关于钢筋混凝土多层框架房屋结构设计的注意事项
- 格式:docx
- 大小:29.12 KB
- 文档页数:3
浅议框架结构设计原则及应注意的问题中图分类号:s611 文献标识码:a 文章编号:钢筋混凝土框架结构是有梁和柱组成承重体系的结构,是一种抗震性能、抗风性能比较好的结构体系。
这种体系的侧向刚度小,建筑的内外墙处理十分灵活,易于满足建筑物设置大空间的要求,因此在工业与民用建筑中被广泛使用。
一、框架结构设计原则1.刚柔结合。
合理的建筑结构体系应该是刚柔结合的。
结构太刚则变形能力差,强大的破坏力瞬间袭来时,需要承受的里很大,容易造成局部受损最后全部毁坏;而太柔的结构虽然可以很好的消减外力,但容易造成变形过大而无法使用甚至全体倾覆。
柔多了虽然造价可以降低但是必然产生变形以适应外力,太柔的结果必然导致太大的变形,甚至会导致立足不稳而失去根本。
2.多道设防。
安全的结构体系应当是躲到设防的,如破坏力来临时,所有抵抗外力的结构都在通力合作,前仆后继。
这时候,如果吧“生存”的希望全部寄托在某单一的构件上,是非常不可取的。
因此建筑结构设计中多肢墙要比单片墙好,框架剪力墙要比纯框架好等等,这些就是多道设防设计思路的体现。
3.保大弃小。
框架结构结构体系中提倡“强柱弱梁”、“强剪弱弯”等的说法是非常重要的概念。
现实中绝对安全的结构是没有的。
简单地说,整个结构体系是由各种构件协调组成一体的,但各个构件所起的作用不尽相同,所以按照其重要性也就有了轻重之分。
一旦不可预料的破坏力量突然袭来,各个构件就会协作抵抗外来的破坏力,就是为了保护最重要的构件免遭摧毁或者至少是最后才遭摧毁,这时候有所牺牲在所难免,但由谁牺牲呢明智之举是要让次要构件先去承担灾难,如果各个构件平均用力,可能会得不偿失,损失将更大!4.整体性能。
理想的结构体系当然是有机一体的,通俗地讲也就是没有任何关节的,这样的结构体系能使任何外力都能迅速传递和消减。
基于这个思想,设计人员要做的就是要尽可能地把结构中各种不同的关节“打通”,使这种力量在关节处能够顺畅无阻。
打通关节,保持平衡的目的其实就是让其永远处于原始的静态或者处在相对的静态中。
多层框架房屋建筑结构设计要点摘要:随着建筑行业的快速发展,目前建筑项目正面对着更高的要求。
框架结构是在建筑行业中最为常用的结构形式之一。
其具备灵活性能高、抗震性能强且综合性能优异等优点,可以满足人们多种需求。
随着建筑行业规模的不断提高,多层框架建筑结构随之出现,增加了设计复杂性的同时引发了许多设计问题。
本文针对多层框架房屋建筑结构设计现有问题进行探究,并提出了解决方案。
关键词:多层框架;房屋建筑;结构设计1.多层框架建筑结构设计的原则1.1层层都需设防提升多层框架结构设计的安全性能需要每层都设防,这样才可以充分抵抗强大的外力冲击,例如,在建筑结构中应当多运用多肢墙替代单片墙,框架剪力墙代替纯框架,这样也可以完美体现出层层设防的优点。
倘若完全依靠单个结构抵御强大外力,将会给整个建筑物带来危害。
1.2刚柔并施虽然提升多层框架结构设计的柔度可以为建筑物提供良好的变形能力,对外力进行有效削弱,但如若外力持续增加就会因变形程度过大导致建筑物倒塌。
同时,多层框架结构设计也不能太刚,较差的变形能力会导致局部部位在承受较大外力时受到损伤,从而造成整体建筑损毁。
1.3突出重点结构设计设计过程中应该建筑进行实际分析,综合考虑实际设计中可能发生的各种状况以及在外力作用影响下的受力结构重点。
并针对重点框架设计部分进行合理调整。
多层框架建筑结构主要包括为承重结构以及主框结构,主框结构主要包括基础部分、钢筋混凝土制作的柱、梁以及节点部位,外加填充墙、屋盖以及楼板等组成结构,在柱子、横梁以及楼板之间互相连接组成了承重结构,从而形成明确力度传递的路线。
每一层框架的高度可以是相同的、也可以是不同的,部分建筑物框架结构可能会因为空间分布或其他原因,在某一层的跨抽梁或抽柱之间出现十分明显的缺柱、缺梁现象。
框架结构在围护构件以及承重构件之间有十分明确的区域划分,框架结构的受力截面相对比较小,刚度与承载力十分低,受力点贴近竖向的悬臂剪切梁侧,随着建筑物层数的增加,其水平位移逐渐减小,减低建筑工程质量。
钢筋混凝土多层框架房屋结构设计中应注意的问题发表时间:2018-10-10T12:03:20.667Z 来源:《防护工程》2018年第11期作者:周乃松[导读] 采用钢筋混凝土进行多层框架房屋结构设计时应从实际情况出发,全面分析在此过程中需注意的问题,提升运用水平,使建筑结构设计往高效、现代化方向发展。
周乃松澧县建筑勘察设计院湖南澧县 415500摘要:随着经济的不断进步和发展,我国建筑行业也开始加快发展的步伐,但在建筑业发展的过程中还需注重对施工材料的利用。
目前,钢筋混凝土被广泛应用于房屋建设中,而在房屋结构的设计中,多层框架设计在建筑设计管理发展中起着关键性的作用。
因此,采用钢筋混凝土进行多层框架房屋结构设计时应从实际情况出发,全面分析在此过程中需注意的问题,提升运用水平,使建筑结构设计往高效、现代化方向发展。
关键词:钢筋混凝土;多层框架;房屋结构设计;注意的问题随着社会的不断进步和科技水平的不断提高,我国房屋结构的设计也开始往多样化方向发展,传统的设计方案已无法满足当前房屋结构设计的需求,因此加强房屋多层框架结构设计显得尤为重要。
钢筋混凝土多层框架房屋结构设计具有自重轻、便于分隔空间、用料少等优势,被广泛应用于建筑行业中,不仅可以使结构设计工作得以高效进行,也可以保障良好的工作质量。
一、钢筋混凝土多层框架房屋结构设计中需注意的问题(一)框架结构存在的问题通常,设计人员在设计钢筋混凝土多层框架房屋结构时会在楼电梯设置小井筒,而设置楼电梯小井筒会增大施工难度,降低框架结构的地震剪力,在一定程度上对房屋的质量造成影响,不利于框架结构的安全、稳定。
因此设计人员设计框架结构时应把小井筒换成钢筋结构,并根据抗震标准对框架配筋进行确定,以此设立相应的框架结构。
同时设计人员在设置水箱间或楼电梯时应先了解墙体所能承受的重量,然后再确定其承重系数。
(二)框架简图存在的问题在钢筋混凝土多层框架房屋结构设计中,框架简图占有不可忽视的地位,因此设计人员在设计框架简图时需充分把握周边环境,根据实际结构有针对性地进行设计。
封面钢筋混凝土多层框架房屋结构设计中应注意的几个问题二○○三年一月二十二日摘自《建筑结构》02年11月作者:姜学诗中国建筑设计研究院审图所北京 100044钢筋混凝土多层框架房屋结构设计中应注意的几个问题一、独立基础设计荷载取值不当钢筋混凝土多层框架房屋多采用柱下独立基础,《抗震规范》(GB50011-2001)第4.2.1条指出,当地基主要受力层范围内不存在软弱粘性土层时,不超过8层且高度在25m以下的一般民用框架房屋或荷载相当的多层框架厂房,可不必进行地基和基础的抗震承载力验算。
这就是说,在8度地震区,大多数钢筋混凝土多层框架房屋可不必进行地基和基础的抗震承载力验算。
但这些房屋在基础设计时应考虑风荷载的影响。
因此,在钢筋混凝土多层框架房屋的整体计算分析中,必须输入风荷载,不能因为在地震区高层建筑以外的一般建筑风荷载不起控制作用就不输入。
另一种情况是,在设计独立基础时,作用在基础顶面上的外荷载(柱脚内力设计值)只取轴力设计值和弯矩设计值,无剪力设计值,或者甚至只取轴力设计值。
以上两种情况都会导致基础设计尺寸偏小,配筋偏少,影响基础本向和上部结构的安全。
二、框架计算简图不合理无地下室的钢筋混凝土多层框架房屋,独立基础埋置较深,在-0.05m左右设有基础拉梁时,应将基础拉梁按层1输入。
以某学生宿舍楼为例,该项目为3层钢筋混凝土框架结构,丙类建筑,建筑场地为Ⅱ类;层高3.3m,基础埋深4.0m基础高度0.8m,室内外高差0.45m。
根据《抗震规范》第6.1.2条,在8度地震区该工程框架结构的抗震等级为二级。
设计者按3层框架房屋计算,首层层高取3.35m,即假定框架房屋嵌固在-0.05m处的基础拉梁顶面;基础拉梁的断面和配筋按构造设计;基础按中心受压计算。
显然,选取这样的计算简图是不妥当的。
因为,第一,按构造设计的拉梁无法平衡柱脚弯矩;第二,《混凝土结构设计规范》(GB50010-2002)第7.3.11条规定,框架结构底柱的高度应取基础顶面至首层楼盖顶面的高度。
关于多层框架房屋的结构设计浅析摘要:结构设计就是用结构语言来表达工程师所要表达的东西。
在框架结构设计中,不论工程简单还是复杂,其实终究是由梁、柱、板形成的基本单元组合而成,本文对设计过程中对梁、柱、板以及结构体系进行了分析,并提出一些注意点,供广大工程技术人员参考。
关键词:多层框架房屋;结构设计;探讨引言随着社会的发展,人们生活水平的提高,人们对建筑造型和建筑功能要求日趋多样化, 在结构设计中遇到的各种难题也日益增多。
,因而作为一个结构设计者在遵循各种规范、大胆灵活的解决一些结构方案上的难点、重点的同时,还必须注意以下一些在框架结构具体设计过程看似简单,却容易忽视的一些注意点,供各同行们共同探讨。
一、多层框架房屋地基基础设计时的注意点(1)目前,许多多层房屋无地质勘察报告, 仅仅依据建设单位口头或笼统参照附近建筑物的基础设计资料就进行施工图设计。
这是不合理的做法,设计人员必须依据地质勘察资料,统一考察多方面因素,要正确地阅读和使用地质报告。
熟悉勘察报告的主要内容,了解勘察结论和计算指标的可靠程度,进而判断报告中的建议对该项工程的适用性。
这里,要把场地的工程地质条件与拟建建筑物的具体情况和要求联系起来进行综合分析。
在地基处理时,要针对地质报告条件和水文地质条件选用合适的地基处理方法。
要特别注意所选的方法必须符合土力学的基本原理和重视当地的实际工程经验。
(2)在满足承载力和变形的基本要求下,尽量采用比较经济的天然地基上的浅基础。
地基持力层的选择应从地基基础和上部结构的整体性出发,综合考虑场地土层的分布情况及稳定性,土层的物理力学性质,建筑物的体型、结构类型和荷载性质与大小,还要考虑地下水的影响。
(3)多层房屋一般采用条形基础或独立基础。
有时设计者软弱地基的危害认识不足,只是简单地凭借经验采用砂垫层加强一下承载力,没有进行垫层宽度和厚度计算,这既不安全,又不经济。
正确的做法是一般先由地基承载力和变形确定基础底面尺寸, 然后再进行基础截面设计验算。
关于钢筋混凝土多层框架房屋结构设计的注意事项摘要】结合笔者工作实践,简述了钢筋混凝土多层框架房屋结构设计中应注意的几个问题。
【关键词】钢筋混凝土;多层框架房屋;结构设计Concerning reinforced concrete several regulation of the structure design of the frame houseWu Xiao-li(Qian'an city building design limited liability coMPanyQian'anHebei064400) 【Abstract】Combine writer a work practice, Jian3 Shu4 reinforced concrete several frame house structure design medium should attention of a few problem.【Key words】Reinforced concrete;Several frame house;Structure design1. 独立基础设计荷载取值不当钢筋混凝土多层框架房屋多采用柱下独立基础,《抗震规范》(GB50011-2001)第4.2.1条指出,当地基主要受力层范围内不存在软弱粘性土层时,不超过8层且高度在25m以下的一般民用框架房屋或荷载相当的多层框架厂房,可不必进行地基和基础的抗震承载力验算。
这就是说,在8度地震区,大多数钢筋混凝土多层框架房屋可不必进行地基和基础的抗震承载力验算。
但这些房屋在基础设计时应考虑风荷载的影响。
因此,在钢筋混凝土多层框架房屋的整体计算分析中,必须输入风荷载,不能因为在地震区高层建筑以外的一般建筑风荷载不起控制作用就不输入。
另一种情况是,在设计独立基础时,作用在基础顶面上的外荷载(柱脚内力设计值)只取轴力设计值和弯矩设计值,无剪力设计值,或者甚至只取轴力设计值。
以上两种情况都会导致基础设计尺寸偏小,配筋偏少,影响基础本向和上部结构的安全。
2. 框架计算简图不合理无地下室的钢筋混凝土多层框架房屋,独立基础埋置较深,在-0.05m左右设有基础拉梁时,应将基础拉梁按层1输入。
以某学生宿舍楼为例,该项目为3层钢筋混凝土框架结构,丙类建筑,建筑场地为Ⅱ类;层高3.3m,基础埋深4.0m基础高度0.8m,室内外高差0.45m。
根据《抗震规范》第6.1.2条,在7度地震区该工程框架结构的抗震等级为二级。
设计者按3层框架房屋计算,首层层高取3.35m,即假定框架房屋嵌固在-0.05m处的基础拉梁顶面;基础拉梁的断面和配筋按构造设计;基础按中心受压计算。
显然,选取这样的计算简图是不妥当的。
因为,第一,按构造设计的拉梁无法平衡柱脚弯矩;第二,《混凝土结构设计规范》(GB50010-2002)第7.3.11条规定,框架结构底柱的高度应取基础顶面至首层楼盖顶面的高度。
工程设计经验表明,这样的框架结构宜按4层进行整体分析计算,即将基础拉梁层按层1输入,拉梁上如作用有荷载,应将荷载一并输入。
这样,计算剪力的首层层高为H1=4-0.8-0.05=3.15m,层2层高为3.35m,层3、4层高为3.3m。
根据《抗震规范》第6.2.3条,框架柱底层柱脚弯矩设计值应乘以增大系数1.25。
当设拉梁层时,一般情况下,要比较底层柱的配筋是由基础顶面处的截面控制还是由基础拉梁顶面处的截面控制。
考虑到地基土的约束作用,对这样的计算简图,在电算程序总信息输入中,可填写地下室层数为1,并复算一次,按两计算结果的包络图进行框架结构底层柱的配筋。
3. 基础拉梁层的计算模型不符合实际情况基础拉梁层无楼板,用TAT或SATWE等电算程序进行框架整体计算时,楼板厚度应取零,并定义弹性节点,用总刚分析方法进行分析计算。
有时虽然楼板厚度取零,也定义弹性节点,但未采用总刚分析,程序分析时自动按刚性楼面假定进行计算,与实际情况不符。
房屋平面不规则,要特别注意这一点。
4. 基础拉梁设计不当多层框架房屋基础埋深值大时,为了减速小底层柱的计算长度和底层的位移,可在±0.000以下适当位置设置基础拉梁,但不宜按构造要求设置,宜按框架梁进行设计,并按规范规定设置箍筋加密区。
但就抗震而言,应采用短柱基础方案。
一般说来,当独立基础埋置不深,或者过去时置虽深但采用了短柱基础时,由于地基不良或柱子荷载差别较大,或根据抗震要求,可沿两个主轴方向设置构造基础拉梁。
基础拉梁截面宽度可取柱中心距的1/20~1/30,高度可取柱中心距的1/12~1/18。
构造基础拉梁的截面可取上述限值范围的下限,纵向受力钢筋可取所连接柱子的最大轴力设计值的10%作为拉力或压力来计算,当为构造配筋,除满足最小配筋率外,也不得小于上下各2Ⅱ14,配筋不得小于Ⅰ8-200。
当拉梁上作用有填充墙或楼梯柱等传来的荷载时,拉梁截面应适当加大,算出的配筋应和上述构造配筋叠加。
构造基础拉梁顶标高通常与基础高或短柱顶标高相同。
在这种情况下,基础可按偏心有受压基础设计。
当框架底层层高不大或者基础过去埋置不深时,有时要把基础拉梁设计得比较强大,以便用拉梁来平衡柱底弯矩。
这时,拉梁正弯矩钢筋应全跨拉通,负弯矩钢筋至少应在1/2跨拉通。
拉梁正负弯矩钢筋在框架柱内的锚固、拉梁箍筋的加密及有关抗震构造要求与上部框架梁完全相同。
此时拉梁宜设置在基础顶部,不宜设置在基础顶面之上,基础则可按中心受压设计。
5. 框架结构带楼电梯小井筒框架结构应尽量避免设置钢筋混凝土楼电梯小井筒。
因为井筒的存在会吸收较大的地震剪力,相应地减少框架结构承担的地震剪力,而且井筒下基础设计也比较困难,故这些井筒多采用砌体材料做填充墙形成隔墙。
当必须设计钢筋混凝土井筒时,井筒墙壁厚度应当减薄,并通过开竖缝、开结构洞等办法进行刚度弱化;配筋也只宜配置少量单排钢筋,以减小井筒的作用。
设计计算时,除按框架确定抗震等级并计算外,还应按带井筒的框架(当平面不规则时,宜考虑耦联)复核,并加强与井墙体相连的柱子的配筋。
此外,还要特别指出,对框架结构出屋顶的楼电梯间和水箱间等,应采用框架承重,不得采用砌体墙承重;而且应当考虑鞭梢效应乘以增大系数;雨篷等构件应从承重梁上挑出,不得从填充墙上挑出;楼梯梁和夹层梁等应承重柱上,不得支承在填充墙上。
6. 结构周期折减系数框架结构及框架——抗震墙等结构,由于填充墙的存在,使结构的实际刚度大于计算刚度,计算周期大于实际周期,因此,算出的地震剪力偏小,使结构偏于不安全,因而对结构的计算周期进行折减是必要的,但对框架结构的计算周期不折减或折减系数取得过大都是不妥当的。
对框架结构,采用砌体填充墙时,周期折减系数可取0.6~0.7;砌体填充墙较少或采用轻质砌块时,可取0.7~0.8;完全采用轻质墙体板材时,可取0.9。
只有无墙的纯框架,计算周期才可以不折减。
7. 框架梁、柱箍筋间距《抗震规范》第6.3.3条及6.3.8条对不同抗震等级的框架梁、柱箍筋加密区的最小箍筋直径和最大箍筋间距做了了明确规定。
根据这些规定,工程习惯上常取梁、柱箍筋加密区最大间距为100mm,非加密区箍筋最大间距为200mm。
电算程序总信息中通常也内定梁、柱箍筋加密区间距为100mm,并以此为依据计算出加密区箍筋面积,由设计人员要据规范确定箍筋直径和肢数。
但是,在程序内定的条件下,当框架梁的跨中部位有次梁或有较大的其他集中荷载作用却仅配两肢箍筋时,多数情况下,非加密区箍筋间距采用200mm会使梁的非加密区配箍不足,因此建议程序内定梁箍筋改为取梁的非加密区间距200mm。
这样,既可保证梁非加密区的抗剪承载力,又可适当增加梁端箍筋加密区(箍筋间距为100mm)的抗剪能力,梁的强剪性能更能充分体现。
当框架梁由于种种原因纵向钢筋超筋时,梁端适当加大抗剪承载力对结构抗震非常有利。
这也是为什么当梁端纵向受拉钢筋配筋率大2%时,规范规定梁的箍筋直径应比最小构造直径增大2mm的原因。
对于框架柱,当框架内定柱加密区箍筋间距为100mm时,在某些情况下,亦可能因非加密区箍筋间距采用200mm引起配箍不足。
因此,我们也建议程序内定柱的箍筋间距改为取柱的非加密区的箍筋间距200mm。
这里需要指出的是,梁、柱箍筋非加密区配箍验算时可不考虑强剪弱弯的要求,即剪力设计值取加密区终点处外侧的组合剪力设计值,并且不乘以剪力增大系数。
当然,如果电算程序能同时给出梁、柱箍筋加密区和非加密区的箍筋面积,则于设计者应更加方便了。
8. 地下室层数的输入处理多层框架结构房屋有也设置地下室。
由于隔墙少,常采用筏板式基础。
在电算时,应将地下室层数和上部结构一起输入,并在总信息中按实际的地下室层数填写。
这样,计算地基和基础底板的竖向荷载可以一次形成,并且在抗震计算时,程序会自动对框架底层柱底截面的弯矩设计值乘以增大系数。
同时通过对层侧移刚度比的分析比较,还可以正确判断和调整房屋的嵌固位置,并采取相应的抗震构造措施,保证楼板有必要的厚度和最小配筋率等等;当结构表现为竖向不规侧时,不仅要验算薄弱层,而且还要对薄弱层的地震剪力乘以1.15的增大系数。
如果在结构总体计算时,总信息中填写的地下室层数少于实际输入的层数,弯矩设计值增大系数将会乘错位置,从而在发生地震时,会使极易发生震害的底层柱底部位因抗震能力降低而破坏。