传动液压原理
- 格式:pdf
- 大小:350.25 KB
- 文档页数:1
液压传动的基本工作原理
液压传动的基本工作原理是利用液体的压力来传递力量和能量。
液压传动系统由液压泵、液压缸、液压控制阀和液压油箱等组成。
工作原理如下:
1. 液压泵负责将油液从液压油箱中抽取,并通过压力产生器产生高压油。
2. 高压油经过液压控制阀进入液压缸,使液压缸的活塞运动。
3. 活塞运动时,液压缸内的液体受到压力作用,将力量传递到执行器上,完成相应的工作,如举升重物或推动机械设备的运动。
4. 油液经过液压控制阀调节流量和压力,并流回液压油箱中,准备再次循环使用。
液压传动的优点是传递力量平稳可靠,并且可以在远距离传递力量。
此外,液压传动还可以根据需要调整液压泵的流量和压力,实现力量的调节和控制。
总结起来,液压传动利用液体的压力来传递力量和能量,通过液压泵、液压缸、液压控制阀和液压油箱等组件的配合工作,实现机械设备的运动控制。
液压传动与控制1.液压传动的工作原理以液体作为工作介质,并以其压力能进行能量传递的方式,即为液压传动;2.液压传动的特征⑴力或力矩的传递是按照帕斯卡原理静压传递定律进行的⑵速度或转速的传递按容积变化相等的原则进行;“液压传动”也称“容积式传动”;3.液压传动装置的组成⑴动力元件即各种泵,其功能是把机械能转化成压力能;⑵执行元件即液压缸直线运动和马达旋转运动,其主要功能是把液体压力能转化成机械能;⑶控制元件即各种控制阀,其主要作用是通过对流体的压力、流量及流动方向的控制,来实现对执行元件的作用力、运动速度及运动方向等的控制;也用于实现过载保护、程序控制等;⑷辅助元件上述三个组成部分以外的其他元件,如管道、接头、油箱、过滤器等,它们对保证系统正常工作是必不可少的;⑸工作介质是用来传递能量的流体,即液压油;4.液压油的物理性质⑴密度⑵可压缩性表示液体在温度不变的情况下,压力增加后体积会缩小、密度会增大的特性;⑶液体的膨胀性液体在压力不变的情况下,温度升高后其体积会增大、密度会减小的特性;⑷粘性液体受外力作用而流动或有流动趋势时,液体内分子间的内聚力要阻止液体分子的相对运动,由此产生一种内摩擦力;液体内部产生摩擦力或切应力的性质,称为液体的粘性;①动力粘度绝对粘度根据牛顿摩擦定理见流体力学而导出的粘度称为动力粘度,通常以μ表示;②运动粘度同一温度下动力粘度μ与密度ρ的比值为运动粘度,用v表示;③相对粘度条件粘度粘压特性在一般情况下压力对粘度的影响比较小,在工程中当压力低于5Mpa时,粘度值的变化很小,可以不考虑;粘温特性液压油粘度对温度的变化是十分敏感的,当温度升高时,其分子之间的内聚力减小,粘度就随之降低;5.液压泵的主要性能参数⑴压力①工作压力P 液压泵实际工作时的输出压力称为工作压力;②额定压力Ps 液压泵在正常工作条件下,按试验标准规定连续运转的最高压力称为液压泵的额定压力;③峰值压力Pmax 在超过额定压力的条件下,根据试验标准规定,允许液压泵短暂运行的最高压力值,称为液压泵的峰值压力;⑵排量和流量①排量V 液压泵每转一周,由其密封容积几何尺寸变化计算而得出的排出液体的体积称为液压泵的排量;②理论流量qt 在不考虑液压泵泄漏的情况下,在单位时间内所排出的液体体积的平均值称为理论流量;③实际流量q 液压泵在某一具体工况下单位时间内所排出的液体体积称为实际流量;④额定流量qn 液压泵在正常工作条件下,按试验标准规定必须保证的流量,亦即在额定转速和额定压力下泵输出的流量称为额定流量;⑶功率和效率①液压泵的功率损失容积损失液压泵流量上的损失机械损失液压泵在转矩上的损失②液压泵的功率输入功率Pi 作用在液压泵主轴上的机械功率输出功率Po 液压泵在工作过程中的实际吸、压油口间的压差Δp和输出流量q的乘积③液压泵的总效率液压泵的实际输出功率与其输入功率的比值;6.齿轮泵的工作原理当齿轮泵的主动齿轮由电动机带动不断旋转时轮齿脱开啮合的一侧,由密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理;7.齿轮泵的困油现像当齿轮啮合后,啮合的两齿间的液压油由于齿的封闭无法排出而形成的现象;危害当容积有大变小时,油液受到挤压,造成油液发热,产生振动噪声,功耗增大,轴与轴承受到一附加负荷;当容积由小变大时,封闭空间的压力降低,造成气穴或气蚀,并使容积效率下降;措施在齿轮泵啮合部位侧面的泵盖上铣出两个困油卸荷凹槽;8.内泄漏三条途径泄漏①通过齿轮啮合处的间隙②通过泵体内孔和齿顶圆的径向间隙③通过齿轮两侧面和侧盖板间的端面间隙9.径向力不平衡现象齿轮泵是吸油,压油区对称的非平衡式液压油泵;从吸油腔到压油腔,压力沿齿轮旋转的方向逐齿递减,因此,齿轮和轴受到径向不平衡力的作用;危害径向不平衡力很大时能使轴弯曲,齿顶与壳体接触扫膛现象,同时加速轴承的磨损,降低了轴承的寿命;措施①采用压缩压油口的办法,以减少液压力对齿顶部分的作用面积来减小径向不平衡力;②采用开油槽的办法;10.高压齿轮泵的特点⑴浮动轴套式⑵浮动侧板式⑶挠性侧板式11.叶片泵⑴单作用叶片泵多为变量泵在转子转一周的过程中,每个工作腔完成一次吸油和压油;⑵双作用叶片泵均为定量泵在转子转一周的过程中,每个工作腔完成两次吸油和压油;12.液压缸的分类按结构形式的不同可分为活塞泵、柱塞泵、摆动式、伸缩式等;⑴活塞式液压泵①单活塞杆式②双活塞杆式③无活塞杆式差动连接当单活塞杆液压缸无杆腔和有杆腔同时接通压力油时,称为“差动连接;”差动连接时的推力比非差动连接时小,但速度比非差动连接时大;因此,差动连接是一种减小推力而获得高速的方法;⑵柱塞式液压缸⑶伸缩式液压缸⑷摆动式液压缸⑸增压缸⑹齿轮齿条式液压缸13.液压缸组件的构造一般来说,液压缸的结构主要包括缸体结构、活塞杆导向部分结构、活塞连接结构、密封装置、液压缸安装连接结构、缓冲装置及排气装置等;14.液压阀的分类⑴按功能分类①压力控制阀用来控制液压系统中液流压力的液压控制元件;②流量控制阀用来控制液压系统中液流流量的液压控制元件;③方向控制阀用来控制液压系统中液流的流动方向的液压控制元件;⑵按控制方式分类①定值或开关控制阀②比例控制阀③伺服控制阀⑶按连接方式分类①管式②板式③叠加阀④二通插装阀⑤螺纹插装阀15.方向控制阀⑴单向阀单向阀类似电路中的二极管,在液压系统中单向阀只允许液流沿一个方向流过,反向流动则被截止,因此也称为止回阀;作用保压、锁紧和消除油路干扰⑵换向阀换向阀借助于阀芯与阀体之间的相对运动来改变连接在阀体上各管道的通断关系,使油路接通、断开或改变油液的流动方向,从而实现液压执行元件及其驱动机构的起动、停止或变换运动方向;根据换向时的操纵方式不同,换向阀可分为电磁换向阀、手动换向阀、机动换向阀、液动换向阀、电液换向阀等;16.压力控制阀⑴溢流阀溢流阀在液压系统中主要起定压或安全保护的作用;直动式溢流阀先导式溢流阀⑵减压阀直动式减压阀先导式减压阀⑶顺序阀顺序阀在液压系统中的主要作用是控制执行机构的先后顺序动作,以实现系统的自动控制;直动式顺序阀先导式顺序阀⑷压力继电器压力继电器是一种将油液的压力信号转换成电信号的小型电液控制元件;17.流量控制阀⑴节流阀最基本的控制阀⑵调速阀⑶分流阀18.过滤器的作用液压传动系统中的液压油不可避免地含有各种杂质,杂质混入液压油后,随着液压油的循环作用,进入液压元件内部,严重妨碍液压系统的正常工作;清除混入液压油中的杂质的最有效办法,除利用油箱沉淀一部分大颗粒杂质外,主要是利用各种过滤器来滤除;19.过滤器的分类⑴表面型过滤器粗过滤①网式过滤器②线隙式过滤器⑵深度型过滤器精过滤①纸质过滤器②烧结式过滤器⑶吸附型过滤器20.过滤器在液压系统中的安装位置过滤器只能单向使用⑴安装在液压泵的吸油管路上保护液压泵免遭较大颗粒的杂质的直接伤害⑵安装在压油管路上保护液压泵以外的其他液压元件⑶安装在回油路上保证流回油箱的油液是清洁的⑷安装在辅助泵的输油路上保证杂质不会进入主油路的各液压元件中⑸安装在支流管路上滤除混入油液中的杂质⑹单独过滤滤除油液中的全部杂质21.油箱的作用油箱的作用主要是储存油液,此外还起着散热、分离油液中的气体及沉淀污染物等作用;22.蓄能器的工作原理与功用蓄能器是液压系统中的一种能量储存装置;其主要作用如下:⑴作辅助动力源⑵补偿泄漏和保持恒压用⑶作紧急动力源⑷消除脉动与降低噪声⑸吸收液压冲击23.蓄能器的使用和安装⑴充气式蓄能器应使用惰性气体一般为氮气,允许工作压力视蓄能器结构形式而定;⑵不同的蓄能器各有其适用的工作范围;⑶囊式蓄能器原则上应垂直安装油口向下,只有在空间位置受限制时才允许倾斜或水平安装;⑷装在管路上的蓄能器必须用支板或支架固定;⑸蓄能器与管路系统之间应安装截止阀,供充气、检修时使用;蓄能器与液压泵之间应安装单向阀,以防止液压泵停车时蓄能器内储存的压力油液倒流;24.密封装置密封装置的作用是用来防止压力工作介质的泄漏和阻止外界灰尘、污垢和异物的侵入,是解决液压系统泄漏问题的最关键、最有效的手段;液压系统如果密封不良,可能会出现不允许的内、外泄漏;25.基本液压回路⑴压力控制回路①调压回路使液压系统整体或一部分的压力保持恒定或不超过某个数值;②减压回路使系统中的某一部分油路具有较低的稳定压力;③增压回路通过增压缸来实现提高液压系统中的某一支路的工作压力;④卸荷回路⑤保压回路在执行元件停止运动,而油液需要保持一定的压力时,需要用到保压回路;⑥平衡回路为防止立式液压缸和垂直运动的工作部件因自重而自行下滑,或在下行运动中由于自重而造成失控、失速的不稳定运动,常采用平衡回路;⑦卸压回路对容量大的液压缸和高压系统,应在保压与换向之间采取卸压措施;⑵速度控制回路①节流调速回路效率低工作原理是通过改变回路中流量控制阀通流面积的大小来控制进去执行元件的流量,以调节其运动速度;②容积调速回路容积调速回路是通过改变泵或马达的排量来实现调速的;主要优点没有节流损失和溢流损失,因而效率高,油液温升小,适用于高速、大功率调速系统;缺点变量泵和变量马达的结构较复杂,成本较高;③增速回路使液压执行元件获得所需要的高速,缩短机械的空程运动时间,从而提高系统的工作效率;④速度换接回路使液压执行机构在一个工作循环中从一种运动速度换到另一种运动速度;⑶方向控制回路①换向回路②锁紧回路通过切断执行元件的进油、出油通道来使它停在规定的位置上;③缓冲回路防止执行元件起动、停止时的冲击;④回转回路提高工作效率和整机机动性;⑷多执行元件控制回路①顺序动作回路实现多个执行元件按预定的次序动作的液压回路;②同步动作回路实现多个元件以相同的位移或相等的速度运动的液压回路;③互不干扰回路防止液压系统中的几个液压执行元件因速度快慢的不同而在动作上互相干扰的液压回路;⑸液压马达控制回路①液压马达串、并联回路适应行走机械的不同工况;②液压马达制动回路使液压马达迅速停转;。
简述液压传动的原理及特点
液压传动是一种利用液体在密闭管路内传递力和能量的传动方式。
液压传动的原理是根据帕斯卡定律,即在一个封闭的容器内任一点受到的外力传递给液体并均匀传递到容器的各个处所,从而使液体对容器壁产生均匀的压力。
液压传动通过液压泵将机械能转化为液压能,通过液压缸将液压能转化为机械能,实现机械设备的运行。
液压传动具有如下特点:
1.能量传递稳定:液压传动采用的是无级传动,通过调节阀门或改变活塞面积,可以实现无级调速,能够满足不同负载和速度的要求。
2.承载能力大:液压传动由于密闭的容器和液体的不可压缩性,能够承受非常大的压力,可用于承载大负荷的机械设备。
3.动力输出平稳:液压传动的液压缸在工作过程中输出的力矩平稳,不会产生冲击和振动,可以保证机械设备的运行平稳。
4.调速范围广:液压传动通过调节控制阀门的开度,可以实现连续的调速,调速范围广,能够适应不同工况的需要。
5.控制灵活:液压传动的控制灵活性强,可以通过调节阀门、调整液体流量和压
力来实现对液压传动系统的精确控制。
6.传递效率高:液压传动的传递效率高,尤其是在大功率和高速运动的场合,能够实现高效率的能量转换。
7.结构紧凑:由于液压传动系统采用液体传递力和能量,相对于机械传动和电动传动,液压传动结构更紧凑,体积更小。
8.维护方便:液压传动的维护相对较简单,只需注意液压油的清洁和更换,液压元件的密封性能和机件的磨损状态即可。
液压传动被广泛应用于各个工程领域,如船舶、航空、铁路、机床、冶金等。
液压传动具有传动力矩大、传动效率高、传动速度范围广、传动控制方便等优点,是一种高效、可靠的传动方式。
液压传动的原理及应用1. 液压传动的概述液压传动是一种利用液体介质传递能量的工程技术。
它通过利用液体的压缩性和流动性来传递力量和能量,用于实现各种工程设备的驱动、控制和工作。
2. 液压传动的原理液压传动的原理是基于帕斯卡定律,即在任何封闭的液体中,施加在其中一个部分的压力会均匀地传递给全部部分。
液压传动系统主要由液压泵、液压缸或液压马达、阀门和管道等部件组成。
3. 液压传动的工作原理液压传动系统常见的工作原理包括单向传动、双向传动和变位传动。
具体工作原理如下:3.1 单向传动单向传动是指液压系统中的液压泵通过液压管道将液体压力传递给液压缸或液压马达,从而实现单向推动或驱动工作。
3.2 双向传动双向传动是指液压系统中的液压泵通过阀门控制油液的流动方向,实现液压缸或液压马达的双向推动,用于实现正反转工作。
3.3 变位传动变位传动是指通过调整液压泵和液压马达的工作行程或转速,从而实现工作部件的位置或速度的变化。
4. 液压传动的应用领域液压传动广泛应用于各个领域,主要包括机械工程、建筑工程、航空航天、冶金和石油等行业。
4.1 机械工程液压传动在机械工程中具有重要的作用,如起重机、挖掘机、注塑机、切割机等。
液压传动系统可以提供大功率和高效率的驱动力,实现各种复杂的运动控制。
4.2 建筑工程在建筑工程中,液压传动被广泛应用于起重装置、混凝土泵车、压路机等设备。
液压传动可以提供强大的推力和扭矩,用于实现重型设备的运动和操作。
4.3 航空航天液压传动在航空航天领域起着重要作用,如飞机起落架、液压舵机等。
液压传动系统可以提供高精度的力和位移控制,确保飞行安全和性能。
4.4 冶金在冶金工业中,液压传动可以应用于轧机、压力机、锻压设备等。
液压传动系统可以提供高速、平稳和可靠的工作,满足冶金工艺的需求。
4.5 石油液压传动在石油行业具有重要的应用,如油田钻井设备、油管成套设备等。
液压传动系统可以提供大功率和高可靠性的运动控制,满足复杂的工况要求。
第一章1.液压传动的概念原理1.1.1概念液压传动是以密闭管道中受压液体为工作介质,进行能量转换,传递,分配,称之为液压技术,有称之为液压传动。
1.1.2工作原理1)帕斯卡原理即“施加于密封容器内平衡液体中的某一点的压力等值地传递到全部液体”因此有F1/A1=P1=P=P2=F2/A22)连续性原理如果不考虑液体的可压缩性,泄露和构件的变形,则挤压出的液体的体积等于推动上移的体积。
3)能量守恒定律略1.1.3液压系统的组成部分及作用若干液压元件和管路组成以完成一定动作的整体称液压系统。
(1)动力元件又称液压泵(2)执行元件见液压能转换成机械能的装置。
它是与液压泵作用相反的能量转换装置,是液压缸和液压马达的总称。
(3)控制元件液压系统中控制液体压力,流量和流动方向的元件总称为控制元件。
(4)辅助元件包括油箱管道管接头滤油器蓄能器加热器冷却器等。
(5)工作介质为液体通常是液压油。
1.2液压传动的主要特点及其应用1.2.1液压传动的主要优点(1)可实现大范围地无极调速,调速功能不受功率大小的限制(2)液压传动具有质量轻体积小惯性小响应快等特点。
(3)液压传动均匀平稳,负载变化时速度稳定。
(4)可实现过载自动保护。
(5)可根据设备要求与环境灵活安装,适应性强。
(6)以液压油为工作介质,具有良好的润滑条件。
(7)液压元件易于标准化、系列化、通用化,便于设计、制造和推广应用。
1.2.2液压传动的主要缺点(1)效率较低(2)泄露问题(3)对污染敏感(4)检修困难(5)对温度敏感(6)对元件加工的精确度要求高第二章工作介质2.1液压油的主要物理特性2.1.1密度和重度定义:密度(重度)的定义为单位体积液体的质量(重量)。
2.1.1黏性和黏度1)牛顿黏性定律——黏度表达式t=f/a=udu/daa——相对运动层面积f——相对运动层内内摩擦力t——液体内部切应力(单位面积上的内摩擦力)du/dy——速度梯度u——比例系数称动力黏度2)黏度的表示方法和单位(1)动力黏度上式中的u为油液种类和温度决定的比例系数,他表示液体黏性的内摩擦程度,称动力黏度或绝对黏度。
液压传动工作原理设备及维护概述液压传动是一种利用液体介质传递动力的传动方式。
它通过液压驱动装置将机械能转换为液压能,并通过液体在管路中传递压力和流量来实现力或运动传递。
液压传动广泛应用于工程机械、农机、船舶、航空航天等领域。
本文将介绍液压传动的工作原理、常见设备以及维护方法。
工作原理液压传动工作原理基于液体的不可压缩性。
液体在受力作用下,能够传递力和运动,并保持较稳定的压力和流量。
液压传动工作原理主要包括以下几个方面:流体力学原理液体在管路中传递压力和流量时,遵循流体力学原理。
根据帕斯卡定律,液压系统中的压力是均匀分布的,所以液体在传递中不会发生挤压、拉伸等变形现象。
液压驱动装置液压驱动装置将机械能转化为液压能。
常用的液压驱动装置有液压泵、液压缸和液压马达。
液压泵产生液压能,将液体从油箱中吸入,并将其压力提高后输出到液压系统中;液压缸通过液体的压力传递力量,实现工件的直线运动;液压马达通过液体的压力传递力量,实现工件的旋转运动。
控制元件液压传动系统中的控制元件可以控制液体的压力和流量。
常见的控制元件有先导阀、安全阀、溢流阀和方向阀等。
先导阀用于控制系统的启动、停止和方向转换;安全阀用于保护液压系统免受过载和压力过高的损坏;溢流阀用于调节系统的压力和流量,以保持系统的稳定工作;方向阀用于控制液压缸和液压马达的前进、后退和停止。
操作方式液压传动系统可以通过手动、自动和远程操作方式进行控制。
手动操作方式通过手动阀实现,操作简单方便;自动操作方式则通过电气或电子控制单元实现,可以实现复杂的自动化控制;远程操作方式通过遥控器或无线信号控制,适用于危险环境或无法直接操作的场所。
常见设备液压传动系统包括液压泵、液压缸、液压马达、液压阀等设备。
液压泵液压泵是液压传动系统的动力源,用于产生压力并推动液体通过管路的流动。
常见的液压泵有齿轮泵、柱塞泵和螺杆泵等。
齿轮泵结构简单,价格较低,适用于低压和中等流量的场合;柱塞泵具有高压、高流量的特点,广泛应用于工程机械领域;螺杆泵适用于高粘度液体的输送。
液压传动工作的原理是啥
液压传动工作的原理是利用液体在封闭管路中传递力和能量的原理。
液压传动系统由液压能源、液压执行元件和控制装置等组成。
液压传动系统的工作原理如下:
1. 液体由液压能源(如液压泵)产生,通过液压管路输送到液压执行元件(如液压缸、液压马达)。
2. 当液体从液压泵进入液压系统时,会产生一定的压力,形成压力能。
液压泵会不断施加压力,使得液体在系统中形成一定的压力差。
3. 液体通过液压管路传递,在液压执行元件的作用下,将液体的压力转化为机械能,从而实现力的传递和执行工作。
例如,液压马达可以将液体的压力转化为旋转力,驱动机械设备实现转动。
4. 控制装置对液压系统进行控制和调节,调整液体的压力和流量,从而控制液压执行元件的动作。
例如,通过操纵液压阀,可以控制液压缸的伸缩和停止。
液压传动系统的优点包括传递力矩大、速度和力矩可调、传递效率高、反应灵敏、操作简便等。
它广泛应用于各种机械和工业设备中,如工程机械、航空航天器、汽车、冶金设备等。
液压传动的基本原理液压传动是一种通过液体压力驱动机械运动的传动方式。
液压传动的基本原理是靠液体的压力和流量来传递力和功,从而驱动机械运动。
液压传动有以下几个方面的基本原理:1. 原理概述液压传动的主要原理是利用高压油液压力来驱动液压缸或液压电机,使能量转化成机械功。
液压传动是靠工作液体的压力和流量来传递力和功的一种传动方式。
液压传动传输的媒介是液体(一般是液压油),液体的特点是易于传递,因此使用液体进行传动比较灵活方便。
液压传动被广泛应用于工程机械、船舶、航空航天、冶金、矿山、公路、铁路、建筑等各个领域。
2. 压力传递原理液压传动的主要原理是利用高压油液压力来驱动液压缸或液压电机,从而转化能量为机械功。
当液压泵向油路内输送液体时,产生的压力可以传播到所有的油路中。
液体的压力受到容器和管道等元件的限制而产生压力损失,但压力可以重复使用,使液压功能性稳定。
3. 流量传递原理在液压传动中,液体的流量可以控制流体的速度和方向。
流量传递实现的方法有两种:阀门控制和泵控制。
在液压传动的过程中,通过调节阀门和泵的流量,可以控制液体的速度、压力和方向。
而且,液压传动的流量是可逆的,液体可以顺着管道流动,也可以逆着管道流动,这样就可以实现液压传动的前后进退、左右转动等动作。
4. 工作液体的选择液压传动中使用的工作液体一般是液压油,液压油的特点是易于流动、高压下不泄漏、不易沉淀、能耐高温、抗磨损、抗腐蚀等。
液压油的粘度、密度、压缩性等参数要符合液压系统要求,使液压系统稳定可靠。
液压油的选择要考虑到系统的工作压力、温度、流量和系统所需的工作性能。
5. 液压元件的选择液压传动元件的选择要根据系统的压力、流量和功率等参数进行选型。
通常,液压元件包括液压泵、油缸、电动液压阀、油箱、滤器、油管等,每种元件的功能和工作原理各不相同,但是它们都是为了实现系统的控制、调节和保护。
因此,在液压传动系统设计时,应根据实际工作要求选择合适的液压元件,保证系统工作稳定、可靠。