第06章列车自动驾驶(ATO)系统方案
- 格式:ppt
- 大小:2.55 MB
- 文档页数:28
作业2(四、五、六章)一、填空:1.列车自动控制系统(ATC)包含三个子系统:(列车自动防护)、(列车自动驾驶)(列车自动监控)。
2.城市轨道交通行车自动化的功能包括低级阶段功能和高级阶段功能。
低级阶段的基本功能是由(自动闭塞、自动停车、车站联锁和高度集中控制)来完成的;高级阶段的基本功能则叠加了(行车指挥自动化和列车运行自动化中的ATO系统以及若干自动检测设备)。
3.ATC系统应包括下列控制等级:(控制中心自动控制模式);(控制中心自动控制时的人工介入控制或利用CTC系统的人工控制模式);(车站自动控制模式);(车站人工控制模式)。
4.ATO子系统主要用于实现“地对车控制”,即用地面信息实现对(列车驱动)、(制动的控制),包括(列车自动折返),根据控制中心指令自动完成对列车的(启动)、(牵引)、(惰行)和(制动),送出车门和站台安全门开关信号,使列车以最佳工况安全、正点、平稳地运行。
5.当列车处在自动驾驶模式下,车载ATO运用(牵引)和(制动)控制,实现列车自动运行。
6.ATO为(非故障)(填是否故障——安全)系统,其控制列车自动运行,主要目的是(模拟最佳司机的驾驶实现正常情况下高质量的自动驾驶)。
7.ATO具有一个(双向)(填写“单向”或“双向”)通信系统,通过车载ATO 天线和地面ATO环线允许列车直接与车站内的ATS连接,可以实现最佳的运营控制,完成下列ATO功能:(程序停车)、(运行图和时刻表调整)、(轨旁/列车数据交换)、(目的地和进路控制功能)。
8.ATO模式即(ATO自动运行模式),此模式是正线上列车运行的正常模式,即用于正线上列车的正常运行。
在这种模式下,列车在车站之间的运行是自动的,不需司机驾驶,司机只负责(监视ATO显示),监督车站(发车和车门关闭),以及列车运行所要通过的(轨道、道岔和信号)的状态,并在必要时人工介入。
9.SM模式即(ATP监督人工驾驶模式),是一种受保护的人工驾驶模式。
2城际ATO系统需求分析2.1.城际铁路ATO功能需求分析根据上文城市轨道交通ATO系统提及的功能,下文主要进行城际线ATO 的功能需求分析。
(1)列车自动驾驶功能本文提及的城际线最高运行速度为200km/h,线路长度一般在100km左右。
和城市轨道交通类似,城际轨道交通也存在客流量巨大,站站停车的情况,这就要求列车频繁地进行启动、加速、制动、减速等操作,同时还需要满足准点、舒适、节能运行,这些对驾驶要求极高,使司机承受很大的体力、精神压力。
因此完全有必要研发城际线列车自动驾驶系统,取代司机驾驶列车运行,一方面减轻司机工作压力,同时也提升列车运营能力。
可通过对增加ATO车载设备,同时在CTC S-2列控系统地面应答器组内增加相关线路数据报文,实现列车自动驾驶功能。
(2)列车精确停车功能城际铁路站台上也设有屏蔽门,因此,列车驾驶必须要实现精确停车。
城际铁路站间距离短,运量大,频繁起停车,仅靠司机人工驾驶很难保证精确停车。
因此,ATO系统的精确停车功能显得极其重要可以在车站股道内适当距离进行应答器布置,提高ATP系统的测距精度,提升对停车点的控制精度,实现列车精确停车功能。
(3)列车车门管理功能和地铁类似,城际铁路车运行控制系统具有车门监控功能。
通过ATP 和ATO系统与车辆系统的联动,对车门实现安全控制。
列车车门管理功能应在ATP的监控之下实现,通过ATO子系统请求指令控制车门打开。
2.2. ATO系统定义列车自动驾驶子系统ATO ( Automatic Train Operation )是ATC系统的重要子系统,它完成列车的自动调速包括牵引、巡航、惰性、制动、停车以及车门开关的控制功能,实现正线、折返线以及出入段(场)线运行的自动控制,实现区间运行时分的调整控制。
ATO系统按照系统设定的运行曲线,根据ATS系统的指令选择最佳运行工况,确保列车按运行图运行,实现列车运行自动调整和节能控制。
ATO系统功能依靠ATO系统自身及信号各子系统协调共同完成。
12驾驶操作2.1列车驾驶操作虚拟列车驾驶台系统启动完成后,将显示下列画面。
系统界面界面布局V1显示器显示线路轨道前景;V2区域显示HMI与DDU界面,可以相互切换;V3区域显示操作台操作按钮、开关、指示灯和仪表。
2.1.1列车准备1)列车激活点击左侧显示器上的[辅助显示器],系统将显示虚拟列车界面辅助显示器继续点击下方的开关部分,系统将显示列车电器柜的开关部分画面。
2列车激活操作将面板上旋转开关“列车激活”旋转至“合”位激活列车。
列车激活后,列车由蓄电池供电,虚拟列车面板上Tc1车电气柜中的电池电压表将显示电压110V。
随后,关闭虚拟列车窗口。
此时操纵台上的显示如下图,此时HMI显示无效。
列车激活后显示2)司机室占用将主控制器钥匙插入主司机控制器的钥匙开关中并且旋转至“开”位。
注意,只有在司机控制器的控制手柄和方向手柄均处于0位时,钥匙才可被操作。
3此时HMI有显示。
列车准备工作完成后显示界面3)升弓“降弓”按钮被点亮,表示受电弓都是降下的。
按下“升前弓”按钮,将前受电弓升起。
受电弓一旦升弓,按钮将被点亮,表示受电弓已经升到位。
接着按下“升后弓”按钮,将后受电弓升起。
后受电弓一旦升弓,按钮将被点亮,表示受电弓已经升到位。
此时,网压将显示出有网压(大约为1,500V)。
升弓44)合主断“断主断”按钮被点亮表示高速断路器处于“分”的状态。
按下“合主断”按钮,按钮被点亮,表示高速断路器合上。
高速断路器仅在受电弓均升起的情况下才可被合上。
合主断5)缓解停放制动“停放制动施加”按钮被点亮表示停放制动已经施加。
按下“停放制动缓解”按钮,缓解停放制动,按钮被点亮,表示停放制动已经缓解。
5停放制动缓解6)紧急制动复位初始情况下,紧急制动为是施加状态。
将司机控制器的控制手柄放置除“快制”以外的位置,可复位紧急制动。
此时TOD上显示EB为OK。
紧急制动复位7)信号模式改变当司机室占用后,经过一段时间,ATC系统启动完成,TOD上显示ATP,ATO 为OK。
第6章 列车自动驾驶系统ATO目录第1节 列车自动驾驶系统概述 (2)第2节 ATO系统的组成 (3)一、ATO系统车载设备 (3)二、列车自动驾驶系统地面设备 (6)第3节 ATO驾驶模式与模式转换 (7)一、列车驾驶模式 (7)二、列车驾驶模式转换 (9)第4节 ATO系统的功能及其工作原理 (9)一、 ATO系统基本控制功能 (10)2. ATO系统服务功能 (12)第1节 列车自动驾驶系统概述人工驾驶列车运行时,列车驾驶员操纵列车驾驶手柄,控制列车运行,实现列车加速、减速和停车。
列车自动驾驶系统,即ATO系统,主要实现“地对车控制”,实现正常情况下高质量的自动驾驶,提高列车运行效率,提高列车运行舒适度,节省能源。
列车自动驾驶系统实现列车自动驾驶,它需要列车自动防护系统ATP和列车自动监控系统ATS提供支持。
•列车自动防护系统向列车自动驾驶系统提供列车的运行速度、线路允许速度、限速和目标速度,以及列车所处位置等基本信息;•列车自动监控系统向列车自动驾驶系统提供列车运行作业和计划。
列车自动驾驶系统取代驾驶员人工驾驶,实现列车自动驾驶,有效地提高了列车的运营效率,降低了驾驶员的劳动强度,是城市轨道交通运营作业自动化的重要体现。
列车自动驾驶系统对列车进行控制,使得列车驾驶处于最佳的运行状态,列车运行更加平稳,可以有效提高运营效率,降低列车运行能耗。
第2节 ATO系统的组成列车自动驾驶系统是非故障-安全系统,由车载设备和地面设备组成。
一、ATO系统车载设备车载设备包括:车载ATO模块、ATO车载天线、人机界面。
(1)车载ATO模块车载ATO模块从车载ATP子系统获得必要的信息,如列车运行速度和列车位置等,车载ATO模块软件对这些数据进行实时处理,计算出列车当前所需的牵引力或制动力,向列车发出请求,列车牵引或制动系统收到请求指令后,对列车施加牵引或制动,对列车进行实时控制。
车载ATO模块与列车的牵引和制动系统相互作用,实现列车在站台区精确对位停车。
2020年12月地铁信号系统中列车ATO 自动驾驶时与车辆相关接口的实现及优化邹定锋(福州地铁集团有限公司,福建福州350004)【摘要】本文介绍地铁列车信号系统中ATO 子系统与车辆电气控制系统相关接口方面的实现,面对日常运营的地铁列车在自动驾驶过程中,当制动列车线持续有效后,列车会发生司机手动无法动车的故障,通过对该故障的深化分析,于是在信号与车辆相关的接口电路上进行优化,从而使得列车在发生制动列车线持续有效后,依然可由司机手动驾驶列车继续运营。
【关键词】自动驾驶;接口;接点组黏连;手动动车【中图分类号】U231.7【文献标识码】A 【文章编号】1006-4222(2020)12-0179-02信号名称输出/输入电和逻辑信号形式牵引输出牵引命令:二进制‘牵引’:+110V ;/‘行驶’:0V,浮动的制动输出制动命令:二进制‘制动’:+110V ;‘制动’:0V ,浮动的ATO 模式输出ATO 模式:二进制‘ATO 模式’:+110V ;/‘ATO 模式’:0V ,浮动的ATO 启动按钮灯输出ATO 启动按钮灯:二进制‘ATO 启动按钮灯开启’:+110V ;/‘ATO 启动按钮灯关闭’:0V ,浮动的ATO 启动输入ATO 启动:二进制‘ATO 启动进入’:+24V ;/‘ATO 启动退出’:0V ,浮动的表1数字信号输出/输入形式0引言城轨信号列控系统由列车自动驾驶(ATO )、列车自动防护(ATP )、列车自动监督(ATS )等子系统组成。
ATO 子系统在ATP 子系统的安全保护下,并根据ATS 子系统的指令,可实现列车自动驾驶,具备站间自动运行、车站定点停车及车站通过、折返作业、列车运行自动调整、车门/屏蔽门防护及联动控制等功能[1]。
其中列车自动驾驶是ATO 子系统功能之一,为了保证自动驾驶的持续稳定,则ATO 子系统与车辆电气控制系统接口方面满足双方各自需求,接口电路设计合理。
1接口实现ATO 子系统在ATP 、ATS 配合下,根据不同的条件选择最佳的运行工况,高效经济地完成对列车的启动、牵引(加速)、巡航、惰行和制动(减速)的控制,实现列车的自动驾驶,确保达到设计行车间隔及旅行速度[2]。
高速铁路技术中列车控制系统的使用教程随着科技的不断发展,高速铁路技术的应用变得越来越普遍。
高速铁路列车控制系统是确保高速铁路运行安全、高效的关键因素之一。
本文将为您详细介绍高速铁路技术中列车控制系统的使用教程,帮助您更好地了解和应用这一关键技术。
一、列车控制系统概述列车控制系统是高速铁路运行的核心组成部分,它通过各种传感器和控制器的配合,实时监测和控制列车的速度、位置、加速度等参数。
具体来说,列车控制系统主要包括列车自动保护系统(ATP)、列车自动控制系统(ATC)、列车自动驾驶系统(ATO)以及列车自动门系统等。
1. 列车自动保护系统(ATP):该系统的主要作用是保证列车在运行过程中的安全。
它通过与信号系统和道岔系统的联动,监测列车的运行速度和位置信息,并在必要时采取紧急制动措施,确保列车的安全停车。
2. 列车自动控制系统(ATC):ATC系统通过信号传输和处理,实现列车的自动控制。
它能够根据列车位置信息和线路环境条件,对列车速度进行调整和控制,以实现高速铁路的高效运行。
3. 列车自动驾驶系统(ATO):ATO系统是高速铁路技术的一项核心功能,它可以代替司机控制列车的行驶。
ATO系统通过先进的计算机算法和传感器,精确控制列车的加速度、减速度和停车位置,确保列车运行更加平稳和高效。
4. 列车自动门系统:该系统可以自动控制列车车厢的门的开闭,确保乘客的安全和便利。
它能够根据列车运行状态和站台情况,自动打开和关闭车门,提供高效的上下车服务。
二、列车控制系统的使用步骤在高速铁路技术中,使用列车控制系统需要遵循一系列的步骤,确保系统的正常运行和安全性。
1. 启动系统:打开列车控制系统的开关,系统开始自检和初始化。
在此过程中,要仔细确认各个子系统是否正常运行,包括ATP、ATC、ATO以及车门系统等。
2. 输入列车信息:根据系统要求,输入列车的运行信息,包括起始站点、目的地、运行时间和站台信息等。
这些信息将作为控制系统的基础,确保列车按照设定的线路和时间表运行。
ATO子系统(以下称为ATO系统)主要用实现“地对车控制”,即用地面信息实现对列车驱动、制动的控制,包括列车自动折返,根据控制中心指令自动完成对列车的启动、牵引、惰行和制动,送出车门和屏蔽门同步开关信号,使列车按最佳工况正点、安全、平稳地运行。
一、ATO系统基本概念ATO为非故障一安全系统,其控制列车自动运行,主要目的是模拟最佳司机的驾驶,实现正常情况下高质量的自动驾驶,提高列车运行效率,提高列车运行的舒适度,节省能源。
ATP系统是城市轨道交通列车运行时必不可少的安全保障,ATO系统则是提高城市轨道交通列车运行水平(准点、平稳、节能)的技术措施。
ATO系统采用的基本功能模块与ATP系统相同。
和ATP系统一样,ATO也载有有关轨道布置和坡度的所有资料,以便能优化列车控制指令。
ATO还装有一个双向的通信系统,使列车能够直接与车站内的ATS系统接口,保证实现最佳的运行图控制。
当列车处在自动驾驶模式下,车载ATO运用牵引和制动控制,实现列车自动运行。
二、ATO系统的组成虽然各公司的ATO系统结构不尽相同,但ATO系统的基本组成是共同的。
ATO系统都由轨旁设备和车载设备组成。
ATO轨旁设备通常兼用ATP轨旁设备,接收与列车自动运行有关的信息。
ATO车载设备由设在列车每一端司机室内的ATO控制器(包括司机控制台)及安装在列车每一端司机室车体下的两个ATO接收天线和两个ATO发送天线组成,还包括ATO附件,这些附件用于速度测量、定位和司机接口。
ATO车载设备通常和ATP车载设备安装在一个机架内。
ATO具有一个双向通信系统,通过车载ATO天线和地面ATO环线允许列车直接与车站内的ATS连接,可以实现最佳的运营控制,完成下列ATO功能:程序停车、运行图和时刻表调整、轨旁/列车数据交换、目的地和进路控制功能。
ATO还具有定位停车系统,为列车提供精确的位置信息。
包括车底部的标志线圈和对位天线,以及每个车站ATC设备室内的车站停车模块和沿每个站台设置的一组地面标志线圈。
城市轨道交通信号系统ATC、ATS、ATO、ATP介绍城市轨道交通信号系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。
城市轨道交通信号系统通常由列车自动控制系统(Automatic Train Control,简称ATC)组成,ATC系统包括三个子系统:—列车自动监控系统(Automatic Train Supervision,简称ATS)—列车自动防护子系统(Automatic Train Protection,简称ATP)—列车自动运行系统(Automatic Train Operation,简称ATO)三个子系统通过信息交换网络构成闭环系统,实现地面控制与车上控制结合、现地控制与中央控制结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的列车自动控制系统。
一、列车自动控制系统(ATC)分类1、按闭塞布点方式:可分为固定式和移动式。
固定闭塞方式中按控制方式,又可分为速度码模式(台阶式)和目标距离码模式(曲线式)。
2、按机车信号传输方式:可分为连续式和点式。
3、按各系统设备所处地域可分为:控制中心子系统、车站及轨旁子系统、车载设备子系统、车场子系统。
二、固定闭塞ATC 系统固定闭塞ATC系统是指基于传统轨道电路的自动闭塞方式,闭塞分区按线路条件经牵引计算来确定,一旦划定将固定不变。
列车以闭塞分区为最小行车间隔,ATC系统根据这一特点实现行车指挥和列车运行的自动控制。
固定闭塞ATC系统又可分为速度码模式和目标距离码模式。
1、速度码模式(台阶式)如北京地铁和上海地铁1号线分别引进的英国西屋公司和美国GRS公司的ATC系统均属此类ATC系统,该系统属70~80年代的产品,技术成熟、造价较低,但因闭塞分区长度的设计受限于最不利线路条件和最低列车性能,不利于提高线路运输效率。
固定闭塞速度码模式ATC 是基于普通音频轨道电路,轨道电路传输信息量少,对应每个闭塞分区只能传送一个信息代码,从控制方式可分成入口控制和出口控制两种,从轨道电路类型划分可分为有绝缘和无绝缘轨道电路两种。
一、系统总体构成地铁2号线正线信号系统采用基于无线通信的具有完整ATC功能的列车控制系统(CBTC),同时还提供了连续式ATP功能丧失情况下的点式ATP列车超速防护系统。
包括列车自动防护ATP、列车自动运行ATO、列车自动监控ATS、正线计算机联锁CBI四个子系统构成。
信号系统框图信号系统由下列主要的子系统和设备组成:1.中央列车自动监控子系统(ATS)列车自动监控子系统设备负责执行各种功能,如确认、跟踪和显示列车等,它有人工和自动进路设置功能,以及调整列车的运行以保证运行时间。
2.区域控制器区域控制器安装在轨旁,是基于处理器的安全控制器。
每个区域控制器通过数据通信子系统和车载控制器连接。
区域控制器通过运用CBTC的移动闭塞概念,确保列车的安全运行。
区域控制器基于已知的障碍地点和预计的交通荷载,确定预定义的区域内所有列车的移动权限。
区域控制器接收临时限速(TSR)指令以及该区域内列车发出的位置信息。
区域控制器与Microlok II接口,以控制和表示轨旁设备。
每个区域控制器都是以三选二表决配置为基础。
3.数据存储单元用来保存轨道数据库数据。
临时速度限制储存在区域控制器中。
4.联锁控制器MicroLok IIMicroLok II负责安全执行传统联锁功能。
MicroLok II从辅助列车检查计轴系统中获得列车位置信息。
Microlok II与轨旁设备接口,诸如转辙机、LED信号机等。
为保证正确的CBTC运行,Microlok II还与区域控制器(ZC)接口。
如果区域控制器出故障,列车的安全运行通过联锁控制器和轨旁LED信号机来实现。
如果数据通信子系统或车载控制器出现故障,列车以地面信号显示作为主体信号运行。
另外,如果数据通信子系统(无线部分)出现故障,系统提供超速防护功能并防止列车冒进红灯信号。
5.集成了ATS车站工作站和本地控制工作站功能的工作站集成了ATS工作站/本地控制工作站功能的工作站位于设备集中站的本地调度室。
列车自动控制系统(ATC)(1)——概念介绍发布时间:2008-05-13 点击次数:21422008年4月28日,一场近10年来中国铁路行业罕见的列车相撞事故在胶济铁路上瞬间发生,给国家和人民生命财产安全造成重大损失。
“通过调阅T195次列车运行记录监控装置数据,该列车实际运行速度每小时超速51公里。
”29日,刚刚被任命为济南铁路局局长的耿志修说。
在已经基本实现自动控制的特快列车身上,为什么发生“超速”行驶这样颇为低级的错误呢?列车自动控制系统究竟是怎样工作的,有多大用处,本专题将为您详细介绍。
一、ATC组成及功能列车自动控制系统(Automatic Train Control,简称ATC)一般有一下几个部分组成:1、列车自动监控系统(Automatic Train Supervision,简称ATS)ATS系统由控制中心、车站、车场以及车载设备组成。
ATS系统在ATP系统的支持下完成对列车运行的自动监控,实现以下基本功能:(1)通过ATS车站设备,能够采集轨旁及车载ATP提供的轨道占用状态、进路状态、列车运行状态以及信号设备故障等控制和监督列车运行的基础信息。
(2)根据联锁表、计划运行图及列车位置,自动生成输出进路控制命令,传送至车站联锁设备,设置列车进路、控制列车停站时分。
(3)列车识别跟踪、传递和显示功能。
系统能自动完成正线区段内列车识别号(服务号、目的地号、车体号)跟踪,列车识别号可由中央ATS自动生成或调度员人工设定、修改,也可由列车经车—地通信向ATS发送识别号等信息。
(4)列车计划与实迹运行图的比较和计算机辅助调度功能。
能根据列车运行实际的偏离情况,自动生成调整计划供调度员参考或自动调整列车停站时分,控制发车时间。
(5)ATS中央故障情况下的降级处理,由调度员人工介入设置进路,对列车运行进行调整,由ATS车站完成自动进路或根据列车识别号进行自动信号控制,由车站人工进行进路控制。
(6)在计算机辅助下完成对列车基本运行图的编制及管理,并具有较强的人工介入能力。
ATC、ATP、ATO系统详细介绍⼀、系统总体构成地铁2号线正线信号系统采⽤基于⽆线通信的具有完整ATC功能的列车控制系统(CBTC),同时还提供了连续式ATP功能丧失情况下的点式ATP列车超速防护系统。
包括列车⾃动防护ATP、列车⾃动运⾏ATO、列车⾃动监控ATS、正线计算机联锁CBI四个⼦系统构成。
信号系统框图信号系统由下列主要的⼦系统和设备组成:1.中央列车⾃动监控⼦系统(ATS)列车⾃动监控⼦系统设备负责执⾏各种功能,如确认、跟踪和显⽰列车等,它有⼈⼯和⾃动进路设置功能,以及调整列车的运⾏以保证运⾏时间。
2.区域控制器区域控制器安装在轨旁,是基于处理器的安全控制器。
每个区域控制器通过数据通信⼦系统和车载控制器连接。
区域控制器通过运⽤CBTC的移动闭塞概念,确保列车的安全运⾏。
区域控制器基于已知的障碍地点和预计的交通荷载,确定预定义的区域内所有列车的移动权限。
区域控制器接收临时限速(TSR)指令以及该区域内列车发出的位置信息。
区域控制器与Microlok II接⼝,以控制和表⽰轨旁设备。
每个区域控制器都是以三选⼆表决配置为基础。
3.数据存储单元⽤来保存轨道数据库数据。
临时速度限制储存在区域控制器中。
4.联锁控制器MicroLok IIMicroLok II负责安全执⾏传统联锁功能。
MicroLok II从辅助列车检查计轴系统中获得列车位置信息。
Microlok II与轨旁设备接⼝,诸如转辙机、LED信号机等。
为保证正确的CBTC运⾏,Microlok II还与区域控制器(ZC)接⼝。
如果区域控制器出故障,列车的安全运⾏通过联锁控制器和轨旁LED信号机来实现。
如果数据通信⼦系统或车载控制器出现故障,列车以地⾯信号显⽰作为主体信号运⾏。
另外,如果数据通信⼦系统(⽆线部分)出现故障,系统提供超速防护功能并防⽌列车冒进红灯信号。
5.集成了ATS车站⼯作站和本地控制⼯作站功能的⼯作站集成了ATS⼯作站/本地控制⼯作站功能的⼯作站位于设备集中站的本地调度室。