2020年物理竞赛—量子力学A版—第四章 量子力学中的力学量 算符和力学量的关系17PPT 课件
- 格式:ppt
- 大小:542.50 KB
- 文档页数:17
第四章态叠加原理及力学量的算符表示4-1 下列算符哪些是线性的?为什么? (1) (2) ( )2 (3) (4)4-2 线性算符具有下列性质:,式中C是复数。
下列算符哪些是线性的?(1)(2)(3)(4)(5)(6)4-3 若都是厄米算符,但,试问:(1)是否厄米算符?(2)是否厄米算符?4-4 证明下列算符哪些是厄米算符:4-5 (1)证明(2)4-6试判断下述二算符的线性厄米性,(1)(2)4-7 试证明任意一个算符不可能有两个以上的逆。
又问,算符的情况下,是什么样的算符?4-8 对于一维运动,求的本征函数和本征值。
进而求的本征值。
4-9 若算符有属于本征值为的本征函数,且有:和,证明和也是的本征函数,对应的本征值分别是和。
4-10 试求能使为算符的本征函数的值是什么?此本征函数的本征值是什么?4-11 如果为线性算符的一个本征值,那么为的一个本征值。
一般情况下,设为的多项式,则便为的一个本征值。
试证明之。
4-12 试证明线性算符的有理函数也是线性算符。
4-13 当势能改变一个常数C时,即时,粒子的波函数与时间无关的那部分改变否?能量本征值改变否?4-14 一维谐振子的势能,处于的状态中,其中,问:(1)它的能量有没有确定值?若有,则确定值是多少?(2)它的动量有没有确定值?4-15 在时间时,一个线性谐振子处于用下列波函数所描写的状态:式中是振子的第n个时间无关本征函数。
(a)试求C3的数值。
(b)写出在t时的波函数。
(c)在时振子的能量平均值是什么?在秒时的呢?4-16 证明下列对易关系:,4-17 证明下列对易关系:。
量子力学中的量子力学力学量的算符关系量子力学是研究微观粒子行为和性质的理论框架,它描述了自然界中微观领域中的物质和能量的行为方式。
在量子力学中,量子力学力学量的算符关系是描述物理量之间的对易关系或反对易关系的数学表达式。
这些算符关系是量子力学理论的基石,对于量子力学系统的描述和计算具有重要意义。
一、量子力学力学量的基本概念在量子力学中,力学量指的是描述物理系统状态的特性,比如位置、动量、角动量、能量等。
这些力学量由相应的物理量算符来表示,量子态的演化和测量是通过这些算符的操作来实现的。
在量子力学中,力学量算符是一种特殊的线性算符,它们作用于量子态(波函数或矢量表示)来得到相应的测量结果。
力学量算符的本征态对应于测量得到的确定值,而本征值则是该测量值对应的物理量数值。
二、量子力学力学量的算符关系量子力学力学量的算符关系可以通过对易关系或反对易关系来描述。
对于可同时测量的力学量,它们的算符满足对易关系;而对于不可同时测量的力学量,它们的算符满足反对易关系。
1. 对易关系对易关系表示两个力学量算符的乘积与其反序乘积之间的关系。
对于两个可同时测量的力学量A和B,它们的算符满足对易关系:[A, B] = AB - BA = 0其中[A, B]表示算符的对易子。
对于满足对易关系的力学量算符,它们的本征态可以共享相同的基础。
2. 反对易关系反对易关系描述的是两个不可同时测量的力学量算符之间的关系。
对于不可同时测量的力学量A和B,它们的算符满足反对易关系:{A, B} = AB + BA = 0其中{A, B}表示算符的反对易子。
反对易关系的存在意味着这两个力学量之间存在一定的互换关系,即测量一个力学量会影响到另一个力学量的测量结果。
三、具体力学量的算符关系1. 位置和动量在量子力学中,位置算符和动量算符是最基本的力学量。
它们的算符关系由玻尔-海森堡不确定关系给出:Δx · Δp ≥ h/4π其中Δx表示位置的不确定度,Δp表示动量的不确定度,h为普朗克常数。
第四章:力学量用算符表示(2)证明以下诸式成立:(1)(证明)根据坐标分角动量对易式为了求证该矢量关系式,计算等号左方的矢量算符的x分量。
以及看到由于轮换对称性,得到特征的公式。
(2)(证明)证法与(1)类似,但需先证分量与分量的对易律同理可证明其他轮换式,由此得普通式取待证的公式等号左方的x 分量,并用前一式加以变形:根据轮换对称性,证明待证式成立。
(3)注意 与x 没有共同坐标。
(4)注意没有共同坐标,因此可以对易即,故)()(2222z y x x z y l l p p l l A +-+=zz x x z z x x z z y y x x y y x x y y x x x x y x x y l l p p l l p p l l l l p p l l p p l l l p p l l p p l )()()()(2222-+-+-+-=-+-=z x z x z z y x y x y y l p l p l l l p l p l l ],[],[],[],[+++=}{z y y z y z z y l p p l l p p l hi ++--= )}(){(y z z y y z z y p l p l l p l p hi ---=})(){(x x p l l p hi*-*=(3) l为粒子角动量。
F 为另一力学量,证明: )(],[pF p r F r hi F l ∂∂*+∂∂*-=(6)证明是厄密算符证明)本题的算符可以先行简化,然后判定其性质是厄密算符,因此原来算符也是厄密的。
另一方法是根据厄密算符的定义:用于积分最后一式: 前式=说明题给的算符满足厄密算符定义。
(7)证(A 等是实数)是厄密算符(证明)此算符 F( ) 不能简化,可以用多次运算证明,首先假定已经证明动量是厄密算符,则运用这个关系于下面的计算:τϕτψτϕτψd P A d P F n nˆ)ˆ(∑•≡•⎰⎰⎰⎰⎰⎰⎰⎰⎰•∑=>ττϕψd PA n nn n ˆ0⎰⎰⎰-•∑=τϕψd P PA n n )ˆ(ˆ1 ⎰⎰⎰-•∑=τϕψd P PA n n )ˆ()ˆ(1 ⎰⎰⎰-•∑=τϕψd P PP A n n )ˆ(ˆ)(2 τϕψd P P P PA n n )ˆ(ˆ)ˆˆ(3-•∑= ⎰⎰⎰-•∑=τϕψd P P PA n n )ˆ(ˆ)ˆ(32 τϕψd P P PA n n )ˆ(ˆ)ˆ(42-•∑= ⎰⎰⎰-•∑=τϕψd P P PA n n )ˆ(ˆ)ˆ(42 ⎰⎰⎰•=ττϕψd PF ])ˆ([ )ˆ(PF 满足厄密算符的定义。
算符即运算规则算符即运算规则。
它作用在一个函数ψ(x)(x)上即是对上即是对ψ(x)(x)进行某进行某种运算种运算,,得到另一个函数ϕ(x)§1.7 1.7 量子力学中的力学量和算符量子力学中的力学量和算符例:)()(ˆx x Fϕψ=)()(ˆx xf x f x =)()(ˆx f x f I =dxd D =ˆ1、定义2、乘法与对易算符的乘法一般不服从交换律:)ˆ(ˆˆψψB A BA ≡AB B Aˆˆˆˆ≠例如:则算符的对易式可记为则算符的对易式可记为::若对任意若对任意ΨΨ,都有:则称和对易:引入记号: ψψA B B Aˆˆˆˆ=A ˆB ˆ]ˆ,ˆ[ˆˆˆˆB A A B B A≡−0]ˆ,ˆ[=B AI x Dˆ]ˆ,ˆ[=h i p xx =]ˆ,ˆ[易证:可定义算符的可定义算符的n n 次方为:A A AA n ˆˆˆˆ⋅⋅⋅=可定义算符的多项式和算符的函数可定义算符的多项式和算符的函数。
例如:3、线性算符设C 1, C 2为常数为常数,,若算符满足:则称其为线性算符则称其为线性算符。
量子力学态叠加原理要求力学量算符必须是线性算符例如例如,,下列算符为线性算符下列算符为线性算符::22112211ˆˆ)(ˆΨ+Ψ=Ψ+ΨF C F C C C F x pH y x x ˆ,ˆ,,2∂∂∂∂∂算符的本征值方程:4、本征函数本征函数、、本征值λ为算符的本征值的本征值,,为算符的本征值为λ的本征函数的本征函数。
例如,e 2x 是微商算符的本征函数:)()(ˆx x Fλψψ=)(x ψFˆF ˆF ˆ定态薛定谔方程:它是哈密顿算符的本征方程它是哈密顿算符的本征方程,,波函数ψ 是哈密顿算符的本征函数征函数,,能量E 是哈密顿算符的本征值是哈密顿算符的本征值。
例如例如::ψψE H=ˆ2211ˆˆΨ=ΨΨ=ΨλλF F )(ˆˆ)(ˆ221122112211Ψ+Ψ=Ψ+Ψ=Ψ+ΨC C F C F C C C F λ则:狄拉克符号:〉≡ψψ|)(r v |)(*ψψ〈≡r r ∗〉〈=〉〈≡∫ψϕϕψτϕψ||)()(*d r r v v一个算符如果满足如下关系一个算符如果满足如下关系,,则称为厄米算符则称为厄米算符,:,:其中积分遍及整个空间其中积分遍及整个空间,,函数ψ, ϕ是任意的品优函数是任意的品优函数。