例2、计算
(1)(3 2 4 5)2
(2)(2 3 5)(2 3 5)
(3)(2 3 5)2 (2 3 5)2 (4)(3 10 )2005 (3 10 )2005
例题4 解下列方程和不等式:
1 3 2 6x 2 2;
2 5x 6 3 3 5x.
二次根式的混合运算
的
值.
4.已知a 1 , b 1 ,求a 2 b2的值.
32
32
问题
怎样计算下式?观察所得的积是否含 有二次根式?
x y x y x y
含有二次根式
不含二次根式
两个含有二次根式的非零代数式相乘,如果 它们的积不含有二次根式,就说这两个含有二 次根式的非零代数式互为有理化因式.
x y 与 x 互y为有理化因式.
求 x2 6x值.2 x3
先将 x分母有
理化.
例题4 解不等式: 2x 3 3x.
复习
1.已知x 1 ,求 x2 6x 2 的值;
32 2
x3
2.已知x
1 ,求 2 1
x x2
1 x
x2
x 2x
1
1 x
的值;
3.已知a
1 ,求1- 2a a2
52
a 1
a
2
a
2a 2 a
1
练习
x 2 xy y
x y
x y x y
例题3 如图,在面积为 的2a正方形
中,截AB得C直D角三角形 的面积为AB,E求
的长.
3a BE
3
解 因为正方形 ABCD A
D
面积为 2a,
所以 AB 2a.
1 • BE • 2a 3a