平行四边形探究专题
- 格式:docx
- 大小:68.19 KB
- 文档页数:2
专题 平行四边形的性质与判定【能力提升】例1.如图已知△ABC ,分别以△ABC 的三边为边在△ABC 的同侧作三个等边三角形:△ABE .△BCD .△ACF ,求证:四边形DEAF 是平行四边形.例2.(1)如图,在平行四边形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE =4,AF =6,AD +CD =20,则平行四边形ABCD 的面积为 .(2)在平面直角坐标系中,以O (0,0),A (1,1),B (3,0),C 为顶点构造平行四边形,请你写出满足条件的点C 坐标为 .例3.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是_______. 例4.如图,Rt △ABC 中,∠C =90°,点D 、点E 为边AB 上的点,且AD =BE ,点M 、N 分别为边AC 、BC 上的点.已知:AB =a ,DE =b ,则四边形DMNE 的周长的最小值为 .例5.如图,平行四边形ABCD 中,AB =8cm ,AD =12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有多少次?例6.理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.(1)如图1:当点M与B重合时,S△DCM=;(2)如图2,当点M与B与A均不重合时,S△DCM=;(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM=;拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.【课后巩固】1.如图,▱ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果△CDM 的周长为8,那么▱ABCD 的周长是 .2.△D、G上,点E 、F分别在边BC 上,若BE =DE ,CF =FG ,则∠A 的大小为 度.3.在△ABC 中,∠C =90°,AC =6,BC =8,若以A ,B ,C ,D 为顶点的四边形是平行四边形,则此平行四边形的周长为( )A .28或32B .28或36C .32或36D .28或32或364.如图,△ABC 是等边三角形,P 是形内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为18,则PD +PE +PF =( )A .18B .9C .6D .条件不够,不能确定5.如图,已知▱ABCD 的顶点A 是直线l 上一定点,过点B 作BM ⊥l 于点M ,过点D 作DN ⊥l 于点N ,AM =1,MN =3,则对角线AC 长的最小值为 .。
《平行四边形的认识》教案5篇四条线段首尾相接,并且最后一条的尾端和最初一条的首端重合,就组成一个四边形,如果四个顶点不共面,那么这样的四边形叫做空间四边形。
下面是小编为大家整理的《平行四边形的认识》教案5篇,希望大家能有所收获!《平行四边形的认识》教案1教学内容:教科书第14、15页的内容。
教学目标:1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。
2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。
3、在学习活动中积累对数学的兴趣,培养交往、合作意识。
教学重点:认识平行四边形。
教学难点:感悟平行四边形的特征。
教学过程:一、情境导入同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗这节课我们就来认识这位新朋友。
二、自主探究同学们在生活中见过这样的图形吗在哪见过看,这是教师在生活中见到的四边形,你知道这是什么吗课件出示:教材第14页例2图第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。
你能用两块完全一样的三角尺拼出这样的平行四边形吗它跟长方形、正方形有什么区别和联系呢试一试。
学生动手操作,尝试拼平行四边形,教师巡视指导。
组织交流,展示学生拼图结果,并让学生说说发现了什么(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角)老师边画平行四边形边指出:像这样的四边形叫做平行四边形。
三、巩固练习1.“想想做做”第1题。
学生独立完成,分小组讨论,汇报。
2.“想想做做”第2题。
组织学生想一想,再围一围。
3.“想想做做”第3题,学生在书上描一描,教师巡视检查。
4.“想想做做”第4题,学生动手完成。
5. “想想做做”第5题,学生在家长的帮助下完成。
四、全课总结提问:今天这节课你有什么收获《平行四边形的认识》教案2教学目标:1.知识与技能目标(1)理解平行四边形的定义及有关概念(2)能根据定义探索并掌握平行四边形的对边相等、对角相等的性质(3)了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明2.过程与方法目标(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中, 提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力3.情感、态度与价值观目标在探究讨论中养成与他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心。
平行线判定与性质专题复习:关于平行四
边形问题的探究
概述
本文档旨在对平行线判定与性质进行专题复,侧重于探究平行四边形问题。
平行四边形是一种特殊的四边形,具有重要的性质和特征。
在本文档中,我们将回顾如何识别和判定平行四边形,并研究其性质和特殊情况。
平行线的判定
判断两条直线是否平行的常用方法有以下几种:
1. 在平面几何中,如果两条直线的斜率相等且不相交,则它们是平行线。
2. 如果两条直线的倾斜角度相等或互补,则它们是平行线。
3. 如果两条直线分别与第三条直线相交,在交点处形成相等的内角,则这两条直线是平行线。
平行四边形的性质
平行四边形有许多特殊的性质,其中包括以下内容:
1. 对角线:平行四边形的对角线相交于一点,并且这个点将对角线分成相等的两部分。
2. 对边性质:平行四边形的对边相等。
3. 内角性质:平行四边形的内角对应相等,且相邻内角互补。
4. 外角性质:平行四边形的外角对应相等,且相邻外角互补。
特殊情况
在特殊情况下,平行四边形退化为其他形状:
1. 矩形:四个内角均为直角的平行四边形称为矩形。
2. 正方形:四条边相等且内角为直角的矩形称为正方形。
总结
本文档回顾了平行线判定的几种方法,并介绍了平行四边形的性质和特殊情况。
对于解决平行四边形问题,我们可以利用这些知识来判断和推导出相关结论。
深入理解平行线和平行四边形的概念将有助于我们在几何学中更好地应用和解决问题。
验证力的平行四边形法则实验专题学校:___________姓名:___________班级:___________考号:___________一、实验题1.在“探究求合力的方法”实验中,选用量程为5 N的弹簧测力计做该实验.下图中F1= F2=3.00 N,甲同学的F1与F2方向的夹角约为60°,乙同学的F1与F2方向的夹角约为90°,丙同学的F1与F2方向的夹角约为120°,其中操作不合适的是(选填“甲”“乙”或“丙”)同学,原因是.2.某同学在做“验证力的平行四边形定则”实验,将橡皮条一端固定在A点,另一端系上两根细绳及绳套,用两个弹簧测力计通过细绳套互成角度的拉动橡皮条,将结点拉到O点,如图甲所示。
此时要记录下弹簧测力计a、b的示数、,________________以及O点的位置;图乙中是用一个弹簧测力计拉细绳套时,在白纸上根据实验结果画出的图示。
F 与中,方向一定沿AO方向的是________________;如图丙,使弹簧测力计b从水平位置开始顺时针缓慢转动至竖直方向,在这个过程中保持O点位置和弹簧测力计a的拉伸方向不变,则在整个过程中关于弹簧测力计a、b的读数变化是_________________。
A.a增大,b减小减小,b增大C.a减小,b先增大后减小减小,b先减小后增大3.在“探究共点力合成的规律”实验中,用两个弹簧秤分别钩住细绳套,互成角度地拉橡皮筋,使它伸长到某一位置O点,为了确定两个分力的大小和方向,这一步操作中:必须记录的是______A.橡皮筋固定端的位置B.描下O点位置和两条细绳套的方向C.橡皮筋伸长后的总长度D.两个弹簧秤的读数做实验时,根据测量结果在白纸上画出如图所示的示意图,其中O为橡皮筋与细绳的结点,图中的和的合力的理论值是______;和的合力的实际测量值是______。
若两个弹簧秤的读数分为3N、4N,且两弹簧秤拉力方向的夹角为锐角,则______选填“能”或“不能”用一个量程为5N的弹簧秤测量出它们的合力,理由______。
第6讲 平行四边形存在性问题专题探究【知识点睛】❖ 知识储备:①平行四边形是中心对称图形②中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分③中点公式: ❖ 方法策略: (1)有3个定点,找第4个点形成平行四边形时:①设第4个点的坐标②以3个定点组成的3条线段为对角线分类讨论③以中心对称图形的性质为等量关系列式求解例,如图所示,平面直角坐标系内有A 、B 、C 三点,在平面内找第4个点,构成平行四边形;(2)有2个定点,且另外两个动点均在特殊的位置上时,方法策略同上。
类型一 几何背景下的平行四边形存在性问题1.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,BD =12cm ,AC =6cm ,点E 在线段BO 上从点B 以1cm /s 的速度运动,点F 在线段OD 上从点O 以2cm /s 的速度运动.若点E ,F 同时运动,设运动时间为t 秒,当t = 时,四边形AECF 是平行四)2,2),(),,(21212211y y x x P y x B y x A ++坐标为(,则其中点若如,当A 、B 已知,点C 在直线y=x 上,点D 在另一直线上,则设C (a,a );分类还分别分①以AB 为对角线,②以AC 为对角线,③以BC 为对角线;依其性质分别表示出D 点坐标;将点D 坐标再分别带入另一直线解析式,即可求出a 的值,C 、D 坐标就都能求出来了。
边形.2.如图,四边形ABCD中,AB∥DC,DC=6cm,AB=9cm.点P以1cm/s的速度由A点向B点运动,同时点Q以2cm/s的速度由C点向D点运动,其中一点到达终点时,另一点也停止运动,当线段PQ将四边形ABCD截出一个平行四边形时,此时的运动时间为s.3.如图,在▱ABCD中,AB=10cm,F是AB的中点,E为边CD上一点,DE=4cm.点M 从D点出发,沿D→C以1cm/s的速度匀速运动到点C;同时点N从点B出发,沿B→A 以2cm/s的速度匀速运动到点A.一个点停止运动后,另一个点也随之停止运动.当点M 运动时间是秒时,以点M,E,N,F为顶点的四边形是平行四边形.4.如图,在▱ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM =∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点O也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.3B.3或5C.5D.4或55.如图所示,在平行四边形ABCD中,AB=5cm,AD=9cm.点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时,P、Q同时停止运动,设运动时间为t(s)且t>0,当以P,D,Q,B为顶点的四边形是平行四边形时,则t的所有可能值为.6.如图,在平面直角坐标系中,已知点A的坐标为(9,0),点C的坐标为(3,3),四边形OABC是平行四边形,点D、E份别在边OA、BC上,且OD=OA,CE=4.动点P、Q在平行四边形OABC的一组邻边上,以点D、E、P、Q为顶点的四边形是平行四边形时,其面积为.7.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,动点P、Q分别从A、C 同时出发,点P以1cm/s的速度由A向D运动,点Q以3cm/s的速度由C向B运动,其中一动点到达终点时,另一动点随之停止运动,设运动时间为t秒.(1)AP=,BQ=,(分别用含有t的式子表示);(2)当四边形PQCD的面积是四边形ABQP面积的2倍时,求出t的值.(3)当点P、Q与四边形ABCD的任意两个顶点所形成的四边形是平行四边形时,直接写出t的值.类型二“三定一动”求平行四边形的顶点坐标1.在平面直角坐标系xOy中,已知A(1,﹣1),B(4,2),C(0,3),下列坐标不能与A、B、C构成平行四边形的是()A.(﹣3,0)B.(5,﹣2)C.(3,6)D.(﹣3,﹣2)2.在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在x轴上方找到点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是.3.在平面直角坐标系中,已知点A(4,0),点B(﹣3,2),点C(0,2),点P从点B出发,以2个单位每秒的速度沿射线BC运动,点Q从点A出发,开始以1个单位每秒的速度向原点O运动,到达原点后立刻以原来3倍的速度沿射线OA运动,若P,Q两点同时出发,设运动时间为t秒,则当t=时,以点A,Q,C,P为顶点的四边形为平行四边形.4.如图,在平面直角坐标系的第一象限找一点A,第二象限找一点B,使OA=,OB=2,AB=5,且A,B都是格点,连接OA,OB,AB.(画出一个△OAB即可).(1)判断△OAB的形状,并说明理由;(2)是否存在点C,使得O,A,B,C四点构成的四边形为平行四边形?如果存在,请直接写出点C的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx﹣4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.类型三“两定两动”求平行四边形的顶点坐标1.在平面直角坐标系中,已知A(﹣4,2),B(2,5),在x轴、y轴上分别有两动点C、D,若以点A,B,C,D为顶点的四边形是平行四边形,则点C的坐标为.2.在平面直角坐标系中,A(﹣1,1),B(3,2),C(2m,3m+1),点D在直线y=﹣1上,若以A,B,C,D四点为顶点的四边形是平行四边形,则点D的坐标为.3.如图,在平面直角坐标系xOy,直线y=x+1与y=﹣2x+4交于点A,两直线与x轴分别交于点B和点C,D是直线AC上的一个动点,直线AB上是否存在点E,使得以E,D,O,A为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到线段CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)请直接写出点D的坐标,并求出直线BC的函数关系式;(3)若点P是x轴上的一个动点,点Q是线段CB上的点(不与点B、C重合),是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的P 点坐标.若不存在,请说明理由.5.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A 在x轴上,点C在y轴上,OA=6,∠CAO=30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.(1)求点D的坐标;(2)在线段AC上有一动点P,连接EP和OP,求当△OPE周长最小时,点P的坐标,若M,N是x轴上两动点(M在点N左侧)且MN=1,求当四边形CMNP周长最小时,M点的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.。
第18章平行四边形及特殊平行四边形的判定一、平行四边形的判定1.判断题:(1)相邻的两个角都互补的四边形是平行四边形;()(2)两组对角分别相等的四边形是平行四边形;()(3)一组对边平行,另一组对边相等的四边形是平行四边形;()(4)一组对边平行且相等的四边形是平行四边形;()(5)对角线相等的四边形是平行四边形;()(6)对角线互相平分的四边形是平行四边形.()2. 能判定四边形ABCD为平行四边形的题设是()(A)AB∥CD,AD=BC (B)AB=CD,AD=BC(C)∠A=∠B,∠C=∠D(D)AB=AD,CB=CD3.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是()A.0个B. 1个C. 3个D. 4个4.已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.5.已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F求证:四边形BEDF是平行四边形.6.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE 是平行四边形.7. 在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)8.已知:如图 ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.9. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.10. 已知:如图,△ABC ,BD 平分∠ABC ,DE ∥BC ,EF ∥BC , 求证:BE =CF11.在ABCD 中,AB=2,BC=6,∠ABC=60°,P 点是AD 上一动点,求△PBC 的面积。
平行四边形几何辅助线专题详解1 平行四边形知识框架{分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4个点的坐标平行四边形的面积{利用面积解决问题方程思想构造中位线{连接法{连接两中点知一中点,取另一中点知两中点,构双中位线倍长法{倍长垂直于角平分线的线段倍长线段 方法1 分类讨论思想分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4点坐标一、动态讨论解题技巧:点在线段的不同位置,也会造成不同的结果 (1)1个点的移动如下图,1个点C 在直线AB 上移动,会出现3种情况:①在线段AB 左侧;②在线段AB 当中;③在线段AB 右侧,具体见例1.(2)2个点的移动如下图,2个点C、D在线段AB上移动(C、D两点在AB中),会出现2种情况:①点C在点D的左侧;②点C在点D的右侧,具体见例2.例1.▱ABCD的内角∠BCD的平分线CE交射线DA于点E,若AE=3,DE=4,求▱ABCD的周长。
例2.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,求AB的长。
二、高的位置的讨论解题技巧:在平行四边形中作高,会出现2种情况:①在图形内;②在图形外。
(1)过点作下(上)侧边的高如下图,过点A作▱ABCD下侧的边CD上的高AE。
因▱ABCD倾斜方向的变化,高会存在两种情况,具体见例1(2)过点右(左)侧边的高如下图,过点B作▱ABCD的右侧边AD上的高AE。
因▱ABCD倾斜大小的变化,高会存在两种情况,具体见例2上述两种情况实质是同一种情况经过翻折后得到的,为同一种情况。
例1.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,若AB=5,BC=6,求CE的值。
例2.在▱ABCD中,AD=BD=4,BE是AD边上的高,∠EBD=30°,求△ABD的面积。
中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究在平行四边形的存在性问题中,常会遇到两类探究性的问题。
第一类问题是已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”)。
第二类问题是已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”)。
平行四边形的这四个点有可能是定序的,也有可能没有定序。
在解决这些问题时,容易出现遗漏或方法不当或错解的情况。
因此,需要分清题型并分类讨论且作图,利用几何特征计算,并灵活运用平移坐标法等解题技巧。
可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”。
对于“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点。
这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点。
对于“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。
如果平行四边形的四个顶点都能用坐标来表示,则可以直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解。
如果平行四边形的四个顶点中某些点不能用坐标表示,则可以利用列方程组解图形交点的方法解决。
此外,还可以灵活运用平行四边形的中心对称的性质,或者使用平移坐标法。
平移坐标法的具体步骤是先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标),再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标。
最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性。
除了平行四边形,矩形、菱形和正方形也有存在性问题。
对于矩形,增加对角线相等和邻边垂直的性质,还可以转化为直角三角形的存在性问题。
对于菱形,增加四边相等和对角线垂直的性质,还可以转化为直角三角形或等腰(等边)三角形的存在性问题。
第十八章平行四边形专题练习专题1平行四边形的证明思路类型1若已知(已证)四边形中边的关系(1)已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)已知一组对边相等,可以证这一组对边平行或另一组对边相等1.如图,在△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,点B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.4.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.5.如图,已知点D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DE=AF,将FD延长到点G,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.6.如图,在▱ABCD中,E,F分别是AD,BC的中点,AF与BE交于点G,CE与DF交于点H,求证:四边形EGFH是平行四边形.类型2若已知条件(已证结论)与对角线有关,则可以通过证明对角线互相平分得到平行四边形7.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,在▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.专题2与正方形有关的四个常考模型模型1正方形中相交垂线段问题——教材P68复习题T8的变式与应用1.如图,ABCD是一个正方形花园,E,F是它的两个门,且DE=CF.要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?为什么?【探究】若去掉“DE=CF”这一条件,将两个结论中的一个作为条件能推出另一个结论成立吗?(1)若已知BE=AF,则BE⊥AF成立吗?正方形内,分别连接两组对边上任意两点,得到的两条线段(如:图1中的线段AF与BE,图2中的线段AF与EG,图3中的线段HF与EG)满足:若垂直,则相等.模型2正方形中过对角线交点的直角问题2.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么这两个正方形重叠部分的面积等于多少?为什么?【变式1】如图,正方形ABCD的边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.判断线段OA,OP的数量关系,并说明理由.【变式2】如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.n B.n-1 C.4(n-1) D.4n正方形ABCD中,O为两条对角线的交点,点E,F分别在AB,BC上.若∠EOF为直角,OE,OF分别与DA,AB的延长线交于点G,H,则△AOE≌△BOF,△AOG≌△BOH,△OGH是等腰直角三角形,且S四边形OEBF=14S正方形ABCD.模型3正方形中三垂直全等模型——教材P69复习题T14的变式与应用3.正方形ABCD的边长为6,点P在对角线BD上,点E是线段AD上或AD的延长线上的一点,且PE⊥PC.(1)如图1,点E在线段AD上,求证:PE=PC;(2)如图2,点E在线段AD的延长线上,请补全图形,并判断(1)中的结论是否仍然成立?请说明理由.模型4正方形中的半角模型4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(1)如图,正方形ABCD中,若∠EAF=45°,则:①EF=BE+DF;②△CEF的周长为正方形ABCD边长的2倍;③FA平分∠DFE,EA平分∠BEF.(2)如图,正方形ABCD中,若∠EAF=45°,FA平分∠DFE,则EF=DF-BE.专题3特殊平行四边形的性质与判定1.如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.如图,四边形ABCD,BEFG均为正方形,连接AG,CE.求证:(1)AG=CE;(2)AG⊥CE.3.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)请求出AM的长为何值时,四边形AMDN是矩形,并说明理由.4.已知:如图,四边形ABCD四条边上的中点分别为E,F,G,H,顺次连接EF,FG,GH,HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.5.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.6.如图所示,在▱ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)你能说明四边形EHFG是平行四边形吗?(2)当四边形ABCD满足什么条件时,四边形EHFG是一个菱形?(3)四边形EHFG会成为一个正方形吗?专题4四边形中的动点问题——教材P68复习题T13的变式与应用【例】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12 cm,BC =18 cm,点P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以2 cm/s 的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设点P,Q运动的时间为t s.(1)CD边的长度为cm,t的取值范围为;(2)从运动开始,当t取何值时,PQ∥CD?(3)从运动开始,当t取何值时,PQ=CD?【拓展变式1】在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.【拓展变式2】从运动开始,当t取何值时,四边形PQBA是矩形?【拓展变式3】在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.【拓展变式4】是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.专题5特殊平行四边形中的折叠问题——教材P64“数学活动”的变式与应用【例】如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.图1【拓展延伸】再沿MN所在的直线折叠,点B落在AD上的点B′处,得到折痕MG,同时得到线段B′G,展开如图2.探究四边形MBGB′的形状,并证明你的结论.图2在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段中的适当运用.1.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点O.若AE =5,BF =3,则AO 的长为( )A . 5B .32 5 C .2 5 D .452.如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是 cm .3.如图,将一张菱形纸片ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH.若EF =4,EH =3,则AB = .4.如图,在矩形ABCD 中,AB>AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE.求证: (1)△ADE ≌△CED ; (2)△DEF 是等腰三角形.专题6特殊平行四边形中的最值问题【例】如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P 为AC上一个动点,求PF+PE的最小值.【思路点拨】(1)先确定点P的位置:作点E关于AC的对称点E′,连接FE′,交AC于点P,则点P即为所求;(2)求E′F的长度:将E′F放到一个直角三角形中,利用勾股定理求出E′F的长,即求出了PF+PE的最小值.求线段和最小时,若已知的两点在动点所在直线的同侧,将动点所在直线当作对称轴,作出其中一点的对称点,再将另一点与这个对称点连接,则其与直线的交点即为所求动点所在位置,再求出所连接的线段长即为所求.1.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为.2.如图,在矩形ABCD 的边AD 上找一点P ,使得点P 到B ,C 两点的距离之和最短,则点P 的位置应该在 .3.如图,四边形ABCD 是菱形,AB =8,且∠ABC =60°,M 为对角线BD(不含B 点)上任意一点,则AM +12BM 的最小值为 .4.如图,以边长为2的正方形的对角线的交点O 为端点,引两条相互垂直的射线,分别与正方形的边交于A ,B 两点,求线段AB 的最小值.参考答案:专题1 平行四边形的证明思路1.证明:∵AB =AC ,∴∠B =∠C. ∵EF =EC ,∴∠EFC =∠C. ∴∠B =∠EFC. ∴AB ∥EF. 又∵DE ∥BC ,∴四边形DBFE 是平行四边形.2.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形. 3.证明:∵AB ∥DE ,∴∠B =∠DEF. ∵AC ∥DF ,∴∠ACB =∠F.∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF. 在△ABC 和△DEF 中,⎩⎨⎧∠B =∠DEF ,BC =EF ,∠ACB =∠F ,∴△ABC ≌△DEF(ASA ).∴AB =DE. ∵AB ∥DE ,∴四边形ABED 是平行四边形.4.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形. 5.解:ED 与AG 互相平分. 理由:连接EG ,AD. ∵DE ∥AF ,DE =AF , ∴四边形AEDF 是平行四边形. ∴AE ∥DF ,AE =DF. 又∵FG =2DF , ∴DG =DF. ∴AE =DG. 又∵AE ∥DG ,∴四边形AEGD 是平行四边形. ∴ED 与AG 互相平分.6.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵E ,F 分别是AD ,BC 的中点, ∴AE =12AD ,FC =12BC.∴AE ∥FC ,AE =FC.∴四边形AECF 是平行四边形. ∴GF ∥EH.同理可证:ED ∥BF 且ED =BF. ∴四边形BFDE 是平行四边形. ∴GE ∥FH.∴四边形EGFH 是平行四边形.7.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证:OG =OH.∴四边形EGFH 是平行四边形.专题2 与正方形有关的四个常考模型1.解:BE =AF 且BE ⊥AF ,理由: ∵四边形ABCD 是正方形,∴AB =AD =CD ,∠BAD =∠D =90°. 又∵DE =CF ,∴AE =DF. ∴△ABE ≌△DAF(SAS ). ∴BE =AF ,∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°. ∴∠AGB =90°,即BE ⊥AF.【探究】解:成立.理由:∵四边形ABCD 是正方形, ∴∠BAD =∠D =90°,AB =AD. 在Rt △ABE 和Rt △DAF 中,⎩⎨⎧AB =DA ,BE =AF ,∴Rt △ABE ≌Rt △DAF(HL ). ∴∠ABE =∠DAF.∵∠DAF +∠BAF =90°,∴∠ABE +∠BAF =90°.∴∠AGB =90°,即BE ⊥AF. (2)若已知BE ⊥AF ,则BE =AF 成立吗? 解:成立.理由:∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =∠D =90°. 又∵BE ⊥AF ,∴∠AGB =90°. ∴∠ABE +∠BAF =90°.∵∠DAF +∠BAF =90°,∴∠ABE =∠DAF. ∴△ABE ≌△DAF(ASA ). ∴BE =AF.2.解:(1)证明:在正方形ABCD 中,AO =BO ,∠AOB =∠A 1OC 1=90°,∠OAB =∠OBC =45°. ∴∠AOE +∠EOB =90°,∠BOF +∠EOB =90°. ∴∠AOE =∠BOF. 在△AOE 和△BOF 中,⎩⎨⎧∠OAE =∠OBF ,OA =OB ,∠AOE =∠BOF ,∴△AOE ≌△BOF(ASA ).(2)两个正方形重叠部分的面积等于14a 2.理由如下:∵△AOE ≌△BOF ,∴S 四边形OEBF =S △EOB +S △BOF =S △EOB +S △AOE =S △AOB =14S 正方形ABCD =14a 2.【变式1】 解:OA =OP ,理由:过点O 作OG ⊥AB 于点G ,过点O 作OH ⊥BC 于点H ,∵四边形ABCD 是正方形, ∴∠ABO =∠CBO ,AB =BC. ∴OG =OH.∵∠OGB =∠GBH =∠BHO =90°, ∴四边形OGBH 是正方形. ∴∠GOH =90°.∵∠AOP =∠GOH =90°,∴∠AOG =∠POH. ∴△AGO ≌△PHO(ASA ). ∴OA =OP. 【变式2】 B3.解:(1)证明:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 易得∠PFD =∠CGP =90°. ∵BD 为正方形ABCD 的对角线, ∴∠BDF =∠FPD =45°. ∴PF =FD.又∵FG ∥DC ,FD ∥GC ,∠ADC =90°, ∴四边形FGCD 为矩形. ∴DF =CG. ∴PF =CG. ∵PE ⊥PC ,∴∠FPE +∠GPC =90°. ∵∠FEP +∠FPE =90°, ∴∠FEP =∠GPC. ∴在△PFE 和△CGP 中,⎩⎨⎧∠PFE =∠CGP ,∠FEP =∠GPC ,PF =CG ,∴△PFE ≌△CGP(AAS ). ∴PE =CP.(2)成立.理由:过点P 作FG ∥DC 分别交AD ,BC 于点F ,G. 同理可证△PFE ≌△CGP(AAS ). ∴PE =PC.4.解:(1)证明:∵四边形ABCD 是正方形, ∴BC =CD ,∠B =∠CDF.又∵BE =DF ,∴△CBE ≌△CDF(SAS ).∴CE =CF.(2)GE =BE +GD 成立.理由:由(1)得,△CBE ≌△CDF ,∴∠BCE =∠DCF.∴∠BCE +∠ECD =∠DCF +∠ECD ,即∠BCD =∠ECF =90°.又∵∠GCE =45°,∴∠GCF =∠GCE =45°.∵CE =CF ,∠GCE =∠GCF ,GC =GC ,∴△ECG ≌△FCG(SAS ).∴GE =GF.∴GE =DF +GD =BE +GD.专题3 特殊平行四边形的性质与判定1.证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC.∴∠BPF =∠DAE.∵∠ABC =∠AED ,∴∠BAF =∠ADE.∵∠ABF =∠BPF ,∴∠ABF =∠DAE.∵AB =DA ,∴△ABF ≌△DAE(ASA ).(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF.∵AF =AE +EF =BF +EF ,∴DE =BF +EF.2.证明:(1)∵四边形ABCD ,BEFG 均为正方形,∴AB =CB ,∠ABC =∠GBE =90°,BG =BE.∴∠ABG =∠CBE.在△ABG 和△CBE 中,⎩⎨⎧AB =CB ,∠ABG =∠CBE ,BG =BE ,∴△ABG ≌△CBE(SAS ).∴AG =CE.(2)设AG 交BC 于点M ,交CE 于点N.∵△ABG ≌△CBE ,∴∠BAG =∠BCE.∵∠ABC =90°,∴∠BAG +∠AMB =90°.∵∠AMB =∠CMN ,∴∠BCE +∠CMN =90°.∴∠CNM =90°.∴AG ⊥CE.3.解:(1)证明:∵四边形ABCD 是菱形,∴ND ∥AM.∴∠NDE =∠MAE ,∠DNE =∠AME.又∵点E 是AD 边的中点,∴DE =AE.∴△NDE ≌△MAE(AAS ).∴ND =MA.∴四边形AMDN 是平行四边形.(2)当AM 的长为1时,四边形AMDN 是矩形.理由如下:∵AM =1=12AD =AE ,∠DAB =60°, ∴△AEM 是等边三角形.∴∠AME =∠AEM =60°,EM =AE =ED.∴∠EMD =∠EDM =30°.∴∠AMD =∠AME +∠EMD =90°.∴四边形AMDN 是矩形.4.(1)四边形EFGH 的形状是平行四边形,证明你的结论;(2)当四边形ABCD 的对角线满足互相垂直条件时,四边形EFGH 是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.证明:连接BD.∵E ,H 分别是AB ,AD 中点,∴EH ∥BD ,EH =12BD. 同理FG ∥BD ,FG =12BD , ∴EH ∥FG ,EH =FG.∴四边形EFGH 是平行四边形.5.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠BEC.∴∠FGE =∠BEF.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =BF 2-AB 2=8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103.∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203. 6.解:(1)能说明四边形EHFG 是平行四边形.∵四边形ABCD 是平行四边形,∴AB 綊CD.而AE =12AB ,CF =12CD , ∴AE 綊CF.∴四边形AECF 是平行四边形.∴GF ∥EH.同理可得GE ∥HF.∴四边形EHFG 是平行四边形.(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.由(1)知,四边形EHFG 是平行四边形.连接EF.当四边形ABCD 是矩形时,四边形EBCF 也是矩形,∴EH =FH ,∴四边形EHFG 是菱形.(3)当四边形ABCD 是矩形且AB =2AD 时,四边形EHFG 是正方形.由(2)知,当四边形ABCD 是矩形时,四边形EHFG 是菱形.又由AB =2AD 可知,四边形EBCF 是正方形.根据正方形的性质知,EC⊥BF,即∠EHF=90°,∴四边形EHFG是正方形.专题4四边形中的动点问题【例】(1)CD边的长度为10cm,t的取值范围为0≤t≤9;解:(2)设经过t s时,PQ∥CD,此时四边形PQCD为平行四边形,则PD=CQ.∵PD=(12-t)cm,CQ=2t cm,∴12-t=2t.∴t=4.∴当t=4时,PQ∥CD.(3)设经过t s时,PQ=CD,分别过点P,D作BC边的垂线PE,DF,垂足分别为E,F.当CF=EQ时,四边形PQCD为梯形(腰相等)或者平行四边形.∵∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形.∴AD=BF.∵AD=12 cm,BC=18 cm,∴CF=BC-BF=6 cm.①当四边形PQCD为梯形(腰相等)时,PD+2(BC-AD)=CQ,∴(12-t)+12=2t.∴t=8.∴当t=8时,PQ=CD;②当四边形PQCD为平行四边形时,由(2)知当t=4 s时,PQ=CD.综上,当t=4或t=8时,PQ=CD.【拓展变式1】解:不存在.理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由例知当t=4 s时,四边形PQCD是平行四边形.此时DP=12-t=8≠10,即DP≠DC,所以按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.【拓展变式2】解:如图,由题意,得AP =t ,DP =12-t ,CQ =2t ,BQ =18-2t.要使四边形PQBA 是矩形,已有∠B =90°,AD ∥BC ,即AP ∥BQ ,只需满足AP =BQ ,即t =18-2t ,解得t =6.所以当t =6时,四边形PQBA 是矩形.【拓展变式3】 解:不存在.理由:要使四边形PQBA 是正方形,则四边形PQBA 一定是矩形.由变式2知,当t =6时,四边形PQBA 是矩形.此时AP =t =6≠8,即AP ≠AB ,所以按已知速度运动,四边形PQBA 只能是矩形,不可能是正方形.【拓展变式4】 解:△DQC 是等腰三角形时,分三种情况讨论:图1 图2 图3①如图1,当QC =DC 时,即2t =10,∴t =5.②如图2,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t. 在矩形ABHD 中,BH =AD =12,∴CH =BC -BH =6,∴t =6.③如图3,当QD =QC 时,过点D 作DH ⊥CQ ,DH =8,CH =6,DC =10,CQ =QD =2t ,QH =|2t -6|.在Rt △DQH 中,DH 2+QH 2=DQ 2.∴82+|2t -6|2=(2t)2.解得t =256. 综上,当t =5或6或256时,△DQC 是等腰三角形专题5 特殊平行四边形中的折叠问题【例】 解:∠MBN =30°.证明:连接AN .∵直线EF 是AB 的垂直平分线,点N 在EF 上,∴AN =BN .由折叠可知,BN =AB ,∴△ABN 是等边三角形.∴∠ABN =60°.∴∠MBN =∠ABM =12∠ABN =30°. 【拓展延伸】 解:四边形MBGB′是菱形.证明:∵∠ABM =30°,∠A =∠ABC =90°,∴∠MBG =∠AMB =60°.根据折叠的性质,得BM =MB′,BG =B′G ,∠BMN =∠AMB.∴∠BMN =∠MBG =60°.∴△MBG 是等边三角形.∴BM =BG.∴BM =MB′=BG =B′G.∴四边形MBGB′是菱形.1.C2. 94cm . 3.5.4.证明:(1)由折叠相关性质可知,AE =AB ,CE =CB.∵四边形ABCD 是矩形,∴AE =AB =DC ,CE =CB =AD.在△ADE 和△CED 中,⎩⎨⎧AD =CE ,AE =CD ,DE =ED ,∴△ADE ≌△CED(SSS ).(2)由(1)知,△ADE ≌△CED ,∴∠AED =∠CDE.∴△DEF 是等腰三角形.小专题(十) 特殊平行四边形中的最值问题【例】 解:作点E 关于直线AC 的对称点E′(易知点E′在CD 上),连接E′F ,交AC 于点P.则PE =PE′,CE ′=CE.∴PE +PF =PE′+PF =E′F.∴P 即为所求的使PF +PE 最短的点.∵正方形ABCD 的边长为4,BE =1,F 为AB 的中点, ∴BF =2,CE =CB -BE =3.∴CE ′=CE =3.过点F 作FG ⊥CD 于点G ,则∠FGE′=∠FGC =90°. ∵四边形ABCD 是正方形,∴∠B =∠BCD =∠FGC =90°.∴四边形FBCG 是矩形.∴CG =BF =2,FG =BC =4.∴E ′G =E′C -CG =1.∴在Rt △E ′FG 中,E ′F =FG 2+E′G 2=42+12=17. ∴PF +PE 的最小值为17.12.AD 的中点.34.解:∵四边形CDEF 是正方形,∴∠OCA =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB ,∴∠AOB =90°.∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°. ∴∠COA =∠DOB.在△COA 和△DOB 中,⎩⎨⎧∠OCA =∠ODB ,OC =OD ,∠COA =∠DOB ,∴△COA ≌△DOB(ASA ).∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形. 由勾股定理,得AB =OA 2+OB 2=2OA ,要使AB 最小,只要OA 取最小值即可,根据垂线段最短,得OA ⊥CD 时,OA 最小,∵四边形CDEF 是正方形,∴OD =OC.又∵OA ⊥CD ,∴CA =DA.∴OA =12CF =1.∴AB = 2.∴AB的最小值为 2.。
平行四边形探究专题 【知识准备】:平行四边形ABCD 中,若四点坐标为A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),D (x D ,y D ),则有_________________________, __________________________________.
【动手探究】:(1)已知A 、B 、C 是坐标平面内不在同一直线上的三点,平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形是平行四边形,作出点D.
(2)若A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),
当以AD 、BC 为对角线时,点D 坐标为__________________
当以BD 、AC 为对角线时,点D 坐标为__________________
当以CD 、AB 为对角线时,点D 坐标为__________________
【解决问题】
一、已知三个定点,再找一个定点构成平行四边形
例:平面直角坐标系内A (-1,0)、B (3,0) C (0,2),标平面内是否存在点M ,使得以点M 和三点A 、
B 、
C 为顶点的四边形构成平行四边形?如存在,求出M 的坐标。
二、已知两个定点,再找两个点构成平行四边形
①确定两定点连接的线段为一边,讨论另两种对角线情况。
例:已知,如图抛物线239344
y x x =+-与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧,若点E 在x 轴上,点P 在抛物线上。
是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.
题25图 ②两定点连接的线段没确定为平行四边形的边时,讨论三种对角线情况。
例:如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.
(1)求A 、B 两点的坐标为_______,_______及直线AC 的函数表达式为___________;
(2)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样
的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F
点坐标;如果不存在,请说明理由。
强化训练: 如图,抛物线经过A (﹣1,0),B (5,0),C (0,2
5-)三点. (1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标;
(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行
四边形?若存在,请求出N 的坐标;若不存在,请说明理由.。