(1)求∠CBE的度数. (2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
第二十页,编辑于星期六:六点 三十五分。
【思路点拨】(1)先根据直角三角形两锐角互余求出
∠ABC=90°-∠A=50°,由邻补角定义得出∠CBD=130°.再根
据角平分线定义即可求出∠CBE.
(2)先根据(1)得出∠CEB,再根据平行线的性质即可求出
(2)区分性质与判定:已知直角三角形可得两锐角互余,此为 性质;已知两锐角互余可得直角三角形,此为判定.
第十八页,编辑于星期六:六点 三十五分。
【核心突破】 例2(2018·宜昌中考)如图,在Rt△ABC中
,∠ACB=90°,∠A=40°,△ABC的外角
∠CBD的平分线BE交AC的延长线于点E.
第十九页,编辑于星期六:六点 三十五分。
第三条线段,那么这三条线段能组成一个三角形,否则不能组 成一个三角形.
第八页,编辑于星期六:六点 三十五分。
2.已知两边求第三边:设三角形的两边长分别为a,b(a>b),则第
三边长c必须满足条件:a-b<c<a+b,由此便可确定第三边长
的范围.
3.证明线段不等关系:若是和的大小关系则采用三角形的两 边之和大于第三边,若是差的大小关系则采用三角形两边 之差小于第三边.
B.有两个不相等的实数根
C.没有实数根
D.无法确定
第十三页,编辑于星期六:六点 三十五分。
3.长度分别为3,4,5,7的四条线段首尾顺次相接,相邻 两线段的夹角可调整,则任意两端点的距离最大值为 ____9____.
第十四页,编辑于星期六:六点 三十五分。
4.(2019·株洲芦淞区一模)已知关于x的不等式组