浙教版数学七年级下册第一章《平行线》单元测试
- 格式:doc
- 大小:283.50 KB
- 文档页数:7
浙教版七年级下学期第一章平行线单元练习一、选择题1.下列各组图形中,左边的图形平移后可以得到右边图形的是 ( )A B C D2.如图,直线 a , b 被直线 c 所截, ∠1 与∠2 是()A.同位角B.内错角C.同旁内角D.对顶角(第2题图)(第3题图)(第4题图)3.如图是木匠师傅利用直尺和三角尺过已知直线l外一点P作直线l的平行线的方法,其直接理由是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平面内垂直于同一条直线的两条直线互相平行4.如图,下列两个角属于内错角的是()A.∠1 与∠2B.∠1 与∠3C.∠1 与∠4D.∠2 与∠45.如图,已知 AB ∥ CD , ∠ A =53°, ∠ E =19 ,则∠ C 的度数为()A.34°B.33°C.72°D.73°(第5题图)(第6题图)(第7题图)6.如图, ∠1=∠ A , ∠2=∠ D .有下列结论:① AD ∥ EF ; ② AD ∥ BC ; ③EF ∥ BC ; ④ AB ∥ DC .其中正确的有A.1个B.2个C.3个D.4个7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知 AB∥CD,∠BAE=91°,∠DCE=124°,则∠AEC的度数为()A.29°B.30°C.31°D.33°8. 如图,人民公园内一块长方形草地上原有一条 1m 宽的笔直小路,现要将这条小路改造成弯曲小路,小路的上边线向下平移 1m 就是它的下边线,则改造后小路的面积 ( )A.变大了B.变小了C.没变D.无法确定(第8题图)(第9题图)9. 如图, AB ∥ CD ,点 P 在 AB , CD 之间,∠ ACP =2∠ PCD =40° ,连结 AP . 若∠ BAP = α , ∠ CAP = α + β ,则下列说法中,正确的是()A.当∠ P =60°时,α =30°B.当∠ P =60°时,β =40°C.当β =20°时, ∠ P =90°D.当β =0°时,∠ P =90°10.如图1,当光线从空气斜入射到某种透明的液体时发生了折射,满足入射角∠1与折射角∠2的度数比为3∶2.如图2,在同一平面上,两条光线同时从空气斜射入这种液体中,两条入射光线与水平液面夹角分别为α,β,在液体中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为()A.23(α+β)=γB.23(α+β)=120°-γC.α+β=γD.α+β+γ=180°二、填空题11. 如图,请写出能判定 CE ∥ AB 的一个条件:________.(第11题图)(第12题图)(第13题图)12. 如图,直线 a , b 分别被直线 c , d 所截,如果∠1=∠2 ,那么∠3+∠4= ________.13.一个三角板(含30°、60°角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A,一边与三角板的两条直角边分别相交于点D、点E,且CD=CE,点F在直尺的另一边上,那么∠BAF的大小为°.14.如图,把一张长方形纸片沿着直线 GF 折叠, ∠ CGF= 30° ,则∠1 的度数是__________.15. 夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥 . 若荷塘的周长为 300m ,且桥宽不计,则小桥的总长为________ m.(第14题图)(第15题图)16.如图1是一盏可调节台灯,图2,图3为示意图.固定底座AO⊥OE于点O,BA与CB是分别可绕点A和B旋转的调节杆.在调节过程中,灯体CD始终保持平行于OE,台灯最外侧光线DM,DN组成的∠MDN始终保持不变.如图2,调节台灯使光线DN∥BA,此时∠BAO=130°,且CD的延长线恰好是∠MDN的角平分线,则∠MDN=_____.如图3,调节台灯使光线MD垂直AB于点B,此时∠BAO=120°,则∠PDN=________.三、解答题17.如图,在方格纸中,有两条线段 AB,BC.利用方格纸完成以下操作:(1)过点 A 作BC的平行线AE.(2)过点 C作AB 的平行线,与(1)中的平行线相交于点 D.(3)用符号表示出图中的一组平行线.18.如图, ∠1=∠ B ,∠ CEB =∠ CFB ,试说明 AB ∥ CD 的理由 .19. 如图,已知∠1=∠2=∠ A .(1 )试说明∠1=∠3 的理由 .(2 )当∠ ADG =80°时,求∠2 的度数 .20.如图, ∠1+∠2=180°, ∠ B=∠3.(1 )判断 DE 与 BC 的位置关系,并说明理由 .(2 )若∠ C =63° ,求∠ DEC 的度数 .21.(1 )如图① ,已知∠ ABC +∠ ECB =180° ,∠ P =∠ Q ,试说明∠1=∠2 的理由 .(2 )如图② , AB ∥ CD , ∠1=∠2 ,试说明∠ F =∠ M 的理由22如图,一副三角板,其中∠EDF=∠ACB=90°,∠E=45°,∠A=30°.(1)若这副三角板如图摆放,EF∥CD,求∠ABF的度数.(2)将一副三角板如图1所示摆放,直线GH∥MN,保持三角板ABC不动,现将三角板DEF绕点D以每秒2°的速度顺时针旋转,如图2,设旋转时间为t秒,且0≤t≤180,若边BC与三角板的一条直角边(边DE,DF)平行时,求所有满足条件的t的值.(3)将一副三角板如图3所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转.设旋转时何为t秒,如图4,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,请直接写出满足条件的t的值.参考答案1-5 CAAAA6-10 BDCBB11.略12.180°13.15°14.60°15.15016.80°,20°17.略18.略19.(1)略(2)50°20.(1)DE∥BC,;理由略(2)117°21.略22.(1)75°(2)15或60或105或150(3)30或120。
浙教版七年级下第一章平行线单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.69.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有个交点.12.如图,与∠1构成同位角的是,与∠2构成同旁内角的是.13.经过直线外一点,一条直线与这条直线平行.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是度,再沿BF折叠成图c,则图c中的∠DHF的度数是.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=.评卷人得分三.解答题(共7小题,52分)17.(6分)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.18.(6分)如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.19.(6分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()20.(8分)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.21.(8分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB 于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.22.(8分)若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{,}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{,}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{,}直接平移至点F.23.(10分)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案与试题解析一.选择题(共10小题)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定【分析】两直线平行,同旁内角互补;不平行时无法确定同旁内角的大小关系.【解答】解:虽然α和β是同旁内角,但缺少两直线平行的前提,所以无法确定β的度数.故选:D.【点评】此题主要考查了同旁内角的定义,特别注意,同旁内角互补的条件是两直线平行.2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在【分析】分点P在OA上和不在OA上两种情况,根据平行公理解答即可.【解答】解:①若点P在OA上,则不能画出与OA平行的直线,②若点P不在OA上,则过点P有且只有一条直线与OA平行,所以,这样的直线有一条或不存在.故选:D.【点评】本题考查了平行公理,难点在于要考虑点P与OA的位置.3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行【分析】根据平行线的定义及平行公理进行判断.【解答】解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选:A.【点评】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°【分析】由折叠的性质和平行线的性质可知2∠2=∠1,可得出答案.【解答】解:如图,由折叠的性质可知∠2=∠3,∵AB∥CD,∴∠1=∠3+∠2=100°,∴∠2=50°.故选:A.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°【分析】首先根据平分线的性质求得∠DOA的度数,然后根据角平分线的性质得到∠EOD的度数,然后根据垂直求得∠DOF,从而求得∠BOF的度数.【解答】解:∵AB∥CD,∠D=50°,∴∠DOA=130°,∵OE平分∠AOD,∴∠DOE=65°,∵OF⊥OE,∴∠DOF=25°,∴∠BOF=25°,故选:C.【点评】本题考查了平行线的性质,利用平行线的性质和已知角求得∠DOA的度数是解决本题的关键.6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°【分析】由AB∥CD,MP∥AB推出AB∥CD∥MP,根据平行线的性质求出∠AMD的度数为70°,再根据角平分线的定义求出∠AMN=35°,所以∠NMP=∠AMP﹣∠AMN.【解答】解:∵AB∥CD,MP∥AB,∴AB∥CD∥MP,∵∠A=40°,∠D=30°,∴∠AMP=∠A=40°,∠DMP=∠D=30°,∴∠AMD=40°+30°=70°,∵MN平分∠AMD,∴∠AMN=∠AMD=×70°=35°,∴∠NMP=∠AMP﹣∠AMN=40°﹣35°=5°.故选:C.【点评】本题主要考查两直线平行内错角相等的性质和角平分线的定义,熟练掌握性质和定义是解题的关键.7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④【分析】根据余角的概念和同角的余角相等判断①;根据平行线的判定定理判断②;根据平行线的判定定理判断③;根据②的结论和平行线的性质定理判断④..【解答】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E=60°,∴∠1=∠E,∴AC∥DE,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,又∵∠C=45°,∴BC与AD不平行,③错误;∵∠2=30°∴AC∥DE,∴∠4=∠C,④正确.故选:B.【点评】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.6【分析】根据平移的性质,只要能求出横向与纵向的总长度,即可求出它的周长.【解答】解:根据平移的性质,只要知道GH、AB、BC的长度,就可以求出周长.故选A.【点评】本题主要考查了平移的性质,把不规则图形部分平移到规则图形的部分是解题的关键.9.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对【分析】根据两边分别平行的两个角相等或互补列方程求解.【解答】解:设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.以上答案都不对.故选:D.【点评】本题主要运用两边分别平行的两个角相等或互补,学生容易忽视互补的情况而导致出错.10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°【分析】延长BC交直线DE于F,根据平行线的性质得到∠F=180°﹣∠1,由三角形的外角的性质得到∠F=∠2﹣∠3,即可得到结论.【解答】解:延长BC交直线DE于F,∵AB∥DF,∴∠1+∠F=180°,∴∠F=180°﹣∠1,∵∠2=∠3+∠F,∴∠F=∠2﹣∠3,∴∠1+∠2﹣∠3=180°,故选:B.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质定理是解题的关键.二.填空题(共6小题)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有2个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.12.如图,与∠1构成同位角的是∠B,,与∠2构成同旁内角的是∠1.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.分别进行分析.【解答】解:如图:与∠1是同位角的是∠B,与∠2是同旁内角的是∠1.故答案为:∠B,∠1.【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.13.经过直线外一点,有且只有一条直线与这条直线平行.【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行解答即可.【解答】解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:有且只有.【点评】本题考查了平行公理,牢记平行公理:经过直线外一点,有且只有一条直线与这条直线平行是解题的关键.注意平行公理中“有且只有”的含义,从作图的角度说,它是“能但只能画出一条”的意思.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有①②④.(填序号)【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【解答】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴①正确.②∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴②正确.③∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴③错误.④由②得AC∥DE.∴∠4=∠C.∴④正确.故答案为:①②④.【点评】此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是52度,再沿BF折叠成图c,则图c中的∠DHF的度数是78°.【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,由三角形的外角性质得出∠FGD 的度数;根据平角定义、折叠的性质求出∠CFE=102°,再根据平行线的性质即可求解.【解答】解:∵AD∥BC,∠DEF=26°,∴∠BFE=∠DEF=26°,∴图b中,∠FGD=26°+26°=52°;图c中,∠CFE=180°﹣3×26°=102°,∴∠DHF=180°﹣102°=78°.故答案为:52,78°.【点评】本题考查了翻折变换的性质,平行线的性质,三角形的外角性质;熟练掌握翻折变换的性质和平行线的性质是解决问题的关键.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=110°.【分析】根据折叠的性质可知ME∥NF,由ME∥NF可得出∠BGM=∠GFN,再分解平角通过计算得出∠BGM的度数,根据∠BGM与∠2互补即可得出结论.【解答】解:由折叠的性质可知ME∥NF,∴∠BGM=∠GFN.∵2∠EFG+∠GFN=180°,且∠EFG=55°,∴∠BGM=∠GFN=180°﹣2×55°=70°,又∵∠2+∠BGM=180°,∴∠2=110°.故答案为:110°【点评】本题考查了平行线的性质以及角的计算,解题的关键是求出∠BGM的度数.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质结合折叠的性质得出相等(或互补)的角是关键.三.解答题(共7小题)17.按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.【分析】(1)借用量角器,测出∠AEC=90°即可;(2)利用角平分线的作法作出∠ABC的平分线;(3)利用平行线的性质:同位角相等,作图;(4)借用量角器,测出∠AHC=90°即可.【解答】解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.【点评】本题主要考查了平行线、垂线及角平分线的画法.在解答此题时,用到的作图工具有圆规、量角器及直尺.18.如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.【分析】根据三角形的外角和为360°,三角形的内角和为180°以及三角形外角和定理即可写出三个角之间的数量关系.【解答】解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L1、L2、L3、L4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.【点评】此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.19.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等)∴∠2=∠CGD(等量代换)∴CE∥BF(同位角相等,两直线平行)∴∠C=∠BFD(两直线平行,同位角相等)又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD(内错角相等,两直线平行)【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.【解答】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).【点评】此题考查了平行线的判定与性质.注意数形结合思想的应用.20.(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是∠3=∠1+∠2;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=85°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.【分析】(1)在图1中,作PM∥AC,利用平行线性质即可证明;利用①结论即可求得∠BAC的度数.(2)根据BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.根据∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】解:(1)如图1中,作PM∥AC,∵AC∥BD,∴PM∥BD,∴∠1=∠CPM,∠2=∠MPD,∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.由题可知:∠BAC=∠B+∠C,∵∠B=40°,∠C=45°,∴∠BAC=40°+45°=85°.故答案为:∠1+∠2=∠3,85°.(2)证明:∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考查了角平分线的性质以及平行线的判定,正确添加辅助线是解决问题的关键.21.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为∠PFD+∠AEM=90°;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【分析】(1)由平行线的性质得出∠PFD=∠1,∠2=∠AEM,即可得出结果;(2)由平行线的性质得出∠PFD+∠1=180°,再由角的互余关系即可得出结果;(3)由角的互余关系求出∠PHE,再由平行线的性质得出∠PFC的度数,然后由三角形的外角性质即可得出结论.【解答】解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.【点评】本题考查了平行线的性质、角的互余关系;熟练掌握平行线的性质,弄清角之间的数量关系是解决问题的关键.22.若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{﹣2,﹣1}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{2,﹣2}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{﹣2a,﹣b}直接平移至点F.【分析】(1)根据图形,点B在点C的左边2个单位,下方1个单位,再根据“平移量”的定义即可求解;(2)①根据“平移量”的定义确定出点D的位置即可;②根据“平移量”的定义求出从点B移动到点D的路程,然后乘以2.5,计算即可得解;③根据“平移量”的定义结合直接写出点B到点D的平移量即可;把从点E到点F所有平移量的横向相加,纵向相加,计算即可得解.【解答】解:(1)从C到B,向左2个单位,向下1个单位,所以,平移量为{﹣2,﹣1};(2)①点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D如图所示;②(4+3+2+1)×2.5=10×2.5=25秒;③由图可知,点B到点D,向右2个单位,向下2个单位,所以,平移量为{2,﹣2},∵2a﹣5a+a=﹣2a,3b+b﹣5b=﹣b,∴点E到F的平移量为{﹣2a,﹣b}.故答案为:(1)﹣2,﹣1;(2)③2,﹣2;﹣2a,﹣b.【点评】本题考查了平移的性质,平移量的定义,读懂题目信息,理解平移量的定义并熟练掌握网格结构是解题的关键.23.如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.【分析】(1)由BC∥OA得∠B+∠O=180°,所以∠O=180°﹣∠B=60°,则∠A+∠O=180°,根据平行线的判定即可得到OB∥AC;(2)由OE平分∠BOF得到∠BOE=∠FOE,加上∠FOC=∠AOC,所以∠EOF+∠COF=∠AOB =30°;(3)由BC∥OA得到OCB=∠AOC,∠OFB=∠AOF,加上∠FOC=∠AOC,则∠AOF=2∠AOC,所以∠OFB=2∠OCB;(4)设∠AOC的度数为x,则∠OFB=2x,根据平行线的性质得∠OEB=∠AOE,则∠OEB=∠EOC+∠AOC=30°+x,再根据三角形内角和定理得∠OCA=180°﹣∠AOC﹣∠A=60°﹣x,利用∠OEB=∠OCA得到30°+x=60°﹣x,解得x=15°,所以∠OCA=60°﹣x=45°.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC;(2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°;(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x,∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.熟练掌握平行线的判定与性质是解本题的关键.。
浙教版七年级下第一章平行线单元测试卷题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,3*10=30)1. 下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行2. 如图,直线l1,l2被直线l3所截,且l1∥l2,则α的度数是()A.41°B.49°C.51°D.59°3. 已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在4. 如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若要使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°5. 已知:如图,AB∥CD,BC平分∠ABD,且∠C=40°,则∠D的度数是() A.40°B.80°C.90°D.100°6. 如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件()A.∠1=∠2 B.∠1=∠DFEC.∠1=∠AFD D.∠2=∠AFD7. 如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF交CD于点G,∠1=50°,则∠2等于()A.50°B.60°C.65°D.90°8. 如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线()A.3对B.5对C.6对D.7对9. 如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于() A.100°B.115°C.120°D.130°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于()A.100°B.80°C.60°D.40°第Ⅱ卷(非选择题)评卷人得分二.填空题(共6小题,3*6=18)11. 如图,若∠1+∠2=180°,∠3=110°,则∠4=_______.12. 在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为________.13. 如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移______格,再向上平移______格.14. 如图,直线l1∥l2∥l3,点A,B,C分别在直线l1,l2,l3上,若∠1=70°,∠2=50°,则∠ABC=________.15. 如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠γ=_______.16. 如图,边长为8 cm的正方形ABCD先向上平移4 cm,再向右平移2 cm,得到正方形A′B′C′D′,此时阴影部分的面积为_________.评卷人得分三.解答题(共7小题,52分)17. (6分) 如图,按要求完成作图.(1)过点P作AB的平行线EF;(2)过点P作CD的平行线MN;(3)过点P作AB的垂线段,垂足为G.18. (6分)如图,直线AB,CD相交于点O,∠AOD=70°,OE平分∠BOC,求∠DOE的度数.19. (6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.20. (8分)如图,已知AB∥CD,∠B=40°,点E在DC的延长线上,CN 是∠BCE的平分线,CM⊥CN,求∠BCM的度数.21. (8分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?22. (8分)如图,已知EF⊥AC,垂足为点F,DM⊥AC,垂足为点M,DN的延长线交AB 于点A,且∠1=∠C,点N在AD上,且∠2=∠3,证明AB∥MN.22. (8分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.参考答案1-5 DBAAD 6-10 BCCBD11. 110°12. b(a-1) 13. 5 , 3 14. 120°15. 180°16. 24cm217. 解:图略18. 解:∵∠AOD=70°,∴∠BOC=∠AOD=70°.∵OE平分∠BOC,∴∠COE=12∠BOC=12×70°=35°.∴∠DOE=180°-∠COE=180°-35°=145°.19. 解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF20. 解:∵AB∥CD,∴∠B+∠BCE=180°,∴∠BCE=180°-40°=140°.∵CN平分∠BCE,∴∠BCN=70°.∵∠NCM=90°,∴∠BCM=90°-70°=20°.21. 解:(1)AE∥FC,理由:∵∠2+∠CDB=180°,又∠1+∠2=180°,∴∠1=∠CDB,∴AE∥FC.(2)AD∥BC,理由:由(1)得AE∥FC,∴∠A+∠ADC=180°.又∠A=∠C,∴∠C+∠ADC =180°,∴AD∥BC.(3)BC平分∠DBE,理由:∵AB∥CF,∴∠EBC=∠C.∵AD∥BC,得∠DBC=∠ADB,而∠C=∠ADF,∠ADF=∠ADB,∴∠EBC=∠DBC,∴BC平分∠DBE.22. 证明:∵EF⊥AC,DM⊥AC,∴EF∥DM,∴∠3=∠CDM,∵∠3=∠2,∴∠2=∠CDM,∴MN∥CD,∴∠AMN=∠C,∵∠1=∠C,∴∠1=∠AMN,∴AB∥MN23. 证明:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF (2)∵∠BEG=∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE∴∠ABC=30°,∠DEF=30°,或∠ABC=110°,∠DEF=70°.。
2022-2023学年浙教版七年级数学下册《第1章平行线》单元综合达标测试题(附答案)一.选择题(共7小题,满分28分)1.如图,下列说法正确的是()A.∠1与∠2是同位角B.∠1与∠2是内错角C.∠1与∠3是同位角D.∠2与∠3是同旁内角2.如图,四边形ABCD中,∠1=∠3,AD∥BC,则下列等式不成立的是()A.∠1=∠2B.∠3=∠4C.∠2=∠3D.∠1+∠2+∠B=180°3.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=42°,那么∠1的度数是()A.18°B.17°C.16°D.15°4.如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为()A.58°B.68°C.78°D.122°5.直线BD∥EF,两个直角三角板如图摆放,若∠CBD=10°,则∠1=()A.75°B.80°C.85°D.95°6.如图,△ABC沿BC方向平移得到△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.47.如图,直线a∥b,点A在直线a上,点C、D在直线b上,且AB⊥BC,BD平分∠ABC,若∠1=32°,则∠2的度数是()A.13°B.15°C.14°D.16°二.填空题(共7小题,满分28分)8.如图,已知AB∥CD,∠1=55°,则∠2的度数为.9.如图,DE∥BC,CD平分∠ACB,∠ACB=58°,则∠EDC=.10.如图所示,要在竖直高AC为2米,水平宽BC为8米的楼梯表面铺地毯,地毯的长度至少需要米.11.∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为.12.如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为.13.如图,AB∥CD,AD与BC相交于点F,BE平分∠ABC,DE平分∠ADC,∠AFB=96°,则∠BED的度数为度.14.太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点O 照射到抛物线上的光线OB,OC等反射以后沿着与POQ平行的方向射出.图中如果∠BOP=45°,∠QOC=68°,则∠ABO=,∠DCO=.三.解答题(共6小题,满分64分)15.如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,且∠B+∠BDE=180°,∠A=∠FDE.求证:DF∥AC.16.如图,FG∥AC,∠1=∠2,DE与FC平行吗?为什么?17.如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是小王同学的说明过程,请你在括号内填上理由、依据或内容,请你帮助小王同学完成说明过程:∵DE∥BC(已知),∴∠3=∠EHC(),∵∠3=∠B(),∴∠B=∠EHC(等量代换),∴AB∥EH(),∴∠2+∠4=180°(),又∵∠1=∠4 (),∴∠1+∠2=180°().18.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.19.如图,点E在AB上,点F在CD上,CE、BF分别交AD于点G、H,已知∠A=∠AGE,∠D=∠DGC.(1)AB与CD平行吗?请说明理由;(2)若∠2+∠1=180°,且3∠B=∠BEC+20°,求∠C的度数.20.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为.参考答案一.选择题(共7小题,满分28分)1.解:A、∠1和∠2不是同位角,故本选项不符合题意;B、∠1和∠2不是内错角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,故本选项符合题意;故选:D.2.解:∵AD∥BC,∴∠2=∠3,∠1+∠2+∠B=180°,∵∠1=∠3,∴∠1=∠2,故A、C、D成立,不符合题意,根据题意不能判定∠3=∠4,故B不成立,符合题意,故选:B.3.解:如图,∵∠2+∠3=60°,∴∠3=60°﹣∠2=60°﹣42°=18°,根据平行线的性质可得,∠1=∠3=18°.故选:A.4.解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=122°,∴∠BCD=180°﹣122°=58°,故选:A.5.解:∵∠ABC=30°,∠CBD=10°,∴∠ABD=∠ABC+∠CBD=30°+10°=40°,∵BD∥EF,∴∠BAF=∠ABD=40°,∵∠EFD=45°,∴∠1=180°﹣∠BAF﹣∠EFD=180°﹣40°﹣45°=95°.故选:D.6.解:点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3.故选:C.7.解:延长CB交直线a于点E,如图,∵AB⊥BC,∠1=32°,∴∠ABC=90°,∴∠AEC=90°﹣∠1=58°,∵a∥b,∴∠ECF=∠AEC=58°,∵BD平分∠ABC,∴∠CBD=∠ABC=45°,∵∠ECF是△BCD的外角,∴∠2=∠ECF﹣∠CBD=13°.故选:A.二.填空题(共7小题,满分28分)8.解:∵AB∥CD,∠1=55°,∴∠3=∠1=55°,∴∠2=180°﹣∠3=125°,故答案为:125°.9.解:∵CD平分∠ACB,∠ACB=58°,∴∠ECD=∠ACB=29°,∵DE∥BC,∴∠EDC=∠ECD=29°.故答案为:29°.10.解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要8+2=10(米).故答案为:10.11.解:如图1所示:①当∠1=∠2时,∵∠2=3∠1﹣40°,∴∠1=3∠1﹣40°,解得∠1=20°,∴∠2=20°;如图2:②当∠1+∠2=180°时,∵∠2=3∠1﹣40°,∴∠1+3∠1﹣40°=180°,解得∠1=55°,∴∠2=125°;故答案为:20°或125°.12.解:∵AB∥CD∥EF,∠ABC=125°,∠CEF=105°,∴∠BCD=∠ABC=125°,∠DCE=180°﹣∠CEF=75°,∴∠BCE=∠BCD﹣∠DCE=50°.故答案为:50°.13.解:如图,过点E作EP∥AB,∵AB∥CD,∴AB∥CD∥EP,∴∠ABE=∠BEP,∠CDE=∠DEP,∠ABC=∠BCD,∵∠ABC+∠BAD+∠AFB=180°,∴∠ABC+∠BAD=180°﹣∠AFB=84°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC,∠CDE=∠ADC,∴∠ABE+∠CDE=(∠ABC+∠BAD)=42°,∴∠BED=∠BEP+∠DEP=∠ABE+∠CDE)=42°,故答案为:42.14.解:∵AB∥PQ,∴∠ABO=∠BOP=45°,∵CD∥PQ,∴∠DCO+∠QOC=180°,即∠DCO+68°=180°,解得∠DCO=112°.故答案为:45°;112°.三.解答题(共6小题,满分64分)15.证明:∵∠B+∠BDE=180°,∴AB∥DE,∴∠BFD=∠FDE,∵∠A=∠FDE,∴∠BFD=∠A,∴DF∥AC.16.解:DE∥FC,理由如下:∵FG∥AC,∴∠1=∠ACF,∵∠1=∠2,∴∠ACF=∠2,∴DE∥FC.17.解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换).18.解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABD+∠D=180°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.19.解:(1)AB∥CD,理由如下:∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠2+∠1=180°,∠CGD+∠2=180°,∴∠1=∠CGD,∴CE∥BF,∴∠C=∠BFD,∠BEC+∠B=180°,∵∠BEC=3∠B+20°,∴∠B=40°,∵AB∥CD,∴∠B=∠BFD,∴∠C=∠B=40°.20.【提出问题】(1)证明:如图1,∵AB∥EF,∴∠1=∠3,又∵BC∥DE,∴∠2=∠3,∴∠1=∠2;(2)证明:如图2,∵AB∥EF,∴∠1=∠4,∴∠2+∠4=180°,∴∠1+∠2=180°;【得出结论】解:由(1)(2)我们可以得到的结论是:若两个角的两边分别平行,则这两个角的数量关系是相等或互补,故答案为:相等或互补;【拓展应用】(3)解:设其中一个角为x,则另一角为2x﹣60°,当x=2x﹣60°时,解得x=60°,此时两个角为60°,60°;当x+2x﹣60°=180°,解得x=80°,则2x﹣60=100°,此时两个角为80°,100°;∴这两个角分别是60°,60°或80°,100°.(4)解:如图,这两个角之间的数量关系是:相等或互补.故答案为:相等或互补.。
第1章 平行线 单元测试卷一、单选题(共10题;共30分)1. 如图,直线a ∥b ,∠1=50°,∠2=30°,则∠3的度数为( )A. 30°B. 50°C. 80°D. 100°2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40°3. 下列图形中1∠与2∠是内错角的是A. B. C.D.4. 如图,以下条件能判定GE CH ∥的是( )A. ∠FEB =∠ECDB. ∠AEG =∠DCHC. ∠GEC =∠HCFD. ∠HCE =∠AEG5. 如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A. 14°B. 15°C. 16°D. 17°6. 如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角7. 如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30°,则∠C 为( )A. 30°B. 60°C. 80°D. 120°8. 如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是( )A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线品行D. 过直线外一点有且只有一条直线与这条直线平行9. 如图,直线l 1∥l 2,AB 与直线l 1垂直,垂足为点B ,若∠ABC=37°,则∠EFC的度数为( )A. 127°B. 133°C. 137°D. 143°10. 有下列说法:①三角形ABC在平移的过程中,对应线段一定相等;②三角形ABC在平移的过程中,对应线段一定平行;③三角形ABC在平移的过程中,周长不变;④三角形ABC在平移的过程中,面积不变.其中正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共6题;共24分)11. 如图所示,与∠C构成同旁内角的有___________个.12. 如图,已知∠1=∠2,则图中互相平行的线段是___________;理由是:__________________________.13. 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是____________°.14. 如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有_____对;若∠BAC=50°,则∠EDF=_____.15. 如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.16. 如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是______(填序号);能够得到AB∥CD的条件是_______.(填序号)三、解答题(共8题;共66分)17. 如图,李老师在黑板上画了一个图形,请你在这个图形中分别找出角A的一个同位角、内错角和同旁内角,并指出是哪两条直线被哪条直线所截形成的.18. 如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠=︒,试判断AB和CD的位置关系,并说明理由.25019. 如图,张三打算在院落里种上蔬菜,已知院落为东西长32m,南北宽20m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1m,求蔬菜的总种植面积是多少?20. 如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.21. 如图,B处在A处的南偏西42°的方向,C处在A处的南偏东16°的方向,C 处在B处的北偏东72°的方向,求从C处观测A、B两处的视角∠ACB的度数.22. 如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN 的度数.23. 如图,E 点为DF 上的点,B 为AC 上的点,12C D ∠=∠∠=∠,,求证:(1)BD CE∥(2)DF AC∥24. 如图,直线l 1∥l 2,∠BAE =125°,∠ABF =85°,则∠1+∠2等于多少度?第1章平行线单元测试卷一、单选题(共10题;共30分)【1题答案】【答案】D【解析】【分析】利用平角的定义求出∠4=100°,再利用平行线的性质可得出结果.【详解】∵∠1=50°,∠2=30°,∴∠4=100°,∵a∥b,∴∠3=∠4=100°,故选D.【点睛】本题考查了平行线的性质,解题的关键是:两直线平行,同位角相等.【2题答案】【答案】B【解析】【详解】根据同位角相等,两直线平行,可得B.【3题答案】【答案】A【解析】【详解】A. <2与<1是内错角,故此选项正确;B. <2与<1的对顶角是内错角,故此选项错误;C. <2与<1 是同旁内角,故此选项错误;D. <2与<1的邻补角是内错角,故此选项错误;故选A.点睛:本题主要考查的知识点为内错角,两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.掌握内错角的定义是解答本题的关键.【4题答案】【答案】C【解析】【详解】解:∠FEB=∠ECD,∠AEG=∠DCH,∠HCE=∠AEG,它们不是直线∥;GE、CH被某条直线截得的同位角或内错角,不能判定GE CH∵∠GEC=∠HCF.且它们是直线GE、CH被直线EC截得的内错角.∥∴GE CH故选C.【5题答案】【答案】C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.【6题答案】【答案】A【解析】【详解】试题分析:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选A.考点:同位角、内错角、同旁内角.点评:正确记忆内错角的定义是解决本题的关键.【7题答案】【答案】A【解析】【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°,故选:A.【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.【8题答案】【答案】A【解析】【分析】由平行线的画法可知,∠2与∠1相等,根据图形判断出∠2与∠1的位置关系,由此可得答案.【详解】解:由平行线的画法可知,∠2与∠1相等,且∠2与∠1是一对同位角,所以画法的依据是:同位角相等,两直线平行.故选A.【点睛】本题考查的是平行线的原理,熟练掌握平行线的判定方法是解答本题的关键.【9题答案】【答案】A【解析】【详解】因为AB与直线l1垂直,垂足为点B,∠ABC=37°,所以∠CBD=90°-∠ABC=53°;又因为直线l1∥l2,所以∠CBD=∠BFG=53°(两直线平行,同位角相等),所以∠EFC=180°-∠BFG=127°.故选A【10题答案】【答案】C【解析】【详解】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;∴①、③、④都符合平移的基本性质,都正确.故选C.二、填空题(共6题;共24分)【11题答案】【答案】3【解析】【分析】据图形和同旁内角的定义,可知∠C构成同旁内角的有∠EBC、∠DBC、∠BDC,共3个.【详解】AC把EB、DC相截,与∠C构成同旁内角的有∠EBC;AC把BD、DC相截,与∠C构成同旁内角的有∠DBC;DC把BD、BC相截,与∠C构成同旁内角的有∠BDC;共3个.答案为3.【点睛】本题主要考查同旁内角的定义,注意区分同位角、内错角、同旁内角的差别.【12题答案】【答案】①. AD∥BC②. 内错角相等,两直线平行【解析】【详解】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故答案为AD∥BC,内错角相等,两直线平行.【13题答案】【答案】105°【解析】【详解】由图a知,∠EFC=155°.图b中,∠EFC=155°,则∠GFC=∠EFC-∠EFG=155°-25°=130°.图c中,∠GFC=130°,则∠CFE=130°-25°=105°.故答案为105°.点睛:在长方形的折叠问题中,因为有平行线和角平分线,所以存在一个基本的图形等腰三角形,即图b中的等腰△CEF,其中CE=CF,这个等腰三角形是解决本题的关键所在.【14题答案】【答案】①. 6,②. 50°【解析】【分析】【详解】试题分析:根据平移的性质直接得出对应边平行且相等,对应角相等得出答案即可.解:∵三角形ABC经过平移得到三角形DEF,∴图中平行且相等的线段有:AB DE,AC DF,CB FE,AD BE,EB CF,AD CF,一共有六对,∵∠BAC=50°,∴∠EDF=50°.故答案为6,50°.点评:此题主要考查了平移的性质,熟练掌握平移的性质得出是解题关键.【15题答案】【答案】46【解析】【分析】根据平行线的性质和平角的定义即可得到结论.【详解】解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为:46.【16题答案】【答案】①. ①④②. ②③⑤【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题(共8题;共66分)【17题答案】【答案】见解析【解析】【详解】分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.详解:∠A的同位角是∠BCE,是直线AB、BC被AE所截而成;∠A的内错角是∠ACF,是直线AB、GF被AC所截而成;∠A的同旁内角是∠B,是直线AC、BC被AB所截而成.点睛:此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.【18题答案】【答案】AB ∥CD ,理由见解析【解析】【分析】延长MF 交CD 于点H ,利用平行线的判定证明.【详解】解:延长MF 交CD 于点H ,∵∠1=90°+∠CHF ,∠1=140°,∠2=50°,∴∠CHF =140°-90°=50°,∴∠CHF =∠2,∴AB ∥CD .【点睛】本题主要考查了平行线的判定和外角定理,解题的关键是作出适当的辅助线求解.【19题答案】【答案】558【解析】【详解】试题分析:从平移的角度考虑本题,只需要将道路平移到边上去,即可求出总面积.试题解析:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为:()()()22021321558m -⨯-=.答:蔬菜的总种植面积是558平方米.【20题答案】【答案】∠PSQ=20°.【解析】【分析】首先利用平行线,垂线的定义和性质,然后根据平行线的性质求出∠APR=110°,∠APS =20°,再利用平行线的性质即可解题.【详解】∵AB∥EF,∴∠FRG=∠APR,∵∠FRG=110°,∴∠APR=110°,又∵PS⊥GH,∴∠SPR=90°,∴∠APS=∠APR-∠SPR=20°,∵AB∥CD,∴∠PSQ=∠APS=20°.【点睛】本题考查了平行线的性质,垂线的性质,中等难度,熟悉平行线的性质是解题关键.【21题答案】【答案】∠ACB=92°.【解析】【详解】试题分析:根据方向角的定义,即可求得∠EBA,∠EBC,∠DAC的度数,然后根据三角形内角和定理即可求解.试题解析:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠EBA=42°,∴∠BAD=∠EBA=42°,∵∠DAC=16°,∴∠BAC=∠BAD+∠DAC=42°+16°=58°,又∵∠EBC=72°,∴∠ABC=72°-42°=30°,∴∠ACB=180°-∠ABC-∠BAC=180°-58°-30°=92°.【点睛】本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.【22题答案】【答案】32.5°.【解析】【详解】试题分析:已知AB ∥CD ,∠B =65°,根据平行线的性质可求得∠BCE =115°;再由角平分线的定义求得∠ECM 的度数,即可求得∠DCN 的度数.试题解析:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补)∵ ∠B =65°,∴ ∠BCE =115°∵ CM 平分∠BCE ,∴ ∠ECM =∠BCE =57.5°∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.点睛:本题主要考查了角平分线的定义,两直线平行同旁内角互补这一性质,题目较为简单,属于基础题.【23题答案】【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先由对顶角相等,得到:14∠=∠,然后根据等量代换得到:24∠∠=,然后根据同位角相等两直线平行,得到BD CE ∥;(2)根据两直线平行,同位角相等,得到C DBA ∠=∠,然后根据等量代换得到:D DBA ∠=∠,最后根据内错角相等两直线平行,即可得到DF AC ∥.【小问1详解】∵14∠=∠,12∠=∠,∴24∠∠=,∴BD CE ∥;【小问2详解】∵BD CE∥∴C DBA ∠=∠,∵C D ∠=∠,∴D DBA ∠=∠,∴DF AC ∥.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.【24题答案】【答案】30°.【解析】【分析】过点A 作l 1的平行线,过点B 作l 2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.【详解】解:如图,过点A 向左作AC ∥l 1,过点B 向左作BD ∥l 2,则∠1=∠3,∠2=∠4.因为l 1∥l 2,所以AC ∥B D.所以∠CAB +∠DBA =180°.又因为∠3+∠4+∠CAB +∠DBA =125°+85°=210°,所以∠3+∠4=30°.所以∠1+∠2=30°.【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题关键.。
浙教版七年级下册数学第一章《平行线》单元测试卷一、选择题(共10小题;共30分)1. 在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线的位置关系是( )A . 平行B . 垂直C . 相交D . 可能垂直,也有可能平行2. 如图,在下列条件中,能判断AD ∥BC 的是 ( )A .∠DAC =∠BCAB .∠DCB +∠ABC =180° C .∠ABD =∠BDCD .∠BAC =∠ACD3. 下列说法正确的个数有( )(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A . 0个B .1个C . 2 个D .3 个4. 如图,在610 的网格中,每个小方格的边长都是1个单位长度,将 ⊿ABC 平移到 ⊿DEF 的位置,下面正确的平移步骤是 ( )A . 先向左平移5个单位长度,再向下平移2个单位长度B . 先向右平移 5个单位长度,再向下平移2个单位长度C . 先向左平移5个单位长度,再向上平移 2个单位长度D . 先向右平移 5个单位长度,再向上平移 2个单位长度5.下列说法:(1)不相交的两条线是平行线(2)在同一平面内,两条直线的位置关系有两种(3)若线段AB 与CD 没有交点,则AB ∥CD(4)若A ∥B ,B ∥C ,则A 与C 不相交第6题图 第7题图若以上的说法均不考虑重合的情况,则其中正确的说法个数为( )A .1B .2C . 3D .46.如图,AB ∥CD ,直线PQ 分别交AB 、CD 于点F 、E ,EG 是∠FED 的平分线,交AB 于点G . 若∠PEC =40°,那么∠EGB 等于( )A .80°B .100°C .110°D .120°7.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为( )A .a +bB .2a +bC .2(a +b )D .a +2b8.如图,AB ∥DE ,则下列说法中一定正确的是( )A .∠1=∠2+∠3B .∠1+∠2∠3=180°C .∠+∠2∠3=270°D .∠1-∠2+∠3=90°9.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm , 那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm10.如图,AB ∥EF ,∠C =90°,则δβα,,的关系为( )A .δαβ+=B .︒=++180δβαC .︒=-+90αδβD .︒=-+90δβα二、填空题(共6小题;共18分)11. 如图利用直尺和三角板过已知直线l 外一P 作直线l 平行线的方法,其理由是 .第10题图12.如图,直线AB被直线CD所截,若∠1=112°,∠2=68°,∠3=100°,则∠4=°.13.如图,∠1=∠2,∠A=60°,则∠ADC = °.14.如图,直线A∥B,点B在直线B上,且AB⊥BC,∠2=59°,则∠1=_________°.15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,这两个角的度数分别是 °.16.七巧板是我国祖先的一次卓越创造,在19世界曾极为流行,如图在由七巧板拼成的图形中,互相平行的线段有________对.三、解答题(共7小题;共52分)17.(6分)已知:如图所示,AB∥CD,EF交AB于点G,交CD于点F,FH平分∠EFD,交AB于点H,∠AGE=50°,求:∠BHF的度数.18.(6分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作P R⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.19.(6分)如图,A,B,C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.20.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.21.(8分)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.22.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.答案一、选择题:AAAAB CCBCD二、填空题:11.同位角相等,两直线平行12.10013.12014.3115.10,10或2,13816.7三、解答题17.∵AB∥CD ,∴∠EFC=∠AGE=50°∴∠EFD=130°∵FH 平分∠EFD∴∠HFD=65°.∵AB∥CD ,∴∠HFD+∠BHF=180°∴∠BHF=115°.18.(1)(2)如图所示.(3)∠PQC=60°.∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=180°120°=60°.19.BD∥CF.因为∠1=∠2 ,所以AD∥BF,所以∠D=∠DBF,因为∠3=∠D,所以∠3=∠DBF ,所以BD ∥CF.20.证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.21.(1)BF ∥DE.理由如下:∵∠AGF=∠ABC∴FG ∥BC∴∠1=∠3∵∠1+∠2=180°∴∠3+∠2=180 °∴∠3+∠2=180 °∴BF ∥DE(2)∵BF ∥DE,BF⊥AC∴DE ⊥AC∵∠1+∠2=180°,∠2=150°∴∠1=30°∴∠AFG=60°22.∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又BE,DF分别为∠ABC与∠ADC的平分线∴2∠ABE+2∠ADF=180°,即∠ABE+∠ADF=90°,又∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF23.解:(1)∵AB∥CD,∴∠AMN+∠CNM=180°,∵ME,NE分别是∠AMN与∠CNM的平分线,∴∠EMN =21∠AMN ,∠ENM =21∠MNC , ∴∠EMN +∠ENM =90°,即∠MEN =90°,又∵NG ⊥EN ,∴∠MEN +∠ENH =180°,∴EM ∥NG ;(2)设∠HEG =x ,则∠HGE =∠MEG =x ,∠NEH =90°﹣2x , ∵EP 平分∠FEH ,∴∠FEH =2∠PEH =2(∠PEG +x ),又∵∠FEH +∠HEN =180°,∴2(∠PEG +x )+90°﹣2x =180°,解得∠PEG =45°.。
浙教版七年级下数学第一章平行线单元测试题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共12小题,3*12=36)1.下列说法正确的是()A.如果两条直线被第三条直线所截,那么内错角必相等B.如果两条直线被第三条直线所截,那么同位角的角平分线必平行C.如果同旁内角互补,那么它们的角平分线必互相垂直D.如果两角的两边分别平行,那么这两个角必相等2.在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直3.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角4.如图,∠1和∠2不是同位角的是()A.B.C.D.5.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个6.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个7.在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是()A.B.C.D.8.我们可以用图示所示方法过直线a外的一点P折出直线a的平行线b,下列判定不能作为这种方法依据的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两条直线互相平行9.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①的边线不平行,纸带②的边线平行C.纸带①、②的边线都平行D.纸带①、②的边线都不平行10.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°11.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°12.如图,长方形ABCD中,AB=8,第一次平移长方形ABCD沿AB的方向向右平移6个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移6个单位,得到长方形A2B2C2D2,……第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1的方向平移6个单位,得到长方形A nB n∁n D n(n>2),若AB n的长度为2018,则n的值为()A.334 B.335 C.336 D.337第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)13.已知:a∥b,b∥c,则a∥c.理由是.14.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于时,AB∥CD.15.如图∠2=∠3,∠1=60°,要使a∥b,则∠4=.16.如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.17.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为.18.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为1米,则绿化的面积为m2.评卷人得分三.解答题(共8小题,66分)19.(8分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.20.(8分)完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD()∴∠ABD=2∠α()∵DE平分∠BDC(已知)∵∠BDC=()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=()∴AB∥CD()21.(8分)如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.22.(8分)如图所示,折叠一个宽度相等的纸条,求∠1的度数.23.(8分)(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.24.(8分)某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b.他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ.(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系,并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=140°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F.当∠PEQ=70°时,请求出∠PFQ的度数.25.(8分)如图(1)所示,AB∥CD,根据平行线的性质可知内错角∠B与∠C相等,观察图(2),(3)与(4),回答下列问题.①如图(2)所示,AB∥CD,试问∠E+∠C与∠B+∠F哪个大?请说明理由;②如图(3)所示,AB∥CD,试问∠E+∠G+∠C与∠B+∠H+∠F哪个大?(直接写出答案,不必说明理由)③根据第①,②小题的结论,在图(4)中,若AB∥CD,你又能得到什么结论?26.(10分)已知l1∥l2,点A,B在l1上,点C,D在l2上,连接AD,BC.AE,CE分别是∠BAD,∠BCD的角平分线,∠α=70°,∠β=30°.(1)如图①,求∠AEC的度数;(2)如图②,将线段AD沿CD方向平移,其他条件不变,求∠AEC的度数.参考答案与试题解析一.选择题(共12小题)1.C 2.C 3.A 4.D 5.C 6.C 7.A 8.D 9.B 10.C 11.D 12.B 二.填空题(共6小题)13.平行于同一直线的两条直线平行14.50°15.120°16.50 17.15°18.375 三.解答题(共8小题)19.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).20.证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:已知,角平分线的定义,2∠β,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.21.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)22.解:∵AB∥CD,∴∠1=∠3,由折叠可得∠2=∠3,∴∠1=∠2,又∵∠EFC=∠1+∠2,∴∠1=∠EFC=40°.23.解:(1)AB∥CD,理由:如图(1),延长BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD;(2)∠1=∠2+∠3.理由如下:如图(2),延长BA交CE于F,∵AB∥CD(已知),∴∠3=∠EF A(两直线平行,同位角相等),∵∠1=∠2+∠EF A,∴∠1=∠2+∠3.24.解:(1)∠PEQ=∠APE+∠CQE,理由如下:如图1,过点E作EH∥AB,∴∠APE=∠PEH,∵EH∥AB,AB∥CD,∴EH∥CD,∴∠CQE=∠QEH,∵∠PEQ=∠PEH+∠QEH,∴∠PEQ=∠APE+∠CQE;(2)如图2,过点E作EM∥AB,同理可得,∠PEQ=∠APE+∠CQE=140°,∵∠BPE=180°﹣∠APE,∠EQD=180°﹣∠CQE,∴∠BPE+∠EQD=360°﹣(∠APE+∠CQE)=220°,∵PF平分∠BPE,QF平分∠EQD,∴∠BPF=∠BPE,∠DQF=∠EQD,∴∠BPF+∠DQF=(∠BPE+∠EQD)=110°,作NF∥AB,同理可得,∠PFQ=∠BPF+∠DQF=110°;(3)如图3,过点E作EM∥CD,设∠QEM=α,∴∠DQE=180°﹣α,∵QH平分∠DQE,∴∠DQH=∠DQE=90°﹣α,∴∠FQD=180°﹣∠DQH=90°+α,∵EM∥CD,AB∥CD,∴AB∥EM,∴∠BPE=180°﹣∠PEM=180°﹣(70°+α)=110°﹣α,∵PF平分∠BPE,∴∠BPF=∠BPE=55°﹣α,作NF∥AB,同理可得,∠PFQ=∠BPF+∠DQF=145°.25.解:①如图,分别过E,F作AB的平行线EM,FN,∵AB∥CD,∴AB∥CD∥EM∥NF,∴∠ABE=∠BEM,∠MEF=∠EFN,∠NFC=∠FCD,∴∠BEF+∠C=∠B+∠EFC,∴∠E+∠C=∠B+∠F;②分别过E,F,G,H作AB的平行线EM,NF,GP,QH,和①的方法一样可得∠E+∠G+∠C=∠B+∠H+∠F;③∠E1+∠E2+…+∠E n+∠C=∠F1+∠F2+…+∠F n+∠B(开口朝左的所有角度之和与开口朝右的所有角度之和相等).26.解:(1)过点E作EF∥l1,∵l1∥l2,∴EF∥l2,∵l1∥l2,∴∠BCD=∠α,∵∠α=70°,∴∠BCD=70°,∵CE是∠BCD的角平分线,∴∠ECD=70°=35°,∵EF∥l2,∴∠FEC=∠ECD=35°,同理可求∠AEF=15°,∴∠AEC=∠AEF+∠CEF=50°;(2)过点E作EF∥l1,∵l1∥l2,∴EF∥l2,∵l1∥l2,∴∠BCD=∠α,∵∠α=70°,∴∠BCD=70°,∵CE是∠BCD的角平分线,∴∠ECD=70°=35°,∵EF∥l2,∴∠FEC=∠ECD=35°,∵l1∥l2,∴∠BAD+∠β=180°,∵∠β=30°,∴∠BAD=150°,∵AE平分∠BAD,∴∠BAE=×150°=75°,∵EF∥l1,∴∠BAE+∠AEF=180°,∴∠AEF=105°,∴∠AEC=105°+35°=140°.。
2022-2023学年浙教版七年级数学下册《第1章平行线》单元综合测试题(附答案)一.选择题(共7小题,满分28分)1.如图,在同一平面内过点M且平行于直线a的直线有()A.0条B.1条C.2条D.无数条2.下列说法:①相等的两个角是对顶角;②从直线外一点到这条直线的垂线段叫做点到直线的距离;③两条直线被第三条直线所截,同位角相等;④过一点有且只有一条直线与已知直线平行;⑤两直线的位置关系不是相交就是平行.正确的有()个.A.0B.1C.2D.33.一个含有30°角的直角三角板和直尺放置如图,∠1=40°,则∠2=()A.30°B.40°C.45°D.50°4.在下列图形中,∠1与∠2是同位角的是()A.B.C.D.5.如图将周长为9cm的△ABC沿BC边向右平移3cm,得到△DEF,连接AD,则四边形ABFD的周长为()cm.A.17B.15C.13D.126.如图,将木条a,b与c钉在一起,∠2=48°,若要使木条a与b平行,则∠1的度数应为()A.142°B.90°C.48°D.42°7.如图所示,∠AOB的两边OA,OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠ODE 的度数是()A.20°B.35°C.110°D.120°二.填空题(共7小题,满分28分)8.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动,属于平移现象的有(只填序号).9.如图,请你添加一个条件使得AD∥BC,所添的条件是.10.如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=8,BE=3,DH=2,则图中阴影部分的面积是.11.生活中常见一种折叠拦道闸,如图1所示.若想求解某些特殊状态下的角度,需将其抽象为几何图形,如图2所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=°.12.如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2﹣∠1=.13.如图,AB∥CD,且∠ABE=70°,∠ECD=150°,则∠BEC的度数为.14.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=.三.解答题(共6小题,满分64分)15.如图:已知AB∥CD,∠1=∠2=110°,∠A=50°.(1)求证:BC∥DE;(2)求∠C的度数.16.已知:如图,点D是△ABC边CB延长线上的一点,DE⊥AC于点E,点G是边AB一点,∠AGF=∠ABC,∠BFG=∠D,试判断BF与AC的位置关系,并说明理由.17.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.(1)求证:AB∥CD;(2)若∠CED=75°,求∠FHD的度数.18.如图,点D,E分别在线段AB,AC上,连接DE,DC,在线段DC上取一点F,连接EF,已知∠BDC+∠EFC=180°.(1)试判断EF与AB的位置关系,并说明理由;(2)若∠DEF=∠B,试判断∠AED与∠ACB的数量关系,并说明理由.19.如图,已知PM∥AN,且∠A=40°,点C是射线AN上一动点(不与点A重合),PB,PD分别平分∠APC和∠MPC,交射线AN于点B,D.(1)求∠BPD的度数;(2)当点C运动到使∠PBA=∠APD时,求∠APB的度数;(3)在点C运动过程中,∠PCA与∠PDA之间是否存在一定的数量关系?若存在,请写出它们之间的数量关系,并说明理由;若不存在,请举出反例.20.已知:AB∥CD.(1)如图1,求证:∠A=∠E+∠C;(2)如图2,点F在AB、CD之间,∠EF A=5∠E,AG平分∠BAF交CD于点G,若EH∥AG,∠E=30°,求∠EHG的大小;(3)如图3,点P、Q分别在AB、CD上,点M在CD下方,点N在两平行线之间.∠APM=3∠APN,∠NQD=3∠MQD,请探究∠M、∠N、∠MPN之间的关系.参考答案一.选择题(共7小题,满分28分)1.解:根据“在同一平面内,过直线外一点有且只有一条直线与已知直线平行”得:只有1条.故选:B.2.解:①相等的两个角不一定是对顶角,故原说法错误;②从直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原说法错误;③两条直线被第三条直线所截,同位角不一定相等,故原说法错误;④在不同平面上,过一点有无数条直线与已知直线平行,故原说法错误;⑤在同一平面内,任意两条直线的位置关系是相交或平行,故原说法错误;所以正确的有0个.故选:A.3.解:延长EF交CD于点M.∵AB∥CD,∴∠1=∠FMC=40°.∵∠4=90°,∠4=∠3+∠FMC,∴∠2=∠3=∠4﹣∠FMC=90°﹣40°=50°.故选:D.4.解:A选项,∠1和∠2不是同位角,故该选项不符合题意;B选项,∠1和∠2不是同位角,故该选项不符合题意;C选项,∠1和∠2不是同位角,故该选项不符合题意;D选项,∠1和∠2是同位角,故该选项符合题意;故选:D.5.解:∵△ABC的周长为9cm,∴AB+BC+AC=9cm,由平移的性质可知,AD=CF=3cm,DF=AC,∴四边形ABFD的周长=AB+BC+CF+DF+AD=9+6=15(cm),故选:B.6.解:∵∠1=∠2时,a∥b,∴若要使木条a与b平行,∠1=∠2=48°.故选:C.7.解:∵DC∥OB,∴∠ADC=∠AOB=35°,由题意可得∠ODE=∠ADC=35°.故选:B.二.填空题(共7小题,满分28分)8.解:①用打气筒打气时,气筒里活塞的运动符合平移的定义,故正确;②直线传送带上,瓶装饮料的移动符合平移的定义,故正确;③在平直的公路上行驶的汽车符合平移的定义,故正确;④随风摆动的旗帜不在同一条直线上,故错误;⑤钟表的摆动不在同一条直线上,故错误;故答案为:①②③.9.解:根据同位角相等,两条直线平行,可以添加∠EAD=∠B;根据内错角相等,两条直线平行,可以添加∠CAD=∠C;根据同旁内角互补,两条直线平行,可以添加∠BAD+∠B=180°,故答案为:∠EAD=∠B或∠CAD=∠C或∠BAD+∠B=180°.10.解:∵Rt△ABC沿BC方向平移得到Rt△DEF,∴AB=DE=8,S△ABC=S△DEF,∴阴影部分面积=梯形ABEH的面积,∵DH=2,∴EH=8﹣2=6,∴阴影部分面积=×(6+8)×3=21.故答案为21.11.解:过点B作BF∥AE,如图,∵CD∥AE,∴BF∥CD,∴∠BCD+∠CBF=180°,∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∠ABC+∠BCD=∠ABF+∠CBF+∠BCD=90°+180°=270°.故答案为:270.12.解:作OC∥m,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴OC∥n,∴∠1=∠BOC,∠2+∠AOC=180°,∠AOC=∠3﹣∠1,∴∠2+∠3﹣∠1=180°,∴∠2﹣∠1=180°﹣120°=60°,故答案为:60°.13.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABE,∠CEF+∠ECD=180°,∵∠ABE=70°,∠ECD=150°,∴∠BEF=70°,∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=70°﹣30°=40°.故答案为:40°.14.解:如图,过点A作l1的平行线AC,过点B作l2的平行线BD,则∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°,∵∠1=∠2+4°,∴∠1=17°,故答案为:17°.三.解答题(共6小题,满分64分)15.(1)证明:∵∠1+∠AFB=180°,∠1=110°,∴∠AFB=70°,∵∠2+∠FDE=180°,∠2=110°,∴∠FDE=70°,∴∠AFB=∠FDE,∴BC∥DE;(2)解:∵∠A+∠AFB+∠B=180°,∠A=50°,∠AFB=70°,∴∠B=180°﹣∠A﹣∠AFB=60°,∵AB∥CD,∴∠C=∠B=60°.16.解:BF⊥AC,理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠GFB=∠FBC,∵∠GFB=∠D,∴∠FBC=∠D,∴BF∥DE,∵DE⊥AC∴BF⊥AC.17.(1)证明:∵∠D+∠AED=180°,∴AB∥CD;(2)解:∵AB∥CD,∴∠DGF=∠EFG,∵∠C=∠EFG,∴∠DGF=∠C,∴CE∥GF,∵∠CED=75°,∴∠DHG=75°,∴∠FHD=105°.18.解:(1)EF∥AB,理由如下:∵∠BDC+∠EFC=180°,∠DFE+∠EFC=180°,∴∠BDC=∠DFE,∴EF∥AB;(2)∠AED=∠ACB,理由如下:∵EF∥AB∴∠DEF=∠ADE.∵∠DEF=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠ACB.19.解:(1)∵PM∥AN,∴∠A+∠APM=180°,∵∠A=40°,∴∠APM=140°,∵PB,PD分别平分∠APC和∠MPC,∴∠BPC=∠APC,∠DPC=∠MPC,∴∠BPD=∠BPC+∠DPC=(∠APC+∠MPC)=×140°=70°;(2)∵PM∥AN,∴∠PBA=∠BPM,∵∠PBA=∠APD,∴∠BPM=∠APD,∴∠APB=∠MPD,由(1)得:∠APM=140°,∠BPD=70°,∴∠APB=∠MPD=×70°=35°;(3)存在,∠PCA=2∠PDA,理由如下:∵PM∥AN,∴∠ACP=∠CPM,∠PDA=∠DPM,∵PD平分∠MPC,∴∠CPM=2∠DPM,∴∠PCA=2∠PDA.20.(1)证明:如图1所示,过点E作射线EF∥AB,∵EF∥AB,AB∥CD,∴EF∥CD,∴∠A=∠AEF,∠C=∠CEF,∵∠AEF=∠AEC+∠CEF,即∠A=∠AEC+∠C,∴∠A=∠AEC+∠C;(2)解:如图2所示,过点F作射线FI∥EH,交CD于点J,∵EI∥EH,EH∥AG,∴FI∥AG,∴∠E=∠EFI=30°,∵∠EF A=5∠E=150°,∴∠AFI=∠EF A﹣∠EFI=120°,∴∠F AG=180°﹣∠AFI=60°,∵AG平分∠BAF,∴∠BAG=∠F AG=60°,∵AB∥CD,∴∠AGH=∠BAG=60°,∴∠FJH=∠AGH=60°,∴∠EHG=∠FJH=60°;(3)解:如图3所示,过点N作射线NE∥AB,∵AB∥CD,∴NE∥CD,设∠APN=x,∠MQD=y,∴∠APM=3x,∠NQD=3y,∴∠PNE=∠APN=x,∠QNE=180°﹣3y,∴∠PNQ=∠PNE+∠QNE=180°+x﹣3y,∵∠MPN=∠APM﹣∠APN,∴∠MPN=2x,设PM与CD交于F,∴∠PFQ=180°﹣3x,∵∠PFQ=∠MQD+∠M,∴∠M=180°﹣3x﹣y,∴3∠M=540°﹣9x﹣3y,3∠M﹣∠PNQ=360°﹣10x=360°﹣5∠MPN,∴3∠M﹣∠PNQ+5∠MPN=360°,即3∠M﹣∠N+5∠MPN=360°.。
浙教版七年级数学下册《第1章平行线》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行;其中正确的有()A.0个B.1个C.2个D.3个2.如图,直线a,b,c被射线l和m所截,则下列关系正确的是()A.∠1与∠2是对顶角B.∠1与∠3是同旁内角C.∠3与∠4是同位角D.∠2与∠3是内错角3.如图,点E在AB的延长线上,下列条件中能够判断AD∥BC的是()A.∠1=∠3B.∠C=∠CBEC.∠C+∠ABC=180°D.∠2=∠44.小明在数学课上,将文具盒中的直角三角板与一直尺放置如图,若测得∠AEF=50°,那么∠BDA=()A.20°B.40°C.50°D.60°5.已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为()A.30°B.60°C.30°或60°D.60°或120°6.已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°)按如图所示方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是()A.38°B.45°C.58°D.60°7.如图,l1∥l2∥l3,∠1,∠2,∠3如图所示,则下列各式正确的是()A.∠3=∠1+∠2B.∠2+∠3﹣∠1=90°C.∠1﹣∠2+∠3=180°D.∠2+∠3﹣∠1=180°8.如图,某沿湖公路有两次拐弯,如果第一次的拐角∠A=130°,第二次的拐角∠B=160°,第三次的拐角为∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是()A.130°B.140°C.150°D.160°二.填空题(共8小题,满分40分)9.如图,△DEF是Rt△ABC沿着BC平移得到的.如果AB=8,BE=4,DH=3,则HE=,阴影部分的面积.10.如图所示,将三角尺按如图所示放置在一张长方形纸片上,∠EGF=90°,∠FEG=30°,∠1=130°,则∠BFG的度数是.11.如图,直线m∥n.若∠1=40°,∠2=30°,则∠3的大小为度.12.已知如图,AB∥CD,∠A=130°,∠D=25°,那么∠AED=°.13.如图,AB∥CD,∠ABE=60°,∠E=12°,则∠D=度.14.如图,某酒店重新装修后,准备在大厅主楼梯上铺设红色地毯.已知这种地毯每平方米售价160元,主楼梯道宽2.5m,其侧面如图所示,则购买地毯至少需要元.15.如图,∠ABC+∠C+∠CDE=360°,直线FG分别交AB、DE于点F、G.若∠1=110°,则∠2=.16.如图,AB∥CD,AD与BC相交于点F,BE平分∠ABC,DE平分∠ADC,∠AFB=96°,则∠BED的度数为度.三.解答题(共5小题,满分40分)17.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°.(1)求∠DEF的度数;(2)求∠F的度数.18.如图:已知,∠A=120°,∠ABC=60°,BD⊥DC于点D,EF⊥DC于点F,求证:(1)AD∥BC;(2)∠1=∠2.19.如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.20.综合探究:已知,AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=40°,求∠MGN+∠MPN的度数.21.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.参考答案一.选择题(共8小题,满分40分)1.解:①两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角,原说法错误,不符合题意;②在同一平面内,过一点有且只有一条直线与已知直线垂直;原说法错误,不符合题意;③两直线平行,同位角相等;原说法错误,不符合题意;④经过直线外一点,有且只有一条直线与这条直线平行;原说法正确,符合题意;其中正确的有1个,故选:B.2.解:A、∠1与∠2不是对顶角,原说法错误,故此选项不符合题意;B、∠1与∠3不是同旁内角,原说法错误,故此选项不符合题意;C、∠3与∠4是同位角,原说法错误,故此选项不符合题意;D、∠2与∠3不是内错角,原说法错误,故此选项不符合题意;故选:C.3.解:由∠2=∠4,可得AD∥CB;由∠1=∠3或∠C=∠CBE或∠C+∠ABC=180°,可得AB∥DC;故选:D.4.解:由图可得,∠AEF=50°,又∵DC∥EF,∴∠BAC=50°,∵∠B=30°,∴∠BDA=50°﹣30°=20°,故选:A.5.解:如图1,∵a∥b,∴∠1=∠α,∵c∥d,∴∠β=∠1=∠α=60°;如图(2),∵a∥b,∴∠α+∠2=180°,∵c∥d,∴∠2=∠β,∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D.6.解:如图,过点B作BD∥a,∴∠ABD=∠1=22°,∵a∥b,∴BD∥b,∴∠2=∠DBC=∠ABC﹣∠ABD=60°﹣22°=38°.故选:A.7.解:∵l1∥l2∥l3,∴∠1=∠2+∠4,∠4+∠3=180°,∴∠1﹣∠2+∠3=180°,故选:C.8.解:过点B作BE∥AD,∵AD∥CF,∴BE∥AD∥CF,∴∠ABE=∠A=130°,∠EBC+∠C=180°,∵∠ABC=160°,∠ABE+∠EBC=∠ABC,∴∠EBC=30°,∴∠C=150°.故选:C.二.填空题(共8小题,满分40分)9.解:∵Rt△ABC沿BC方向平移得到Rt△DEF,∴AB=DE=8,S△ABC=S△DEF,∴阴影部分面积=梯形ABEH的面积,∵DH=3,∴EH=8﹣3=5,∴阴影部分面积=×(5+8)×4=26.故答案为5,26.10.解:∵AD∥BC,∠1=130°,∴∠BFE=180°﹣∠1=50°,又∵∠EGF=90°,∠FEG=30°,∴∠EFG=60°,∴∠BFG=50°+60°=110°,故答案为:110°.11.解:如图,∵m∥n.∠1=40°,∴∠4=∠1=40°,∵∠3是图中三角形的外角,∠2=30°,∴∠3=∠2+∠4=70°.故答案为:70.12.解:如图:过E作EF∥AB,则AB∥EF∥CD,∵∠A=130°,∴∠1=180°﹣130°=50°,∵∠D=25°,∴∠2=∠D=25°,∴∠AED=50°+25°=75°,故答案为:75.13.解:过点E作EH∥AB,如图,∵EH∥AB,∴∠HEB+∠ABE=180°.∵∠ABE=60°,∴∠HEB=120°.∴∠HED=∠HEB+∠FED=120°+12°=132°.∵EH∥AB,AB∥CD,∴HE∥CD.∴∠HED+∠D=180°.∴∠D=180°﹣132°=48°.故答案为:48.14.解:由题意得:2.7+5.3=8(m),8×2.5×160=3200(元),∴购买地毯至少需要3200元,故答案为:3200.15.解:如图,过点C作CH∥AB,则∠ABC+∠BCH=180°,∵∠ABC+∠C+∠CDE=360°,即∠ABC+∠BCH+∠DCH+∠CDE=360°,∴∠DCH+∠CDE=180°,∴CH∥DE,∴AB∥DE,∴∠DGF=∠1=110°,∴∠2=180°﹣110°=70°,故答案为:70°.16.解:如图,过点E作EP∥AB,∵AB∥CD,∴AB∥CD∥EP,∴∠ABE=∠BEP,∠CDE=∠DEP,∠ABC=∠BCD,∵∠ABC+∠BAD+∠AFB=180°,∴∠ABC+∠BAD=180°﹣∠AFB=84°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC,∠CDE=∠ADC,∴∠ABE+∠CDE=(∠ABC+∠BAD)=42°,∴∠BED=∠BEP+∠DEP=∠ABE+∠CDE)=42°,故答案为:42.三.解答题(共5小题,满分40分)17.解:(1)∵AB∥CD,∠CDE=119°,∴∠CDE=∠BED=119°,∵EF平分∠BED,∴∠DEF=∠BED=59.5°;答:∠DEF的度数为59.5°.(2)∵∠AGF=130°,∴∠FGB=50°,由(1)知,∠DEF=59.5°,∵EF平分∠BED,∴∠DEF=∠BEF=59.5°,又∵∠BEF=∠FGB+∠F,∴∠F=9.5°.答:∠F的度数为9.5°.18.证明:(1)∵∠A=120°,∠ABC=60°,∴∠A+∠ABC=180°.∴AD∥BC;(2)∵AD∥BC,∴∠1=∠DBC.∵BD⊥DC,EF⊥DC,∴∠BDF=90°,∠EFC=90°.∴∠BDF=∠EFC=90°.∴BD∥EF.∴∠2=∠DBC.∴∠1=∠2.19.证明:(1)∵∠CDG=∠B,∴DG∥AB,∴∠1=∠BAD,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH∥AD;(2)由(1)得:∠1=∠BAD,EH∥AD,∴∠1=∠H,∴∠BAD=∠H.20.解:(1)如图1,过点G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵GM⊥GN,∴∠MGN=∠MGH+∠HGN=∠AMG+∠CNG=90°;答:∠AMG+∠CNG的度数为90°;(2)如图2,过过点G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=40°,∴∠MGK=∠BMG=40°,∵MG平分∠BMP,∴∠GMP=∠BMG=40°,∴∠BMP=80°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=40°+α,∠MPN=80°﹣α,∴∠MGN+∠MPN=40°+α+80°﹣α=120°.21.(1)证明:过点C作CM∥AB,如图1,∴∠ABC=∠BCM,∵AB∥ED,∴∠CDE=∠DCM,∵∠BCM=∠BCD+∠DCM,∴∠ABC=∠BCD+∠CDE;(2)解:∠ABC﹣∠F=90°,理由:过点C作CN∥AB,如图2,∴∠ABC=∠BCN,∵AB∥ED,∴CN∥EF,∴∠F=∠FCN,∵∠BCN﹣∠BCF+∠FCN,∴∠ABC=∠BCF+∠F,∵CF⊥BC,∴∠BCF=90°,∴∠ABC=90°+∠F,即∠ABC﹣∠F=90°;(3)延长HG交EF于点Q,过点G作GP∥EF,如图3,∴∠BGD=∠CGQ,∵AB∥DE,∴∠ABH=∠EQG,∵GP∥EF,∴∠EQG=∠PGQ,∠EFG=∠PGF,∴∠PGQ=∠ABH,∴∠BGD﹣∠CGF=∠CGQ﹣∠CGF=∠FGQ,∵∠FGQ=∠PGQ﹣∠PGF,∴∠FGQ=∠ABH﹣∠EFG,∵BH平分∠ABC,FG平分∠CFD,∴∠ABH=∠ABC,∠EFG=∠CFD,∴∠FGQ=∠ABC﹣∠CFD=(∠ABC﹣∠CFD),由(2)可得:∠ABC﹣∠CFD=90°,∴∠FGQ=×90°=45°,即∠BGD﹣∠CGF=45°.。
第一章 平行线单元检测一、选择题(每题3分,共30分)1.下列所示的四个图形中,∠1和∠2是同位角的是( )A. ②③B. ①②③C. ①②④D.①④2.如图,直线c 与直线a 、b 相交,且a ∥b ,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为( )A .0个B .1个C .2个D .3个3.两条直线平行被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交 4.如右图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD ( ) A. ∠3=∠4 B. ∠1=∠4C. ∠D=∠DCED. ∠D+∠ACD=180° 5.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C. 第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130° 6.两个角的两边分别平行,其中一个角是60°,则另一个角是 ( ) A. 60° B. 120° C. 60°或120° D. 无法确定7.观察下图,在下图四幅图案中,能通过图案(1)的平移得到的是 ( )8.如图,直线c 截直线a 、b ,已知a ∥b 则下列式子中一定成立的是( ) A .∠1=∠5 B .∠1=∠4 C .∠1=∠3 D .∠1=∠2B EC FDA①2121②12③12④(第4题图)(1) A B C D (第2题图)9.如图,将周长为10的三角形ABC 沿BC 方向平移2个单位,得到三角形DEF ,则四边形ABFD 的周长为 ( ) A.10 B.12 C.14 D.1610.如图,在△ABC 中,∠C =90°。
第一章平行线单元达标测试题
一、选择题
1.两条直线被第三条直线所截,那么下面说法正确的是()
A、同位角相等
B、内错角相等
C、同旁内角互补
D、以上都不对
2.下列说法正确的有( )
①不相交的两条直线是平行线; ②在同一平面内,两条直线的位置关系有两种; ③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.
A.1个
B.2个
C.3个
D.4个
3.下列结论正确的是()
A、不相交的直线互相平行
B、不相交的线段互相平行
C、不相交的射线互相平行
D、有公共端点的直线一定不平行4.如图,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;
③∠3=∠2中,正确的个数为()
A.0个 B.1个 C.2个 D.3个
(第4题) (第5题) (第6题) 5.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°6.如图所示,在下列四组条件中,能判定AB∥CD的是()
A.∠1=∠2
B.∠ABD=∠BDC
C.∠3=∠4
D.∠BAD+∠ABC=180°
7.如图所示,如果∠D=∠EFC,那么( )
A.AD∥BC
B.EF∥BC
C.AB∥DC
D.AD∥EF
F
E
D
C
B
A
(第7题) (第8题) (第10题)
8.如图,AB∥ED,∠ECF=70°,则∠BAF的度数为()
A.130° B.110° C.70° D.20°
9.如图所示,下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )
10.如图,在△ABC中,∠C=90°。
若BD∥AE,∠DBC=20°,则∠CAE的度数是()
A、40°
B、60°
C、70°
D、80°
二、填空题
11.经过直线外一点,一条直线与这条直线平行。
12.如果两条直线都与第三条直线平行,那么这两条直线相互。
13.如图,直线a∥b,直线c与直线a、b相交,若∠1=47º,则∠2的度数为_______。
c
2
1
b
a
(第13题) (第14题) (第15题) 14.如图,a⊥c , b⊥c , ∠1=70 , 则∠2=________
15.如图,已知CD平分∠ACB,DE∥AC,∠1=0
30。
则∠2=度。
16.如图,已知∠1=∠2=80°,∠3=102°,则∠4=。
A B
C D
F
E
1
2
(第16题) (第17题) (第18题) 17.如图,C岛在A岛的北偏东50o方向,C岛在B岛的北偏西40o方向,则从C岛看A,B两岛的视角∠ACB等于__________。
18.如图所示,FE⊥CD,∠2=26°,猜想当∠1=________时,AB∥CD.
三、解答题
19.填空并完成推理过程.
(1)如图(1),ΘEF
AB//,(已知)
∴+
∠A=o
180.( )
BC
DE//
Θ,(已知)
DEF
∠
∴=,( ) ADE
∠=;( ) (2)如图(2),已知BC
AB⊥,CD
BC⊥,2
1∠
=
∠.试判断BE与CF 的关系,并说明你的理由.
解:CF
BE//,理由是:BC
AB⊥
Θ,CD
BC⊥.(已知)
∴==o
90.( )
2
1∠
=
∠
Θ,( )
2
1∠
-
∠
=
∠
-
∠
∴BCD
ABC,即BCF
EBC∠
=
∠.
∴//;(
(3) 如图(3),E点为DF上的点,B点为AC上的点,2
1∠
=
∠,
D
C∠
=
∠,试说明:DF
AC//.
解:2
1∠
=
∠
Θ,(已知)3
1∠
=
∠,( )
32∠=∠∴,(等量代换) ∴ // ,
( )
ABD C ∠=∠∴,( ) 又D C ∠=∠Θ,(已知)
ABD D ∠=∠∴,( )
DF AC //∴.( )
20.如图所示,已知AD 、BC 相交于O ,∠A=∠D,试说明一定有∠C=∠B.
21.如图:把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG=24㎝,WG=8㎝,WC=6㎝,求阴影部分的面积。
22.如图,A 、B 、C 三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD 与
CF 的位置关系,并说明理由.
23.已知,AB∥CD,分别探讨四个图形中∠APC,∠PAB,∠PC
D的关系,请你从所得四个关系中任选一个加以证明. 参考答案 一、选择题
1.D 2.B 3.D 4.D 5.C 6.B 7.D 8.A 9.D 10.C 10题:过点C 作CF∥BD,根据两直线平行,内错角相等即可求解. 过点C 作CF∥BD,则CF∥BD∥AE.
(1)
P
D
C
B
A
(4)
P D
C
B
A
(2)
P
D
C
B
A
∴∠BCF=∠DBC=20°,
∵∠C=90°,
∴∠FCA=90-20=70°.
∵CF∥AE,
∴∠CAE=∠FCA=70°.
故选C。
二、填空题
11.有且只有 12.平行 13.133º 14.70 15.60° 16.78 17.90o 18.64°
三、解答题
19.(1)∠AEF;两直线平行,同旁内角互补;∠CFE;两直线平行,内错角相等;∠B;两直线平行,同位角相等;
(2)∠ABC;∠BCD;垂直的定义;已知;BE;CF;内错角相等,两直线平行;
(3)对顶角相等;BD;CE;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.
20.因为∠A=∠D(已知),
所以AB∥CD(内错角相等,两直线平行),
所以∠C=∠B(两直线平行,内错角相等)
21.2
168cm
22、BD∥CF理由如下:
∵∠1=∠2,∴AD∥BF,∴∠D=∠DBF.
∵∠3=∠D,∴∠DBF=∠3,∴BD∥CF.
23.略。