流体力学知识点总结-流体力学公式总结
- 格式:doc
- 大小:25.00 KB
- 文档页数:12
工程流体力学公式总结第二章 流体的主要物理性质流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。
1.密度 ρ = m /V2.重度 γ = G /V3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。
1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a离心惯性力ΔFR = Δm·r ω2 .T VV ∆∆=1αpVV ∆∆-=1κV P V K ∆∆-=κ1n A F d d υμ=dnd v μτ±=n v d /d τμ=2.质量力为F 。
:F = m ·am = m (f xi+f yj+f zk)am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为fx = 0 , fy = 0 , fz = -mg /m = -g式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。
即:p = p (x ,y ,z ),由此得静压强的全微分为:4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数z z p y y p x x p p d d d d ∂∂∂∂∂∂++=d d d d d d 0x p f x y z x y z x ∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-积分得:U = -gz + c*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 .fx d x + fy d y + fz d z = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。
工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。
流体微团运动分析加速度 : 欧拉法的加速度三个分量 z u u yu u xu u tu DtDu a y zy y y x y yy ∂∂+∂∂+∂∂+∂∂==zu u yu u xu u tu DtDu a z zz yz xz z z ∂∂+∂∂+∂∂+∂∂==zu u yu u xu u tu DtDu a x zx yx xx x x ∂∂+∂∂+∂∂+∂∂= =uu tu Dtu D a(∇∙+∂∂==哈密顿算子tk t j t i ∂∂+∂∂+∂∂=∇ 1. 线变形(1线应变率(线变形速度 :(2面积扩张率 : 流体面元的面积在平面内的局部瞬时相对扩张速率(3体积膨胀率 :流体体元的体积在空间的局部瞬时相对膨胀速率xu x xx ∂∂=εyu y yy∂∂=εzu z zz∂∂=εyu x u u y x ∂∂+∂∂=∙∇ zu y u x u u zy x ∂∂+∂∂+∂∂=∙∇⎪⎪⎭⎫⎝⎛∂∂+∂∂=yu x u x yxy21ε⎪⎪⎭⎫⎝⎛∂∂+∂∂=y u z u z y yz 21ε⎪⎭⎫⎝⎛∂∂+∂∂=z u x u x z zx21ε2. 角变形速度:单位时间直角边的偏转角度之半为流体微团的的角变形速度。
3 流体的旋转(旋转运动• 旋转角速度 : 两正交线元在 xy 面内绕一点的旋转角速度平均值⎪⎪⎭⎫⎝⎛∂∂-∂∂=y u xu x yz 21ω(规定逆时针方向为正• 涡量 (三维流场zyxu u u z y x ∂∂∂∂∂∂=⨯∇==Ωk j i uω2⎪⎪⎭⎫⎝⎛∂∂-∂∂=zu y u y z x 21ω⎪⎭⎫⎝⎛∂∂-∂∂=x u z u z x y 21ω• 流体微团运动一般由平动、转动和变形运动(线变形和角变形三部分组成。
4. 无旋运动和有旋运动zyxu u u z y x ∂∂∂∂∂∂=⨯∇==Ωk j i uω2kj i (2z y x ωωω++=Ω21k j i ω=++=z y x ωωω00; 0; 0Ω21k j i ω===⇒⇒==++=z y x z y x ωωωωωω凡是流体微团不存在旋转运动的流动称为无旋运动或有势运动;否则称为有旋运动。
流体力学常用公式总结1.液体的比重γ=ρg2.液体对水的密度比S=ρρwaterγ=Sγwater3.静水压强差ΔP=ρgh 4.剪应力和速度的关系τ=μdu dy5.三维的流速场的一般表达V=V(x,y,z,t)=u(x,y,z,t)i+v(x,y,z,t)j+w(x,y,z,t)k 6.三维的流线方程的一般形式dx u =dyv=dzw7.三维流场的加速度的一般形式8.三维流场的加速度的三个分量9.三维流场的连续性方程ðu ðx +ðvðy+ðwðz=010.流量的定义式11.流量的另一种表达AU=V→U=V A12.控制体内质量的变化律m=ρAU=ρV 13.控制体出入口进出质量守恒的方程ρ1A1U1=ρ2A2U2 14.雷诺数Re=ρUD μ15.伯努利方程的定义式P γ+v22g+Z=H16.理想条件下伯努利方程的形式P1γ+v122g+Z1=P2γ+v222g+Z217.考虑了损耗的伯努利方程P1γ1+v122g+z1=P2γ2+v222g+z2+H L18.一般情况下的伯努利方程P1γ1+v122g+z1+H p=P2γ2+v222g+z2+H t+H L19.系统动能变化率的一般式Q net+W net=dE sys dt19.系统功率的一般式Power=WΔt=F∙sΔt=F∙v=γQH=m gH20.一般情况下的伯努利方程的H p项H p=E pumpm g=Power pumpm g21.一般情况下的伯努利方程的H L项E loss=m gH L22.系统效率的一般式η=E out E in23.水泵的机械效率ηp=γQHPower→Power=γQHηp=PQηp24.水力发电机的机械效率ηt=Power→Power=γQH∙ηt=PQ∙ηt25.由动量守恒推导出的二向流体压力式F x=P1A1cosθ1−P2A2cosθ2+ρQ(v1cosθ1−v2cosθ2)−F y=P1A1sinθ1−P2A2sinθ2+ρQ(v1sinθ1−v2sinθ2) 26.由动量守恒推导出的流体压力的方向角α=tan−1(F y F x )27.喷气式飞机的理想模型F=ρ2Q2v2−ρ1Q1v1=m2v2−m1v1 28.由角动量定理的流体力矩T=r×ρQ(v2−v1)=ρQ[(r2×v2)−(r1×v1)] 29.力矩大小|T|=ρQ(r2v t2−r1v t1) 30.驱动力矩的功率Power=|T|ω31.斯托克斯方程的一般形式ρg−∇P+μ∇2V=ρDV Dt32.流体的旋度33.x方向的斯托克斯方程ρg x−ðPðx+μ(ð2uðx2+ð2uðy2+ð2uðz2)=ρ(dudt+ududx+vdudy+wdudz)34.二维平面流的连续性方程ðu ðx +ðvðy=035.二维平面的流函数u≡ðΨðy,v≡−ðΨðx36.极坐标下的二维平面流的连续性方程1 r ð(rv r)ðr+1rðvθðθ=037.极坐标下的二维平面的流函数v r=1rðΨðθ,vθ=−ðΨðr38.笛卡尔坐标系的势流方程ð2Φðx2+ð2Φðy2+ð2Φðz2=039.通过势流求极坐标的速度v r=ðΦðr,vθ=1rðΦðθ,v z=ðΦðz40.极坐标系的势流方程1 r ððr(rðΦðr)+1r2ð2Φðθ2+ð2Φðz2=041.通过势流求笛卡尔坐标系的速度u=ðΦðx,v=ðΦðy,w=ðΦðz42.笛卡尔坐标势流方程和流函数之间的互换u=ðΨðy,v=−ðΨðx⇔u=ðΦðx,v=ðΦðy43.极坐标势流方程和流函数之间的互换v r=1rðΨðθ,vθ=−ðψðr⇔v r=ðΦðr,vθ=1rðΦðθ44.马赫数M≡v a45.弗劳德数Fr≡v Lg46.欧拉数Eu≡ΔP ρv247.韦伯数We≡ρLv2σ48.管流在管壁上产生的剪应力τ=ΔPD 4L49.管流在管中的最大速度u max=R2dP 50.管内流量Q=ΔPπD4 51.管流的平均速度v avg=12u max52.管流速度关于半径的函数u(r)=14μ(ΔPL−ρg sinθ)(R2−r2)53.倾斜的管道的流量Q=πD4128μL(ΔP−ρgL sinθ)54.管道内流体的摩擦系数H f=f LDv avg22gf=f(Re)=64 Re。
流体力学公式
流体力学公式是描述流体运动的基本物理定律的数学表达式。
以下是一些常见的流体力学公式:
1. 麦克斯韦方程组:这是电磁学和热力学的基本方程,也适用于流体力学。
它包括电场、磁场、电荷密度和电流密度的关系。
2. 质量守恒方程:描述了质量流动的守恒定律,也称为连续方程。
它表明流入流体的质量等于流出的质量加上在流体内部产生的质量。
3. 动量守恒方程:也称为牛顿第二定律,描述了流体中动量的守恒定律。
它表明对于流体的每个体积元,在单位时间内力的总和等于体积产生的动量变化率。
4. 荷尔莫斯定理:描述了流体中应力的传递。
它表明剪切
应力在流体中的传播速度等于流体的速度。
5. 纳维-斯托克斯方程:在雷诺数较低的情况下,描述了流体运动的流体力学方程。
它是动量守恒方程和连续方程的
组合。
6. 伯努利方程:描述了当流体沿着一条流线流动时,对流
体的压力、速度和高度之间的关系。
这个方程可以用来解
释流体在管道中的行为。
以上只是一些常见的流体力学公式,还有很多其他的公式,可根据具体的流体力学问题来使用。
流体力学公式范文流体力学是研究流体运动和相应力学现象的学科。
流体力学包括两个主要分支:流体静力学和流体动力学。
流体力学的基础是质量守恒定律、动量守恒定律和能量守恒定律。
本文将介绍一些重要的流体力学公式。
1.质量守恒定律:质量守恒定律是流体力学的基本假设,它表明在流体中质量是守恒的。
质量守恒定律可以用以下公式表示:∇·ρv+∂ρ/∂t=0其中,ρ是流体的密度,v是速度矢量,∇·表示散度运算符,∂/∂t表示时间导数。
这个公式表示了在空间中其中一点的质量密度的变化率等于质量流入速度减去质量流出速度。
2.动量守恒定律:动量守恒定律是流体力学中最重要的定律之一,它描述了流体中的力和速度的关系。
动量守恒定律可以用以下公式表示:ρ(Dv/Dt)=∇·T+F其中,ρ是流体的密度,Dv/Dt表示速度矢量的物质导数,∇·表示散度运算符,T是应力张量,F是外力矢量。
这个公式表示了流体的动量变化率等于应力和外力的合力。
3.流体静力学公式:流体静力学是研究静止流体的力学性质的学科。
静态流体受到压力力的作用。
流体静力学的基础公式是帕斯卡定律和亥姆霍兹定律。
帕斯卡定律表明,在静止的不可压缩流体中,压强在任何方向上都是均匀的。
帕斯卡定律可以用以下公式表示:∇p=-ρ∇φ其中,p是压强,ρ是流体的密度,∇表示梯度运算符,φ是位势函数。
这个公式表示了压强梯度等于质量密度的负梯度。
亥姆霍兹定律描述了静态流体中压力的变化与密度和高度的关系。
亥姆霍兹定律可以用以下公式表示:dp/dz = - ρg其中,dp/dz是压力的竖直梯度,ρ是流体的密度,g是重力加速度。
这个公式表示了压力的竖直梯度等于密度乘以重力加速度。
4.流体动力学公式:流体动力学是研究流体运动的力学性质的学科。
在流体动力学中,重要的公式有雷诺运动定理和伯努利定理。
雷诺运动定理描述了流体的运动形式。
雷诺运动定理可以用以下公式表示:∂v/∂t+v·∇v=-1/ρ∇p+ν∇^2v+f其中,∂v/∂t是速度的时间导数,v·表示速度的散度,∇v是速度的梯度,ρ是流体的密度,p是压强,ν是运动粘度,∇^2表示拉普拉斯算子,f是体积力。
流体力学常用公式流体力学(Fluid Mechanics)是研究流体(液体和气体)运动规律的科学。
它在物理学和工程学中都有广泛的应用。
以下是流体力学常用的一些公式:1.流体速度和流量:在流体运动中,流速(Velocity)是指单位时间内流体通过一些截面的体积。
流量(Flow rate)是指单位时间内通过一些截面的质量或体积。
流速和流量的关系由以下公式给出:流量=流速×截面积Q=Av其中,Q表示流量,A表示截面积,v表示流速。
2.可压缩流体速度和流量:对于可压缩流体,流速和流量的关系由以下公式给出:流量=流速×截面积×密度Q=Avρ其中,Q表示流量,A表示截面积,v表示流速,ρ表示流体密度。
3.连续性方程:连续性方程描述了流体的质量守恒原理,即在稳态流动和不可压缩条件下,流体质量在流动过程中是不会凭空消失或增加的。
连续性方程可以表示为:流量的入口=流量的出口A1v1=A2v2其中,A1和A2分别表示入口和出口的截面积,v1和v2分别表示入口和出口的流速。
4.压力方程:压力方程是描述压强(Pressure)随深度变化的方程,可通过以下公式表达:ΔP = ρgh其中,ΔP表示在高度h上的压力变化,ρ表示流体密度,g表示重力加速度。
5.伯努利方程:伯努利方程描述了在理想流动条件下,流体的能量守恒原理,即在没有外力作用的情况下,流体速度、压力和高度之间存在关系。
伯努利方程可以表示为:P + 1/2ρv² + ρgh = 常数其中,P表示压力,v表示速度,ρ表示密度,g表示重力加速度,h 表示高度。
6.流动的雷诺数:雷诺数(Reynolds Number)是用来判断流体的流动状态的参数,可通过以下公式计算:Re=(ρvL)/μ其中,Re表示雷诺数,ρ表示密度,v表示速度,L表示特征长度,μ表示动力粘度。
7.流体的扩散:流体的扩散可以通过热量传递或质量传递来实现。
扩散速率可以使用以下公式计算:质量传递速率=D×A×(C2-C1)/L其中,D表示扩散系数,A表示扩散面积,C2和C1分别表示扩散物质在两个位置上的浓度,L表示扩散路径的长度。
工程流体力学公式1.流体静力学公式:(1) 压强公式:P = ρgh,其中P为压强,ρ为流体密度,g为重力加速度,h为液面高度。
(2)压力公式:P=F/A,其中P为压力,F为作用力,A为受力面积。
2.流体力学基本方程:(1)质量守恒方程:∂(ρ)/∂t+∇·(ρv)=0,其中ρ为密度,t为时间,v为速度矢量。
(2) 动量守恒方程:∂(ρv)/∂t + ∇·(ρvv) = -∇P + ∇·τ +ρg,其中P为压力,τ为应力张量,g为重力加速度。
(3) 能量守恒方程:∂(ρe)/∂t + ∇·(ρev) = -P∇·v +∇·(k∇T) + ρg·v,其中e为单位质量的总能量,T为温度,k为热传导系数。
3.流体动力学方程:(1)欧拉方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g,其中v为速度矢量,P为压力,ρ为密度,g为重力加速度。
(2)再循环方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g+F/M,其中F为体积力,M为质量。
4.流体阻力公式:(1) 粘性流体的阻力公式:F = 6πμrv,其中F为阻力,μ为粘度,r为流体直径,v为速度。
(2)粘性流体在管道中的流量公式:Q=(π/8)ΔP(R^4)/(Lμ),其中Q为流量,ΔP为压差,R为半径,L为管道长度,μ为粘度。
5.流体力学定律:(1) Pascal定律:在封闭的液体容器中,施加在液体上的外力将均匀传递到液体的每一个点。
(2) Bernoulli定律:沿着流体流动方向,速度增大则压力减小,速度减小则压力增大。
除了上述公式之外,还有许多与特定问题相关的公式,如雷诺数、流体阻力系数、泵和液力传动公式等。
这些公式是工程流体力学研究和设计的基础,可以帮助工程师分析和解决与流体运动和相互作用有关的问题。
流体主要计算公式流体是液体和气体的统称,具有流动性和变形性。
流体力学是研究流体静力学和动力学的学科,其中主要涉及到流体的力学性质、运动规律和力学方程等内容。
在流体力学的研究中,有一些重要的计算公式被广泛应用。
下面将介绍一些常见的流体力学计算公式。
1.流体静力学公式:(1)压力计算公式:P=F/A-P表示压力-F表示作用力-A表示受力面积(2)液体静力学公式:P=hρg-P表示液体压力-h表示液体高度-ρ表示液体密度-g表示重力加速度2.流体动力学公式:(1)流体流速公式:v=Q/A-v表示流速-Q表示流体流量-A表示流体截面积(2)流体流量公式:Q=Av-Q表示流体流量-A表示流体截面积-v表示流速(3)连续方程:A1v1=A2v2-A1和A2表示流体截面积-v1和v2表示流速(4) 流体动能公式:E = (1/2)mv^2-E表示流体动能-m表示流体质量-v表示流速(5)流体的浮力公式:Fb=ρVg-Fb表示浮力-ρ表示液体密度-V表示浸泡液体的体积-g表示重力加速度3.流体阻力公式:(1)层流阻力公式:F=μAv/L-F表示阻力-μ表示粘度系数-A表示流体截面积-v表示流速-L表示流动长度(2)湍流阻力公式:F=0.5ρACdV^2-F表示阻力-ρ表示流体密度-A表示物体的受力面积-Cd表示阻力系数-V表示物体相对于流体的速度4.比力计算公式:(1)应力计算公式:τ=F/A-τ表示应力-F表示力-A表示受力面积(2)压力梯度计算公式:ΔP/Δx=ρg-ΔP/Δx表示压力梯度-ρ表示流体密度-g表示重力加速度(3) 万斯压力计算公式:P = P0 + ρgh-P表示压力-P0表示参考压力-ρ表示流体密度-g表示重力加速度-h表示液体的高度以上是一些流体力学中常见的计算公式,涉及到压力、流速、阻力、浮力以及比力等方面的运算。
这些公式在解决流体力学问题时非常有用,可以帮助我们理解和分析流体的运动和力学性质。
流体力学知识点总结:流体力学公式总结流体力学知识点总结第一章绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
ΔF ΔP ΔT A ΔA V τ 法向应力pA 周围流体作用的表面力切向应力作用于A上的平均压应力作用于A上的平均剪应力应力为A点压应力,即A点的压强法向应力为A点的剪应力切向应力应力的单位是帕斯卡(pa),1pa=1N/㎡,表面力具有传递性。
(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为 5 流体的主要物理性质(1)惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下):4℃时的水20℃时的空气(2)粘性 h u u+du U z y dy _ 牛顿内摩擦定律:流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知——速度梯度,剪切应变率(剪切变形速度)粘度μ是比例系数,称为动力黏度,单位“pa·s”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体T↑μ↓ 气体T↑μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
(3)压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。
T一定,dp增大,dv减小膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。
P一定,dT增大,dV增大 A 液体的压缩性和膨胀性液体的压缩性用压缩系数表示压缩系数:在一定的温度下,压强增加单位P,液体体积的相对减小值。
由于液体受压体积减小,dP与dV异号,加负号,以使к为正值;其值愈大,愈容易压缩。
к的单位是“1/Pa”。
(平方米每牛)体积弹性模量K是压缩系数的倒数,用K 表示,单位是“Pa” 液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。
单位为“1/K”或“1/℃” 在一定压强下,体积的变化速度与温度成正比。
水的压缩系数和热膨胀系数都很小。
P 增大水的压缩系数K减小 T升高水的膨胀系数增大 B 气体的压缩性和膨胀性气体具有显著的可压缩性,一般情况下,常用气体(如空气、氮、氧、CO2等)的密度、压强和温度三者之间符合完全气体状态方程,即理想气体状态方程 P ——气体的绝对压强(Pa);ρ ——气体的密度(Kg/cm3);T ——气体的热力学温度(K);R ——气体常数;在标准状态下, M为气体的分子量,空气的气体常数R=287J/Kg.K。
适用范围:当气体在很高的压强,很低温度下,或接近于液态时,其不再适用。
第二章流体静力学 1 静止流体具有的特性(1)应力方向沿作用面的内发现方向。
(2)静压强的大小与作用面的方位无关。
流体平衡微分方程欧拉在静止流体中,各点单位质量流体所受表面力和质量力相平衡。
欧拉方程全微分形式:2 等压面:压强相等的空间点构成的面(平面或曲面)。
等压面的性质:平衡流体等压面上任一点的质量力恒正交于等压面。
由等压面的这一性质,便可根据质量力的方向来判断等压面的形状。
质量力只有重力时,因重力的方向铅垂向下,可知等压面是水平面。
若重力之外还有其它质量力作用时,等压面是与质量力的合力正交的非水平面。
3 液体静力学基本方程 P0 P1 P2 Z1 Z2 P—静止液体内部某点的压强 h—该点到液面的距离,称淹没深度 Z—该点在坐标平面以上的高度 P0—液体表面压强,对于液面通大气的开口容器,视为大气压强并以Pa表示推论(1)静压强的大小与液体的体积无关(2)两点的的压强差等于两点之间单位面积垂直液柱的重量(3)平衡状态下,液体内任意压强的变化,等值的传递到其他各点。
液体静力学方程三大意义⑴.位置水头z:任一点在基准面以上的位置高度,表示单位重量流体从某一基准面算起所具有的位置势能,简称比位能,或单位位能或位置水头。
⑵.压强水头:表示单位重量流体从压强为大气压算起所具有的压强势能,简称比压能或单位压能或压强水头。
⑶.测压管水头():单位重量流体的比势能,或单位势能或测压管水头。
4 压强的度量绝对压强:以没有气体分子存在的完全真空为基准起算的压强,以符号pabs表示。
(大于0)相对压强:以当地大气压为基准起算的压强,以符号p表示。
(可正可负可为0)真空:当流体中某点的绝对压强小于大气压时,则该点为真空,其相对压强必为负值。
真空值与相对压强大小相等,正负号相反(必小于0)相对压强和绝对压强的关系绝对压强、相对压强、真空度之间的关系压强单位压强单位 Pa N/m2 kPa kN/m2 mH2O mmHg at 换算关系 98000 98 10 736 1 说明:计算时无特殊说明时液体均采用相对压强计算,气体一般选用绝对压强。
5 测量压强的仪器(金属测压表和液柱式测压计)。
(1)金属测压计测量的是相对压强(弹簧式压力表、真空表)(2)液柱式测压计是根据流体静力学基本原理、利用液柱高度来测量压强(差)的仪器。
测压管 A点相对压强真空度 U形管测压计上式的图形倾斜微压计压差计例8:在管道M上装一复式U形水银测压计,已知测压计上各液面及A点的标高为:1=1.8m =0.6m,Ñ=2.0m,Ñ=1.0m,=Ñ=1.5m。
试确定管中A点压强。
6 作用在平面上的静水总压力图算法(1)压强分布图根据基本方程式:绘制静水压强大小;(2)静水压强垂直于作用面且为压应力。
图算法的步骤是:先绘出压强分布图,总压力的大小等于压强分布图的面积S,乘以受压面的宽度b,即 P=bS 总压力的作用线通过压强分布图的形心,作用线与受压面的交点,就是总压力的作用点适用范围:规则平面上的静水总压力及其作用点的求解。
原理:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点便是压心P。
经典例题一铅直矩形闸门,已知h1=1m,h2=2m,宽b=1.5m,求总压力及其作用点。
梯形形心坐标: a上底,b下底解:总压力为压强分布图的体积:作用线通过压强分布图的重心:解析法总压力 = 受压平面形心点的压强×受压平面面积合力矩定理:合力对任一轴的力矩等于各分力对同一轴力矩之和平行移轴定理解:经典例题一铅直矩形闸门,已知h1=1m,h2=2m,宽b=1.5m,求总压力及其作用点。
7 作用在曲面上的静水压力二向曲面——具有平行母线的柱面水平分力作用在曲面上的水平分力等于受压面形心处的相对压强PC与其在垂直坐标面oyz的投影面积A_的乘积。
铅垂分力合力的大小合力的方向P_ = 受压平面形心点的压强p c× 受压曲面在 yoz 轴上的投影 AZ PZ = 液体的容重γ×压力体的体积 V 注明:P的作用线必然通过P_和Pz的交点,但这个交点不一定在曲面上,该作用线与曲面的交点即为总压力的作用点压力体压力体分类:因Pz的方向(压力体——压力体和液面在曲面AB的同侧,Pz方向向下虚压力体——压力体和液面在曲面AB的异侧,Pz 方向向上)压力体叠加——对于水平投影重叠的曲面,分开界定压力体,然后相叠加,虚、实压力体重叠的部分相抵消。
潜体——全部浸入液体中的物体称为潜体,潜体表面是封闭曲曲。
浮体——部分浸入液体中的物体称为浮体。
第三章流体动力学基础 1 基本概念:(1)流体质点(particle):体积很小的流体微团,流体就是由这种流体微团连续组成的。
(2)空间点: 空间点仅仅是表示空间位置的几何点,并非实际的流体微团。
(3)流场:充满运动的连续流体的空间。
在流场中,每个流体质点均有确定的运动要素。
(4)当地加速度(时变加速度):在某一空间位置上,流体质点的速度随时间的变化率。
迁移加速度(位变加速度):某一瞬时由于流体质点所在的空间位置的变化而引起的速度变化率。
(5)恒定流与非恒定流:一时间为标准,各空间点上的运动参数都不随时间变化的流动是恒定流。
否则是非恒定流。
(6)一元流动:运动参数只是一个空间坐标和时间变量的函数。
二元流动:运动参数只是两个空间坐标和时间变量的函数。
三元流动:以空间为标准,各空间点上的运动参数是三个空间坐标和时间的函数。
(7)流线:某时刻流动方向的曲线,曲线上各质点的速度矢量都与该曲线相切。
流线性质(1)流线上各点的切线方向所表示的是在同一时刻流场中这些点上的速度方向,因而流线形状一般都随时间而变。
(2)流线一般不相交(特殊情况下亦相交:V=0、速度=)(3)流线不转折,为光滑曲线。
(8)迹线:流体质点在一段时间内的运动轨迹。
迹线与流线(1)恒定流中,流线与迹线几何一致。
异同(2)非恒定流中,二者一般重合,个别情况(V=C)二者仍可重合。
(9)流管:某时刻,在流场内任意做一封闭曲线,过曲线上各点做流线,所构成的管状曲面。
流束:充满流体的流管。
(10)过流断面:在流束上作出的与所有的流线正交的横断面。
过流断面有平面也有曲面。
(11)元流:过流断面无限小的流束,几何特征与流线相同。
总流:过流断面有限大的流束,有无数的元流构成,断面上各点的运动参数不相同。
(12)体积流量:单位时间通过流束某一过流断面的流量以体积计量。
重量流量:单位时间通过流束某一过流断面的流量以重量计量。
质量流量:单位时间通过流束某一过流断面的流量以质量计量。
(13)断面平均流速:流经有效截面的体积流量除以有效截面积而得到的商。
(14)均匀流与非均匀流:流线是平行直线的流动是均匀流,否则是非均匀流。
均匀流的性质 1> 流体的迁移加速度为零;2> 流线是平行的直线;3> 各过流断面上流速分布沿程不变。
4> 动压强分布规律=静压强分布规律。
(15)非均匀渐变流和急变流:非均匀流中,流线曲率很小,流线近似与平行之线的流动是非均匀渐变流,否则是急变流。
均匀流的各项性质对渐变流均适用。
2 欧拉法(Euler method)速度场压力场加速度全加速度=当地加速度+迁移加速度A B 如图所示:(1)水从水箱流出,若水箱无来水补充,水位H逐渐降低,管轴线上A质点速度随时间减小,当地加速度为负值,同时管道收缩,指点速度随迁移增大,迁移加速度为正值,故二者加速度都有。