除氧器液位计改造及除氧器水位调节共20页
- 格式:ppt
- 大小:2.53 MB
- 文档页数:20
某660 MW机组除氧器水位调节系统逻辑优化
谭再奎
【期刊名称】《流体测量与控制》
【年(卷),期】2024(5)2
【摘要】目前大部分电厂除氧器水位调节常用的节流方式,是由凝泵变频控制压力,除氧器水位调节由上水调节门通过节流方式实现,进而改变工况的调节流量,减少局部阻力损失的增加。
该种控制方式会增加电厂凝结水泵耗能,并且由于长期使用阀门节流,会造成管路性能曲线改变,使除氧器及凝汽器水位较难控制。
为此,以某火电厂660 MW机组为研究对象,对除氧器水位调节模拟量控制系统(MCS)逻辑进行优化,采用在保证凝结水用户最低压力要求(低旁减温水、给泵密封水)的前提下,尽量使除氧器水位调节阀开到100%,用凝泵变频调节除氧器水位。
这样既保证了凝结水泵对除氧器水位的最佳上水量,也保证了凝结水泵电耗的最优化运行,使凝结水调整完全采用凝结水变频器进行调节,从而减少凝结水系统的节流损耗。
【总页数】4页(P34-36)
【作者】谭再奎
【作者单位】重庆松藻电力有限公司
【正文语种】中文
【中图分类】TM621
【相关文献】
1.除氧器水位调节系统优化探讨——某厂300MW机组凝结水泵定变速运行控制
2.660 MW机组除氧器水位控制方式逻辑优化
3.1000 MW 机组除氧器水位调节优化
4.1000MW机组凝泵变频改造及除氧器水位全程自动控制逻辑设计与优化
5.除氧器水位调节系统优化探讨--某厂300 MW机组凝结水泵定变速运行控制
因版权原因,仅展示原文概要,查看原文内容请购买。
除氧器异常运行调整方案燃机车间王鹏除氧器作为发电流程中的一个关键设备,需要工作人员认真仔细,熟练掌握设备性能和处理突发事故的能力,才能保证其安全经济稳定运行。
下面就除氧器运行中经常出现的异常情况确定调整方案。
1、除氧器水箱水位保持在1.2m——1.6m之间,为保证除氧器水箱最大变化容量,水位宜保持在1.4±0.1m。
除氧器压力保持0.03±0.01Mpa。
并列除氧器汽平衡门全开,保证并列除氧器压力平衡。
温度尽量调整其在工作压力下的饱和温度下工作。
低温,水质起不到除氧作用易对设备氧化腐蚀,高温则易造成给水泵气蚀的危险。
2、发现水位、压力变化,要及时调整。
调整时阀门开关幅度要尽量小一些,正常调整严禁大开大关。
高水位时严禁用放水门调整水位,以防止带来除氧器断水,造成停炉的危险。
除氧器并列运行时禁止用开关下水门来平衡水位,防止水压不稳和锅炉上水不畅。
3、并列除氧器出现互相压水,应及时关小压力较高的除氧器进汽门。
若调整无效或压水情况较严重,应全关所有运行除氧器进汽门,通知热化车间开大除盐水补水量,待压力下降后,再进行调整。
4、除氧器压力出现大幅度波动,且调整无效时,应立即关闭进汽门,检查集中供热凝结水量、热化除盐水量是否波动。
5、正常运行中,除氧器溶氧不合格,应检查水温是否是相应压力下的饱和温度,压力是否波动,集中供热凝结水来水是否稳定,3台除氧器除盐水进水总量是否在20T/h以内。
6、除氧器最主要的设备缺陷就是振动。
运行中主要注意以下几点:(1)防止高水位高压力。
(2)除氧器和汽动泵投运时抽汽管道充分疏水。
(3)除氧器长期振动很可能就是除氧器内部问题,例如零部件脱落、喷嘴堵塞、筛盘倾斜等,应及时联系检修处理。
0正常运行中,除氧器出现振动,应关小进汽门直至全关,检查进水是否波动,待振动消除后,再逐渐开启进汽门。
7、正常运行中,除氧器水封冲开,应查明原因,此时须将除氧器压力降至零后,水封才能封住。
一、除氧器的作用和工作原理简介除氧器的主要作用是除去给水中的氧气,保证给水的品质。
水中溶解的氧气,会使与水接触的金属腐蚀,温度越高腐蚀就越明显;在热交换器中若有气体聚集就会妨碍传热过程的进行,降低设备的传热效果。
因此水中溶解有任何气体都是不利的,尤其是氧气,它将直接威胁设备的安全运行。
除氧器本省又是给水回热系统中的一个混合式加热器,同时高压加热器的疏水、化学补水及全厂各处水质合格的疏水、排气等均可通入除氧器汇总并加以利用,减少发电厂的汽水损失。
当水和某种气体混合物接触时,就会有一部分气体融解到水中去。
气体的溶解度就是表示气体溶解于水中的数量,以毫克/升计值,它和气体的种类以及它在水面的分压力、和水的温度有关。
在一定的压力下,水的温度越高,气体的溶解度就越小;反之,气体的溶解度就越大。
同时气体在水面的分压力越高,其溶解度就越大;反之,其溶解度也越低。
天然水中常含有大量溶解的氧气,可达10毫克/升。
汽轮机的凝结水可能融有大量氧气,因为空气能通过处于真空状态下的设备不严密部分渗入进去。
此外,补充水中也含有氧气及二氧化碳等其他气体。
液面上气体混合物的全压力中,包括有液体蒸汽的分压力。
将水加热时,液面附近水蒸气的分压力就会增加,相应的液面附近其他气体的分压力就会降低。
当水加热到沸点时,蒸汽的分压力就会接近液面上的全压力,此时液面上其他气体的分压力几乎接近于零,于是这些气体将完全自水中清除出去。
要达到这一点,不仅要将水加热到沸点,还要使液面上没有这些气体存在,即将逸出的气体随时排走。
除氧器的工作原理即利用蒸汽对水进行加热,使水达到一定压力下的饱和温度,即沸点。
这时除氧器的空间充满着水蒸汽,而氧气的分压力逐渐降低接近为零,溶解于水的氧气将全部逸出,以保证给水含氧量合格。
在高参数的电厂,一般采用0.59兆帕的除氧器。
这样可以减少价格昂贵而运行不十分可靠的高压加热器的数目。
高参数的锅炉给水温度一般为230~250摄氏度。
除氧器水位调节系统简介王荣鑫一、除氧器水位调节的意义:除氧器水箱用以保证锅炉有一定的给水储备量,一般要求能满足锅炉额定负荷下连续运行15—20min的给水量。
水位太低因储备量不足而危及锅炉的安全运行,还可能使给水泵入口汽化,导致给水泵不能正常工作;水位太高,可能淹没除氧头而影响除氧效果。
一般要求水位在规定值±100mm—±200mm范围内,所以除氧器设计有水位自动控制系统,并有高、低水位异常报警和连锁保护。
将给水加热到相应除氧器内压力的饱和温度,可以保证气体从水中分离出来,很好地清除氧气。
给水在除氧器中清除氧气的主要机理是加热除氧。
除氧器除了通过用汽轮机抽汽加热给水到沸腾状态以除氧外,还担负着向给水泵不断供水的任务,为了保证给水泵安全运行,即要求避免给水泵入口发生汽化或缺水事故,一定要保证除氧器下部的给水箱保持规定的水位。
除氧器水位过低,除了影响给水泵安全运行之外,甚至会威胁锅炉上水,造成停炉事故;除氧器给水箱水位过高,汽轮机汽封将上水,抽汽管将发生水击,威胁汽轮机的安全运行;因此要设计可靠的除氧器水位自动调节系统。
二、除氧器水位自动调节原理:除氧器水位自动调节系统根据热力系统设计的不同有不同的设计思路。
中小型机组有的采用单冲量单回路调节系统,通过控制化学水补给水门或者低压加热器至除氧器的调节阀来实现,也有采用三冲量控制系统。
大型机都采用全程控制系统,当给水流量从零到一定值(如10%额定负荷)时,系统单冲量水位控制系统,当给水流量大于一定值(如10%额定负荷)时,系统为三冲量水位控制系统,即水位控制器接受三个输入信号:水位信号、化学水流量、给水流量。
两种方式的切换通过逻辑切换实现,控制主凝结水到除氧器的进水阀。
大型机组的除氧器水位为全程控制系统,当给水流量小时,采用单冲量水位控制系统,当给水流量大时切换至三冲量水位控制系统。
三冲量分别为除氧器水位、给水流量、凝结水流量。
下图中为除氧器水位全程控制图。