡手动变速器组成换挡机构不仅增强驾驶员换挡感觉,而且可以防止同时挂入两个挡位。
换挡机构同步器变速器在进行换挡操作时,尤其是从高挡向低挡的换挡很容易产生轮齿或花键齿间的冲击。
为了避免齿间冲击,在换挡装置中都设置同步器。
同步器有常压式和惯性式两种,目前大部分同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,主要是依靠摩擦作用实现同步。
手动档和自动档的结构原理是什么手动变速器是最常见的变速器,简称MT。
它的基本构造用一句话概括,就是两轴一中轴,即指输入轴、轴出轴和中间轴,它们构成了变速器的主体,当然还有一根倒档轴。
手动变速器又称手动齿轮式变速器,含有可以在轴向滑动的齿轮,通过不同齿轮的啮合达到变速变扭目的。
典型的手动变速器结构及原理如下。
输入轴也称第一轴,它的前端花键直接与离合器从动盘的花键套配合,从而传递由发动机过来的扭矩。
第一轴上的齿轮与中间轴齿轮常啮合,只要轴入轴一转,中间轴及其上的齿轮也随之转动。
中间轴也称副轴,轴上固连多个大小不等的齿轮。
输出轴又称第二轴,轴上套有各前进档齿轮,可随时在操纵装置的作用下与中间轴的对应齿轮啮合,从而改变本身的转速及扭矩。
输出轴的尾端有花键与传动轴相联,通过传动轴将扭矩传送到驱动桥减速器。
由此可知,变速器前进档位的驱动路径是:输入轴常啮齿轮-中间轴常啮齿轮-中间轴对应齿轮-第二轴对应齿轮。
倒车轴上的齿轮也可以由操纵装置拨动,在轴上移动,与中间轴齿轮和输出轴齿轮啮合,以相反的旋转方向输出。
多数汽车都有5个前进档和一个倒档,每个档位有一定的传动比,多数档位传动比大于1,第4档传动比为1,称为直接档,而传动比小于1的第5档称为加速档。
空档时输出轴的齿轮处于非啮合位置,无法接受动力传输。
由于变速器输入轴与输出轴以各自的速度旋转,变换档位时合存在一个"同步"问题。
两个旋转速度不一样齿轮强行啮合必然会发生冲击碰撞,损坏齿轮。
因此,旧式变速器的换档要采用"两脚离合"的方式,升档在空档位置停留片刻,减档要在空档位置加油门,以减少齿轮的转速差。
但这个操作比较复杂,难以掌握精确。
因此设计师创造出"同步器",通过同步器使将要啮合的齿轮达到一致的转速而顺利啮合。
目前全同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,它的特点是依靠摩擦作用实现同步。