烧结矿的矿物组成与结构及其对烧结矿质量的影响
- 格式:ppt
- 大小:10.79 MB
- 文档页数:55
烧结原料总结汇报烧结原料总结汇报烧结原料是指用于制备烧结矿的各种原材料,包括铁矿石、焦炭、石灰石和配料等。
烧结过程是指将这些烧结原料经过炉内高温煅烧、氧化还原和结晶等反应,形成烧结矿的过程。
烧结原料在烧结过程中起着至关重要的作用,对烧结矿的质量和性能具有直接影响。
下面将对常见的烧结原料进行总结汇报。
1. 铁矿石:铁矿石是制备烧结矿的主要原料,它是由铁矿石矿石和氧化铁矿石组成的。
常见的铁矿石有赤铁矿、磁铁矿和褐铁矿等。
铁矿石的物理性质和化学成分直接影响烧结矿的组成和性能。
2. 焦炭:焦炭是烧结过程中重要的还原剂,它具有高固定碳含量、低灰、低硫和良好的机械强度等特点。
焦炭在高温条件下能够和铁矿石反应产生一系列还原反应,从而促进烧结矿中的铁矿石氧化还原反应的进行。
3. 石灰石:石灰石是烧结矿的主要熔剂,它在高温条件下能够与铁矿石中的硅酸盐和氧化铁石进行反应,生成易熔的矽酸钙和液相。
石灰石的质量和石灰石与铁矿石的配比对烧结矿的熔融性、融化温度和液相组成等有很大影响。
4. 配料:配料是指将各种烧结原料按一定的比例混合制备成的烧结原料混合料。
配料的质量和配比直接影响烧结矿的成分和物理性能。
通过合理的配料,可以在一定程度上改善烧结矿的熔融性、弹性、抗返矿性能等。
综上所述,烧结原料对烧结矿的质量和性能具有重要的影响。
铁矿石是烧结矿的主要原料,其物理性质和化学成分对烧结矿的组成和性能起着决定性作用。
焦炭作为还原剂能够促进烧结矿中的氧化还原反应。
石灰石作为熔剂能够改善烧结矿的熔融性和融化温度。
通过合理的配料,可以改善烧结矿的物理性能和抗返矿性能。
合理选择和使用烧结原料,优化烧结矿的质量和性能,对冶金行业的发展和节能减排具有重要意义。
通过对烧结原料的总结汇报,我们可以更好地理解烧结过程和烧结矿的形成机制,为冶金行业的研究和生产提供技术支持。
同时,我们也要强调烧结原料的合理使用和资源综合利用,提高烧结矿质量,减少能源消耗和环境污染,助力可持续发展的目标实现。
烧结生产0概述全世界的矿石储量2500亿吨,富矿20%我国矿石储量500亿吨,富矿5%随着钢铁工业的发展,天然富矿从产量和质量上都不能满足高炉冶炼的要求。
而且精矿粉和富矿粉都不能直接入炉冶炼。
为了解决这一难题,将粉矿制成块状人造富矿。
方法:烧结法和球团法。
一、现代高炉对原料的要求1、节焦上(1)、铁矿石品位高,杂质少。
首钢经验:品位提高1%,焦比下降2%,产量提高3%。
产量提高,单位热损失减少,加入熔剂少,减少热量支出。
(2)、熟料比高。
不用或少加熔剂,减少热量支出,冶金性能好。
(3)碱度高。
可以不加石灰石,减少热量支出。
C a C O=CaO+CO2 吸热32、透气性(1)粒度均匀大小不均造成小块填到大块中间破块透气性上限40~50mm下限5~10mm。
(2)粉末少(3)强度高3、冶炼性能(1)还原性好有利于铁氧化物还原,有利于煤气利用的改善与焦比的下降(2)低温还原粉化率低粉化率高粉末多影响透气性(3)软熔性能软化温度高软化区间窄使成渣带下移变薄改善透气性二、人工富矿的方法1、烧结法烧结是将各种粉状含铁原料,配入一定数量的燃料和熔剂,混匀后,进行燃烧,进行一系列的物化反应,产生一定数量的液相,冷凝后粘结起来的块状产品叫做烧结矿,这个过程叫烧结。
2球团法球团矿:把润湿的铁精矿粉和少量的添加剂混合,再造球设备中滚动成9~16mm左右的圆球,在经过干燥,预热,焙烧、均热、冷却、发生一系列的物化反映,使生球固结,成为高炉需要的球团矿。
三、烧结矿在钢铁工业中的重要地位1、扩大矿石来源贫矿经过选矿、造块、烧结制成烧结矿,供高炉使用。
富矿粉经过造块后,供高炉使用。
2、可以改善高炉技术经济指标改善了原料的物理化学性能。
孔隙率高,反应面积增大,加速冶炼过程。
粒度均匀,透气性好。
机械强度高还原性好。
低温还原粉化率低,高温还原软化性好,提高冶炼效果。
3、能够充分利用冶金工业和化学工业的废品。
烧结可以利用高炉炉灰,轧钢皮,硫酸渣、转炉尘作为原料,合理利用资源,降低生产成本。
烧结矿的矿物组成和显微结构对其质量的影响这里所说烧结矿的质量,主要指其机械强度和还原性而言。
烧结矿的机械强度和还原性与组成烧结矿的矿物性质、含量、晶粒大小及其相互之间的分布情况有着直接的关系。
一、烧结矿中不同矿物组成和显微结构对其强度的影响1.烧结矿个各种矿物自身强度对烧结矿强度的影响烧结矿中的磁铁矿、赤铁矿、铁酸一钙、铁橄榄石有较高的抗压强度,其次则为钙铁橄榄石及铁酸二钙,在钙铁橄榄石中,当x小于等于1.0时,钙铁橄榄石的抗压性、耐磨性及脆性的指标均与前一类接近或超过,当x=1.5时,钙铁橄榄石强度相当低,而且易产生裂纹,它的晶格常数接近于2Cao·SiO 2。
其中玻璃质具有最低的强度。
因此在烧结矿的结构中应尽量减少玻璃质的形成,这对提高烧结矿强度是非常有利2.冷却结晶过程中产生的内应力对烧结矿强度的影响矿物组成对烧结矿强度的影响不仅仅局限于烧结矿中分离出来的结晶个体和玻璃质的强度作用,在很多情况下它还取决于烧结矿的矿物组成以及它在冷却时产生的内应力。
烧结矿在冷却过程中,产生不同的内应力:(1)由于烧结矿块表面与中心存在温差而产生的热应力。
这种热应力主要取决于冷却条件,可用缓慢冷却或热处理的方法来消除。
(2)烧结矿中各种矿物相具有不同热膨胀系数,因而引起各矿物相之间的应力。
研究防止这种矿物相之间的应力的产生,对提高熔剂性烧结矿的强度具有重要的意义。
(3)硅酸二钙在冷却过程中的多晶转变所引起的相变应力。
通常在烧结矿中主要出现β—C2S和γ—C2S。
当β—C2S在自然冷却转变为γ—C2S时,由于体积膨胀产生根大应力,这是导致高硅磁铁矿精矿烧结熔剂性烧结矿在自然冷却时产生自动粉化的根本原因。
例如,使用迁安高硅磁铁矿精矿(TFe60—62%,SiO2 10—12%)生产碱度为1.15的烧结矿,由于在其中生成少量的C2S ,当此烧结矿在冷却到300度以后时,发生由β—C2S向γ—C2S的相转变,因而导致烧结矿在冷却时产生严重的碎裂和粉化。
烧结矿矿物组成对其强度的影响1.烧结矿的显微结构介绍烧结矿中矿物组成主要有赤铁矿、磁铁矿、铁酸钙、硅酸钙和少量的非晶态的玻璃相。
烧结矿中的矿物组成及其相互间的结构特征,对烧结矿的机械强度有直接的影响。
所以研究烧结矿的质量应与其内部的矿物组成与显微结构特征联系起来。
烧结矿中常见的显微结构:(1)粒状结构:烧结矿中先结晶出的自形晶、半自形晶或其他形晶的磁铁矿,与粘结性矿物晶粒相互组成粒状结构。
(2)斑状结构:烧结矿中自形晶程度较强的磁铁矿斑状晶体与较细的粘结相矿物结合成斑状结构。
(3)骸晶结构:烧结矿中早期结晶的磁铁矿呈骨架状的自形晶中,常有粘结性的矿物填充其内,仍大致保持磁铁矿原来的结晶外形和边缘部分,形成骸晶结构。
(4)共晶结构:在烧结矿中磁铁矿呈圆点状在橄榄石的晶体内,或赤铁矿呈圆点状晶体分布在硅酸盐晶体中。
(5)熔蚀结构:在烧结矿中磁铁矿多为熔蚀残余他形晶,晶粒较小,多为浑圆形状,与铁酸钙形成熔蚀结构。
此种类型在高碱度烧结矿中常见,也是高碱度烧结矿的结构特点。
通过对烧结矿矿物组成和显微结构特征的研究,可以得知烧结矿中出现哪些矿物对提高其质量有利,出现哪些矿物不利。
2.烧结矿矿物组成对其强度的影响烧结矿各种矿物自身的强度对烧结矿强度的影响:烧结矿中的磁铁矿、赤铁矿、铁酸一钙、铁橄榄石有较高强度,其次为钙铁橄榄石及铁酸二钙,玻璃质具有最低的强度。
因此烧结矿的结构中应尽量减少玻璃质的形成,这对提高烧结矿的强度非常有利。
烧结矿中矿物组分对烧结矿强度的影响:(1)非自溶性烧结矿:其显微结构为斑状或共晶结构。
其中大量的磁铁矿斑晶被铁橄榄石和少量玻璃相所胶结,它的主要胶结物铁橄榄石机械强度较大,胶结磁铁矿能力较强,因而具有良好的强度。
(2)自熔性烧结矿:它的显微结构为斑晶或斑晶玻璃状结构。
其中的磁铁矿斑晶或晶粒被玻璃质和钙铁橄榄石所胶结,并且后二者含量居多,强度较差。
(3)高碱度烧结矿:其显微结构为溶蚀或共晶结构,由铁酸钙和磁铁矿构成。
烧结矿主要成分
烧结矿是指将粉状铁矿石和燃料等原材料经过烧结工艺制成的块状矿石,其主要成分包括以下几种:
1. 铁氧化物:烧结矿的主要含铁成分,通常是赤铁矿(Fe2O3)、磁铁矿(Fe3O4)或二者的混合物。
这些铁氧化物是铁矿石在烧结过程中经过高温还原反应形成的。
2. 脉石矿物:除铁氧化物外,铁矿石中还含有其他脉石矿物,如硅砂(SiO2)、石灰石(CaCO3)、氧化铝(Al2O3)等。
这些脉石矿物在烧结过程中会与铁氧化物发生反应,形成烧结矿的其他成分。
3. 燃料残渣:在烧结过程中,通常需要添加燃料来提供热量。
燃料残渣,如煤粉、焦粉等,会残留于烧结矿中,成为其中的一部分。
4. 熔剂:为了改善烧结矿的冶金性能,通常会添加熔剂,如石灰石、白云石等。
这些熔剂在烧结过程中与其他成分反应,有助于降低烧结矿的熔点和黏度。
5. 少量杂质:烧结矿中可能还含有一些微量杂质,如硫、磷、锰等。
这些杂质的含量通常很低,但对钢铁生产过程和最终产品的质量可能会有一定影响。
需要注意的是,不同产地和类型的铁矿石在成分上可能存在差异,因此烧结矿的具体成分也会有所不同。
此外,烧结工艺和添加的辅料也会对烧结矿的成分产生影响。
烧结矿中各种矿物的形成烧结矿中各种矿物的形成烧结矿是一种由多种矿物组成的集合体。
烧结混合料由点火开始,经过蒸发、分解、还原、氧化、固相反应、熔化、液相生成以及冷却结晶变成固相等几个基本阶段而形成烧结矿。
在形成烧结矿的同时,其内部的各种矿物也逐步生成。
由于这些矿物的形成,它们的数量、性质等部对烧结矿的质量有着直接影响,因此研究整个过程中各种矿物的生成条件是十分必要的。
烧结混合料是出多种物料(如铁矿粉、熔剂、燃料等等)组成的,这些物料颗粒细小而又互相紧密接触,在烧结过程中随着温度升高各组分之间将发生固相反应,生成新的化合物(矿物)。
在烧结过程中,原有烧结料的各组分之间、新生的化合物之间、新生化合物与原烧结料组分之间不断地发生反应。
随着温度进一步提高,各种物相相继被熔化、分解,生成低熔点化合物及共熔混合物,然后变成液相。
伴随烧结过程的结束,液相开始冷却结晶,逐步生成各种矿物,最后冷却固结成为烧结矿。
冷却结晶形成的各种矿物是烧结矿成型固结的基础。
一、固相反应阶段的矿物形成烧结过程中,混合料从500度左右加热到1500度左右,一般不超过三分钟,允许固相反应的时间很短。
在这样条件下,只有那些反应开始温度低、速度快的固相反应才能进行。
而由这些反应生成的最初反应产物,将对烧结矿的最终矿物组成起着一定程度的影响。
表12—1列出固相反应的最初产物的试验结果。
二、液相生成阶段的矿物形成由图可知,固相反应的产物—新生化合物铁酸钙、铁橄榄石等,在温度提高后被熔化与分解而进入熔体中。
表12—3中列出了铁矿石烧结时可能形成的低熔点化合物和共熔混合物的熔化温度。
表12—3表明,在熔剂性或非熔剂性烧结料都可能形成低熔点化合物或共熔混合物。
它们在烧结所能达到的温度(1250—1450度)范围内,一般都能形成液相。
例如,2CaO·Si02的熔点是2130度,然而它能与FeO组成熔点为1280度的共熔混合物,因而能熔入液相。
烧结矿主要成分
烧结矿是一种重要的铁矿石原料,主要由铁、硅、铝、钙、镁等多种成分组成。
其中,铁是烧结矿的主要成分,占据了矿石中的绝大部分。
除了铁之外,硅也是烧结矿中的重要成分之一,其含量通常在20%左右。
烧结矿中的铁主要以氧化铁的形式存在,主要是铁矿石中的铁氧化物。
这些氧化铁物质在高温条件下经过还原反应,可以得到金属铁。
而硅则主要以二氧化硅的形式存在于矿石中,它具有较高的熔点和硬度,对冶炼过程有一定的影响。
除了铁和硅,烧结矿中还含有一定量的铝、钙和镁等元素。
铝主要以氧化铝的形式存在,可通过矿石中的铝矾土来提取。
钙和镁则主要以氧化钙和氧化镁的形式存在,它们的存在会影响矿石的烧结性能和冶炼过程中的物理化学性质。
烧结矿的成分对冶炼工艺和矿石的利用率有着重要的影响。
其中,铁的含量越高,矿石的利用率就越高,冶炼工艺也相对简单。
而硅的含量越高,矿石的烧结性能就越差,需要采取一定的烧结改良措施来提高矿石的利用率。
烧结矿的主要成分是铁、硅、铝、钙和镁等元素。
这些成分的含量和性质对矿石的利用率和冶炼工艺有着重要的影响。
了解烧结矿的成分组成,有助于提高冶炼效率和资源利用率,推动铁矿石行业的
可持续发展。
烧结矿是烧结过程的最终产物,是许多种矿物的复合体,矿物组成非常复杂。
影响烧结矿矿物组成的因素包括:燃料用量、烧结矿碱度、脉石成分和添加物种类以及操作工艺条件等。
烧结矿中各矿物通过自身的强度和还原性影响烧结矿的强度和还原性。
5.5.4.1 烧结矿的矿物组成由于原料条件和烧结工艺条件不同,烧结矿的矿物组成不尽相同,但是总是由含铁矿物及脉石矿物两大类组成的液相粘结在一起的。
酸性烧结矿矿物主要为磁铁矿、赤铁矿、浮氏体、金属铁、铁橄榄石、钙铁橄榄石、玻璃体、铁酸钙、硅钙石、石英等;主要胶结物为铁橄榄石和少量的钙铁橄榄石、玻璃体等。
自熔性烧结矿矿物主要为磁铁矿、赤铁矿、浮氏体、金属铁、钙铁橄榄石、橄榄石类、铁酸钙、硅酸钙、钙铁辉石、钙铁辉石-钙镁辉石固溶体、石英、石灰等;主要胶质物为钙铁橄榄石、玻璃体等。
高碱度烧结矿的矿物主要是磁铁矿、赤铁矿、钙质浮氏体、铁酸钙和硅酸二钙等;主要胶质物为铁酸二钙。
当烧结矿脉石中含有较多的Al2O3或烧结料中Fe2O3较多时,粘结相还有铝黄长石、铁铝酸四钙、铁黄长石、钙铁榴石(3CaO·Fe2O3·3SiO2)。
MgO含量较多时会出现钙镁橄榄石、镁黄长石、镁蔷薇辉石等。
脉石中含有萤石时,烧结矿中则含有枪晶石。
烧结含钛铁矿时会出现钙钛石(CaO·TiO2,3CaO·2TiO2)、梢石(CaO·TiO2·SiO2)。
对某一烧结矿来说,不一定全部含有上述矿物,而且数量也不相等。
磁铁矿和浮氏体是各种烧结矿的主要含铁矿物,非铁矿物以硅酸盐类矿物为主。
表5-6给出了武钢不同碱度烧结矿的矿物组成。
表5-6 武钢不同碱度烧结矿的矿物组成烧结矿碱度矿物组成,(体积)%磁铁矿赤铁矿铁酸一钙铁酸二钙铁黄长石硅酸钙铁橄榄石浮氏体金属铁玻璃质0.8 57.5 6.2 2.7 - 13.1 - 2.73 0.18 - 17.41.3 48.32.9 14.4 - 15.3 0.92 - - 0.1 18.02.4 34.6 0.2 29.1 4.4 10.9 4.44 - - - 16.23.5 27.6 0.2 39.3 9.3 10.7 7.51 - - 0.3 7.3 5.5.4.2 烧结矿的结构烧结矿的结构包括宏观结构和显微结构。