诱发电位的基本知识及临床应用
- 格式:ppt
- 大小:3.52 MB
- 文档页数:50
诱发电位的名词解释生理学诱发电位(evoked potential)是生理学中一个重要的概念,它用于描述神经系统对于外界刺激的响应过程。
具体而言,它是指在大脑或神经系统中,由于外部刺激导致的神经元产生的电生理反应。
诱发电位被广泛应用于临床医学和基础研究领域,可用于诊断和评估一系列神经系统疾病,也有助于研究人类感知、认知和运动控制等方面的生理机制。
1. 什么是诱发电位?诱发电位是通过测量大脑或神经系统对不同刺激产生的神经电信号来获得的。
这些刺激可以是视觉、听觉、触觉或其他感觉刺激,也可以是针对特定神经元的电刺激。
诱发电位的测量通常通过电极放置在头皮,记录上述神经电信号的变化。
这些信号在大脑或神经系统的神经元发放动作电位后不久产生,被放大、滤波和分析以获得有关大脑活动的信息。
2. 诱发电位的应用领域2.1 临床应用诱发电位广泛用于评估和诊断各种神经系统疾病。
例如,视觉诱发电位可用于检测和评估视觉系统相关的疾病,如青光眼和视神经炎。
听觉诱发电位被用于评估听觉系统的功能,以帮助诊断听力损失和中耳问题。
脑干诱发电位可用于早期发现婴儿听力问题。
这些诱发电位在临床应用中提供了一种非侵入性的方式来评估神经系统的功能状态。
2.2 研究应用除了临床应用,诱发电位在基础研究中也发挥着重要作用。
通过对不同刺激条件下诱发电位的测量和分析,研究人员可以了解大脑对不同刺激的处理方式,揭示感知、认知和运动控制等生理机制。
例如,研究人员可以使用诱发电位来研究注意力、记忆和情绪调节等领域。
此外,诱发电位还可以帮助评估新药物的安全性和疗效,以及评估干预措施对神经系统功能的影响。
3.诱发电位的测量原理诱发电位的测量基于传统的脑电图(EEG)技术。
电极放置在头皮上,记录大脑神经元活动的电信号。
当感官刺激传入大脑时,神经元会产生特定的电活动,这些活动反映了神经元对刺激的处理过程。
通过测量和分析这些反应,可以获得有关大脑功能和刺激效果的信息。
肌电诱发电位肌电诱发电位是指在肌肉收缩时产生的电信号,是一种反映神经肌肉功能的生理信号。
本文将从以下几个方面进行详细介绍。
一、肌电诱发电位的基本概念1.1 肌电信号的来源肌电信号是由神经元通过神经传递到肌纤维,引起肌纤维收缩而产生的电信号。
这种信号可以通过表面肌电图(EMG)来记录和分析。
1.2 肌电诱发电位的定义肌电诱发电位是指在刺激某个神经或其分支后,在相应的肌群中产生的短暂、局部、自发性、不可控制的动作电位。
二、肌电诱发电位的测量方法2.1 传统测量方法传统上,常用单极刺激法和双极刺激法来测量肌电诱发电位。
单极刺激法是将一个刺激极放置在神经上,另一个接地极则放置在身体其他部位上;而双极刺激法则需要两个刺激极,一个放置在神经上,另一个放置在神经末梢处。
2.2 现代测量方法现代测量方法主要包括表面肌电图(EMG)和针电极肌电图(NEMG)。
表面肌电图是将一组电极放置在皮肤表面,记录肌肉收缩时产生的电信号;而针电极肌电图则是将一根细针插入到肌肉内部,直接记录神经冲动引起的局部动作电位。
三、肌电诱发电位的临床应用3.1 临床诊断肌电诱发电位可以用于评估神经-肌肉系统的功能状态,常用于筛查神经疾病、判断运动神经元损伤的程度以及评估脊髓损伤等。
3.2 生物反馈治疗生物反馈治疗是一种通过训练患者控制自身生理功能来改善疾病的方法。
在这个过程中,可以利用EMG技术来监测患者的肌张力,并通过反馈训练来帮助患者控制和减少不必要的肌张力。
四、未来发展趋势随着科技的不断发展,肌电诱发电位在临床应用中的作用将越来越重要。
未来,我们可以看到更加先进的测量方法和更加精准的诊断技术的出现,以及更加智能化和个性化的生物反馈治疗方法。
五、结语肌电诱发电位是一项非常重要的生理信号,可以帮助我们评估神经-肌肉系统的功能状态,并为临床治疗提供帮助。
未来,随着科技的不断进步和创新,肌电诱发电位将有更广泛的应用前景。
运动诱发电位定义及临床应用
运动诱发电位(MEP)是指在肌肉运动时,肌肉神经元释放的动作电位,在肌肉和皮肤表面记录下来的电生理信号。
MEP的主要临床应用是用于评估神经系统功能的状态和疾病。
它被用于诊断中枢神经
系统疾病、外周神经系统损伤和肌肉疾病。
MEP的诊断可以帮助医生确定患者是否存在神
经损害,并确定神经损伤的程度和类型。
此外,MEP还被用于评估手术后的功能恢复情况,并用于评估药物治疗的效果。
MEP主要利用的是远端肌肉的反应。
具体而言,该技术利用了运动神经元的电刺激作用。
对于一般的MEP测试,医生会在皮肤上放置一对电极,然后将短脉冲的电流通过电极
传递到神经,刺激肌肉的运动神经元,然后测量肌肉内和肌肉表面的电信号。
这种刺激可
以通过头皮、脊髓、颈部、胸部、肩部和骨盆骨等位置施加。
运动诱发电位的诊断参考值会在不同的情况下有所不同。
例如,在患有运动神经元疾
病的情况下,医生可以通过测量肌肉的反应来确定神经元的功能状况。
通常情况下,如果
神经元的功能正常,肌肉将产生比较强烈的反应。
然而,如果神经元受损或发生疾病,肌
肉的反应会变得减弱或消失。
总的来说,运动诱发电位是一种简单、快速和非侵入性的电生理诊断技术,可以用于
评估神经系统的功能状态和疾病。
通过MEP测试,医生可以确定神经损伤的位置和类型,
并对治疗方案进行调整。
诱发电位发生、分类、感觉诱发电位检查主要目的、视觉诱发电位、体感诱发电位及SEP、VEP、BAEP临床意义诱发电位产生诱发电位是指中枢神经系统在感受到体内外各种特异性刺激后所产生的生物电活动,它反映了中枢神经系统各种传导通路功能的完整性。
诱发电位分类根据检测不同的神经传导通路可分为:运动诱发电位和感觉诱发电位,作为神经内科医师,应着重了解感觉诱发电位。
常用感觉诱发电位根据刺激方式的不同,分为体感诱发电位、视觉诱发电位和听觉诱发电位。
感觉诱发电位检查主要目的提供临床感觉神经传导通路上的亚临床病灶(尤其对那些临床症状和体征提示中枢神经系统可能有脱髓鞘病灶者);动态观察感觉神经传导通路上脱髓鞘病灶的变化;用于脊柱和颅脑外科中脊髓和颅脑手术的神经监护。
感觉诱发电位在临床应用上局限性首先,它仅能确定感觉传导通路上是否有异常,但不能确定病因。
其次,由于诱发电位最终记录部位在外周器官(眼、耳、外周皮肤),因此,这些器官有病变也可导致其结果异常。
视觉诱发电位视觉诱发电位(visual evoked potential,VEP)产生的解剖基础:视网膜的神经节细胞发出的轴突在视乳头处形成视神经,经视神经孔进入颅中窝,在蝶鞍上方形成视交叉,来自视网膜鼻侧的纤维交叉到对侧,来自颞侧的纤维不交叉,继续在同侧走行,并与来自对侧眼球的交叉纤维结合成视束,终止于外侧膝状体,在外侧膝状体换神经元后再发出神经纤维,经内囊后肢后部形成视放射,终止于枕叶视皮质中枢。
VEP 是枕叶皮质接受视觉刺激后从头皮上记录到的一个电反应。
而当视觉传导通路上任何部位发生病变时,视觉诱发电位都可以出现异常。
脑干听觉诱发电位脑干听觉诱发电位(brainstem auditory evoked potentials,BAEP)产生的解剖基础:耳分成三部分,分别是外耳、中耳和内耳。
内耳又称迷路,含有耳蜗、前庭和三个半规管。
听觉传导通路起自内耳螺旋神经节的双极神经元,其周围突感受内耳螺旋器毛细胞的冲动,中枢突进入内听道组成耳蜗神经,终止于脑桥的耳蜗神经核,发出的传入纤维一部分到双侧上橄榄核,尚有一部分纤维直接进入外侧纵束,并止于外侧纵束核。
诱发电位脑电图及脑电分布图、神经肌电图和诱发电位构成现代临床神经电生理诊断学的三大内容。
70年代采用叠加平均处理技术将极其微弱的与外界刺激有锁时关系的诱发电位信号从背景噪声中提取出来,使诱发电位真正成为临床应用性诊断技术。
此后20余年中积累了丰富的研究资料和临床实践经验,形成了一门独立的学科分支,称之为“临床诱发电位学”。
一、躯体感觉诱发电位(SEP)用波宽为0.1~0.2ms脉冲电流刺激神经,沿着神经通路部位安放记录电极,检取诱发电位信号。
在头部常依据脑电图按10~20 系统方法安放。
根据刺激和记录部位可将躯体感觉诱发电位(somatosensory evoked potential, SEP)作如下分类:1.按刺激部位(1)上肢正中神经SEP。
(2)下肢胫后神经SEP。
这两种SEP临床上最常用,许多临床神经电诊断室均将它列为常规检查项目。
(3)节段性SEP:刺激皮节或皮神经。
(4)三叉神经SEP:刺激上下唇、牙龈或面部。
2.按记录部位(1)神经电位:例如锁骨上窝欧勃(Erb)点臂丛神经电位、腘窝胫后电位、腰骶部马尾神经电位。
(2)脊髓电位:颈和腰部。
(3)皮质(近场)电位:常记录早成分(刺激后50或100ms时程内电活动)。
(4)皮质下(远场)电位:这些电位虽起源于脑皮质下深部,可以通过容积传导和电场扩布,在头皮表面记录到。
(一)正中神经SEP用电流刺激一侧腕部的正中神经干,产生传入神经冲动,常规记录导联有三:导联1 同侧锁骨上窝欧勃(Erb)点——N9。
导联2 第7颈椎棘突(C7)——N13。
导联3 对侧顶部(Pc)——N20。
以前额正中部(FPz)作为公共参照点构成3个记录导联。
测量指标和正常参考值(均值±标准差)见下表。
正常参考值峰潜伏期(ms)峰间潜伏期(ms)测量指标N9 N13 N20 N9~N13 N13~N20 N9~N20绝对值9.70±0.76 13.50±0.92 19.00±1.02 3.80±0.45 5.50±0.42 9.30±0.53侧差0.20±0.20 0.20±0.17 0.30±0.25 0.20±0.21分析与评价锁骨上窝欧勃点的N9电位是臂丛神经动作电位,它的诊断作用为:①了解上肢周围神经传导。
听觉脑干诱发电位的原理及其临床应用发布时间:2009-8-4听觉脑干诱发电位是一种较准确的客观测听法。
测试时病人无痛苦,不受病人主观意志及意识状态的影响。
一、听觉脑干诱发电位的检测1.电极的放置听觉脑干电位测听为远场电位记录,记录电极放于颅顶或乳突,参考电极置于对侧耳垂或乳突,前额电极接地并与前置放大器输入盒连接。
2.刺激声信号多采用短声,刺激重复率每秒10~20次,叠加1000次;多通过单侧或双侧耳机给声,对侧耳给予白噪声掩蔽。
一般采用70-80dB刺激声强度开始为宜,检测时受检者需要完全放松,也可在睡眠、麻醉或昏迷状态下进行。
二、听觉脑干诱发电位分析在较强声刺激,如60~80dB声刺激下可从颅顶记录到7个波形,主要为Ⅰ~Ⅴ波,分别主要由听神经(波Ⅰ)、耳蜗核(波Ⅱ)、上橄榄核(波Ⅲ)、外侧丘系( 波Ⅳ)、下丘核波Ⅴ)产生。
其中,I、III、V三个波较稳定。
1.各波的潜伏期Ⅰ波的潜伏期约2ms,其余每波均相隔约1ms。
2.波间潜伏期即中枢传导时间,各波间时程在给予60dB以上刺激强度时,各波间期相对较稳定,因此,可作为中枢性病变诊断的可靠指标,多采用Ⅰ~Ⅲ波、Ⅲ~Ⅴ波和Ⅰ~Ⅴ波的测量,以Ⅰ~Ⅴ波最常用,一般为4ms。
3.两耳间各波潜伏期比较一般侧间差别不超过0.2ms。
4.波Ⅴ反应阈成人波Ⅴ反应阈一般高于行为测听阈10~20dB,因此可作为客观听阈检测;婴幼儿反应阈比成人高,但与其行为反射阈相对较低,这对聋耳的早期发现有较大价值。
三、听觉脑干诱发电位的临床运用1.客观听力测试适用于不合作的新生儿、婴幼儿和主观测试困难的成人,也适用于非器质性聋、职业性聋的判断、精神或神经系疾病的病人,可通过脑干电位测听确定其听觉功能的状态。
2.脑干肿瘤脑干肿瘤、小脑脑桥肿瘤压迫脑干时,可致各波潜伏期的延长,压迫听神经则可致波Ⅴ潜伏期延长,甚至消失,双潜伏期比较相差超过0.3ms。
3..脑干炎、脑干血管梗塞、出血、脑干损伤常导致I-V波异常改变,特别是波间期延长,波形变异甚至消失。