基于51单片机串行通信的无线发射极和接收机设计
- 格式:doc
- 大小:3.60 MB
- 文档页数:48
基于 51 单片机的无线数据收发系统设计摘要:系统使用 51 单片机通过NRF24L01 模块远程传输数据,接收端通过NRF24L01 模块接收无线数据。
处理后由液晶进行数据显示,可根据需要设置声音提示。
系统接收与发送端模块均单片机、无线发送模块/ 接收、显示、声音提示模块。
关键词:51 单片机;NRF24L01;液晶显示;无线通讯1硬件设计1.1系统组成该系统将数据经过控制器由无线发送模块进行远距离发送,再通过接收端进行无线数据接收。
接收的数据经控制器处理后由液晶显示器显示,并根据需要可以实现一定的声音提示。
1.2无线收发模块本设计使用无线通讯技术实现数据的传送,能够实现此功能的硬件电路模块总类较多。
为符合设计需求,采用以NRF24L01 为核心的无线通讯模块。
该方案可以使系统具有低成本,低功耗,体积小等特点。
NRF24L01 无线模块出至 NORDIC 公司。
其工作频段在 2.4G— 5GHz,该模块正常工作电压为 1.9V—3.6V,内部具有 FSK 调制功能,集成了 NORDIC 公司自创的增强短脉冲协议。
该模块最多可实现 1 对 6 的数据发送与接收。
其每秒最高可传输两兆比特,能够实现地址检验及循环冗余检验。
若使用 SPI 接口,其每秒最高可传输八兆比特,多达 128 个可选工作频道,将该芯片的最小系统集成后,构成NRF24L01 无线通信模块。
1、引脚功能此模块有 6 个数据传输和控制引脚,采用 SPI 传输方式,实现全双工串口通讯,其中 CE脚为芯片模式控制线,工作情况下,CE 端协配合寄存器来决定模块的工作状态。
当4 脚电平为低时,模块开始工作。
数据写入的控制时钟由第 5 脚输入,数据写入与输出分别为 6、7 脚,中断信号放在了第 8 脚。
2、电器特性NRF24L01 采用全球广泛使用的 2.4Ghz 频率,传输速率可达 2Mbps,一次数据传输宽度可达 32 字节,其传输距离空旷地带可达2000M 此模块增强版空旷地带传输距离可达 5000M—6000M, 因内部具有 6 个数据通道,可实现 1 对 6 数据发送,还可实现 6 对 1 数据接收,其工作电压为 1.9V-3.6V,当没有数据传输时可进入低功耗模式运行,微控制器对其控制时可对数据控制引脚输入 5V 电平信号,可实现 GFSK 调制。
毕业设计(论文)文献综述题目:基于单片机的串行通信发射机设计专业:电子信息工程1前言部分1.1意义随着电子技术的快速发展,单片机在自动控制领域的应用越来越广泛[1]。
单片机作为自动控制系统的神经中枢,在自控系统中发挥着核心作用。
单片机与外接设备的联系是通过一个串行通信接口,来实现单片机与其他计算机或外围设备的通信,所以,单片机的串行通信的实现对自控系统的实现有着重要的意义。
随着数据交互需求的进一步提高,对串行通信的通信效率、性能也提出了越来越高的要求[2]。
1.2串行通信的定义串行通信,就是将数据分成一个个的二进制位,然后通过一个通信信道或一条线路,按照已有的规程逐位依次进行传输,实现计算机与计算机或外部设备之间的通信(数据交换)。
由于串行通信占用硬件资源少、可大幅度降低通信线路的成本、简化通信设备、应用灵活等诸多优点,在工业控制、电力通信、智能仪表等领域得到了广泛的应用[3]。
1.3关于单片机单片机是一种集成在电路芯片上的一个小而完善的计算机系统,采用超大规模集成电路技术将具有数据处理能力的中央处理器、CPU随机储存器 RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上[4]。
单片机又称单片微控制器,相当于一个微型的计算机。
和计算机相比,单片机只缺少了I/O设备,概括的讲:一块芯片就是一台计算机。
它的体积小、质量轻、价格便宜,为学习、应用和开发提供了便利条件[5]。
与此同时,掌握单片机是了解计算机原理与结构的最佳选择。
单片机与外界的信息交换及通信通常有两种,分别是串行通信和并行通信。
一次传送多位数据的通信方法叫并行通信,它的传输速度很快,但传输距离有限,而且成本高,难以大规模推广。
因此,现在的单片机系统一般采用串行通信,即信号一位一位地传送[6]。
2主题部分2.1串行通信的发展史随着计算机网络化和微机分级分布式应用系统的快速发展,通信功能越来越重要。
机电信息工程学院单片机系统课程设计报告系:电子工程系专业:通信工程班级:051班设计题目:红外收发器学生姓名:王建茶李晓艳指导教师:董玉华李厚杰李婷杨亚宁完成日期:2008年3月21日目录一、设计任务和性能指标 (1)1.1设计任务 (1)1.2性能指标 (1)二、设计方案 (1)三、系统硬件设计 (2)3.1 红外发射模块设计 (2)(一)单片机的最小系统 (2)(二)键盘电路 (4)(三)红外线发射编码 (4)3.2 红外接收模块设计 (4)(一)红外接收器设计 (4)(二)显示电路的设计 (5)(三)键盘接口的设计 (5)四、系统软件设计 (5)五、调试及性能分析 (8)5.1调试步骤 (8)5.2性能分析 (8)六、心得体会 (9)参考文献 (10)附录 (10)1程序清单 (10)2硬件原理图 (17)一、设计任务和性能指标1.1设计任务红外遥控技术是一种利用红外线进行点对点通信的技术,其相应的软件和硬件技术都已比较成熟。
它是把红外线作为载体的遥控方式。
在现代电子工程应用中,红外线常常被用做近距离视线范围内的通讯载波,最典型的应用就是家电遥控器。
使用红外线做信号载波的优点很多:成本低、传播范围和方向可以控制、不产生电磁辐射干扰,也不收干扰等等。
因此被广泛地应用在各种技术领域中。
红外线遥控具有结构简单,制作方便,成本低廉,抗干扰能力强,工作可靠性高等一系列优点,特别是室内遥控的优先遥控方式。
同时,由于采用红外线遥控器件时,工作电压低,功耗小,外围电路简单,因此它在日常工作生活中的应用越来越广泛。
1.2性能指标1.基本要求(1)能够实现利用红外线实现无线数据的收发;(2)能够将发送的数据或接收的数据进行显示,或根据接收的命令执行相应的功能。
2. 选做(1)所发送的数据利用PC机进行控制;(2)能够实现的数据通信采用一对多的主从模式;(3)能够实现远程的参数数据传送,如实现远程抄表、温度、湿度等。
51单片机双机串行通信设计51单片机是一款广泛应用于嵌入式系统中的微控制器,具有高性能和低功耗的特点。
在一些场景中,需要使用51单片机之间进行双机串行通信,以实现数据传输和协同工作。
本文将介绍51单片机双机串行通信的设计,包括硬件连接和软件编程。
一、硬件连接1.串行通信口选择:51单片机具有多个串行通信口,如UART、SPI 和I2C等。
在双机串行通信中,可以选择其中一个串行通信口作为数据传输的接口。
一般来说,UART是最常用的串行通信口之一,因为它的硬件接口简单且易于使用。
2.引脚连接:选定UART口作为串行通信口后,需要将两个单片机之间的TX(发送)和RX(接收)引脚相连。
具体的引脚连接方式取决于所使用的单片机和外设,但一般原则上是将两个单片机的TX和RX引脚交叉连接。
二、软件编程1.串行通信初始化:首先需要通过软件编程来初始化串行通信口。
在51单片机中,可以通过设置相应的寄存器来配置波特率和其他参数。
具体的初始化代码可以使用C语言编写,并根据所使用的开发工具进行相应的配置。
2.发送数据:发送数据时,可以通过写入相应的寄存器来传输数据。
在51单片机中,通过将数据写入UART的发送寄存器,即可将数据发送出去。
发送数据的代码通常包括以下几个步骤:(1)设置发送寄存器;(2)等待数据发送完成;(3)清除数据发送完成标志位。
3.接收数据:接收数据时,需要通过读取相应的寄存器来获取接收到的数据。
在51单片机中,可以通过读取UART的接收寄存器,即可获取到接收到的数据。
接收数据的代码通常包括以下几个步骤:(1)等待数据接收完成;(2)读取接收寄存器中的数据;(3)清除数据接收完成标志位。
4.数据处理:接收到数据后,可以进行相应的数据处理。
根据具体的应用场景,可以对接收到的数据进行解析、计算或其他操作。
数据处理的代码可以根据具体的需求进行编写。
5.中断服务程序:在双机串行通信中,使用中断可以提高通信的效率。
《单片机原理及应用》课程设计题目∶单片机串行通讯院系∶信息科学与工程学院专业班级∶电子科学与技术0702601 姓名学号∶郑权 070260106田野 070260116庞旭超 070260126指导教师∶孙玉德2010年 7月第一章绪论一、设计的目的1.进一步熟悉和掌握单片机的结构及工作原理。
2.掌握单片机的接口技术及相关外围芯片的外特性,控制方法。
3.通过课程设计,掌握以单片机核心的电路设计的基本方法和技术,了解有关电路参数的计算方法。
4.通过实际程序设计和调试,逐步掌握模块化程序设计方法和调试技术。
5.通过完成一个包括电路设计和程序开发的完整过程,使学生了解开发单片机应用系统的全过程,为今后从事相应打下基础。
二、设计具体要求原理图设计1.原理图设计要符合项目的工作原理,连线要正确,端了要不得有标号。
2.图中所使用的元器件要合理选用,电阻,电容等器件的参数要正确标明。
3.原理图要完整,CPU,外围器件,扩器接口,输入/输出装置要一应俱全。
程序调试1.根据要求,将总体功能分解成若干个子功能模块,每个功能模块完成一个特定的功能。
2.根据总体要求及分解的功能模块,确定各功能模块之间的关系,设直出完整的程序流程图。
程序调试将设计完的程序输入,排除语法错误。
1.按所设计的原理图,在实验平台上连线,检查无误。
2.将程序源文件传送到实验装置,执行该程序,检查该程序是否达到设计要求,若未达到,修改程序,直到达到要求为止,设计说明书1.原理图设计说明简要说明设计目的,原理图中所使用的元器件功能及在图中的作用,各器件的工作过程及顺序。
2.程序设计说明对程序设计总体功能及结构进行说明,对各子模块的功能以及各子模块之间的关系作较详细的描述。
第二章串口通信简介MCS-51系列单片机上有一个通用异步接收/发送器UART,通过引脚RXD[P3.O]和TXD[P3.1]可与外音B电路进行全双工的串行异步通信,发送数据时由TXD 端送出,接收时数据由RXD端输入。
基于51单片机串行通信的无线发射极和接收机设计---- 1 概述1.1 课题的目的、背景和意义最近几年来,由于无线接入技术需求日益增大,以及数据交换业务(如因特网、电子邮件、数据文件传输等)不断增加,无线通信和无线网络均呈现出指数增加的趋势。
有力的推动力无线通信向高速通信方向发展。
然而,工业、农业、车载电子系统、家用网络、医疗传感器和伺服执行机构等无线通信还未涉足或者刚刚涉足的领域,这些领域对数据吞吐量的要求很低,功率消耗也比现有标准提供的功率消耗低。
此外,为了促使简单方便的,可以随意使用的无线装置大量涌现,需要在未来个人活动空间内布置大量的无线接入点,因而低廉的价格将起到关键作用。
为降低元件的价格,以便这些装置批量生产,所以发展了一个关于这种网络的标准方案。
Zigbee就是在这一标准下一种新兴的短距离、低功耗、低数据传输的无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。
对于这种短距离、低功耗、低数据传输无线技术,它不仅在工业、农业、军事、环境、医疗等传统领域有着巨大的应用价值,未来应用中还可以涉及人类日常生活和社会生产活动的所有领域。
由于各方面的制约,这种技术的大规模商业应用还有待时日,但已经显示出了非凡的应用价值,相信随着相关技术的发展和推进,一定会得到更广泛应用。
1.2国内外无线技术相关现状及Zigbee现状无线通信从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段: 第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子管技术,至该阶段末期出现才出现150MHVHF单工汽车公用移动电话系统MTS。
第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ器件技术已向半导体过渡,大多为移动环境的专用系统,并解决了移动电话与公用电话的接续问题。
第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出蜂窝系统概念并于70年代末进行了AMPS试验。
基于51单片机的无线收发电路设计
0 引言
数据采集及传输系统是现代测量仪器的基础。
在工业测控、医疗监护和
实验研究中得到广泛应用。
当数据采集点处于非固定位置或运动状态时,数据
采集系统必须与主机分离。
同时还需利用电池供电。
因此,由无线收发电路或
模块组成的数据采集及传输系统是有效的解决方式。
比较典型的无线收发电路
或模块有采用2.4 GHz 通信频率的无线传感器网络传感器节点,433/868/915 MHz 通信频率的遥控模块及数传模块、900/1 800 MHz 通信频率的GSM 模块,但现有的无线收发电路或模块易造成系统体积过大、功耗偏高,不能完全满足
采用电池供电的便携式监测系统的需要,尤其是需要大规模、密集型部署,仅
需要近距离通信的场合,传统的无线通信模块容易造成网络通信的阻塞、缩小
网络的容量、增加节点的功耗、缩短节点的寿命。
这里给出以C8051F340 单片机作为监测终端控制器,C8051F330D 单片机作为探测节点控制器,通过漆包线自行绕制圆形空心天线,分别构成监控终
端和探测节点的无线收发电路,实现无线数据传输功能。
1 硬件电路设计
该系统主要由监测终端、探测节点和天线等组成,硬件结构框图如图1
所示。
图1 中,液晶显示器是处于调试需要,连接至监测终端,用以显示探测
节点的编号、所传输的数据等信息。
收发电路均采用直径为0.8mm 的漆包线自
行绕制成圆形空心线圈天线,直径为(3.4±0.3)cm。
图1 无线收发电路硬件结构框图
1.1 发射电路
监测终端与探测节点的硬件电路相似,监测终端通过液晶显示探测节点。
基于51单片机的多机通信系统设计多机通信系统是指通过一台主机与多台从机之间进行数据交互和通信的系统。
在本设计中,我们将使用51单片机实现一个基于串行通信的多机通信系统。
系统硬件设计如下:1.主机:使用一个51单片机作为主机,负责发送数据和接收数据。
2.从机:使用多个51单片机作为从机,每个从机负责接收数据和发送数据给主机。
3.串口:主机和从机之间通过串口进行通信。
我们可以使用RS232标准通信协议。
系统软件设计如下:1.主机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。
b.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。
c.接收数据:接收从机发送的数据,并存储在接收缓冲区中。
2.从机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。
b.接收数据:接收主机发送的数据,并存储在接收缓冲区中。
c.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。
系统工作流程如下:1.主机启动,执行初始化操作,包括初始化串口。
2.从机启动,执行初始化操作,包括初始化串口。
3.主机发送数据给从机:主机将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。
4.从机接收并处理数据:从机接收主机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。
5.从机发送数据给主机:从机将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。
6.主机接收并处理数据:主机接收从机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。
7.主机和从机循环执行步骤3-6,实现多机之间的数据交互和通信。
多机通信系统的设计考虑到以下几个方面:1.硬件设计:需要合理选择单片机和串口的类型和参数,确保系统的稳定性和可靠性。
2.软件设计:需要设计适应系统需求的通信协议和数据处理提取方法,保证数据的准确性和完整性。
3.通信协议:需要定义主机和从机之间的通信协议,包括数据的格式、传输方式等,以便实现正确的数据交互。
二零一四—二零一五学年_二_学期山东科技大学电工电子实验教学中心创新性实验研究报告实验项目名称_基于单片机的无线通信系统的设计组长姓名卢兴学号联系电话 E-mail成员姓名李洪川学号成员姓名陈卓学号成员姓名靳伟娜学号成员姓名张硕学号专业通信工程班级 2011-1指导教师及职称王凤瑛(教授)2014年 4月 26日四、实验内容五、实验结果与分析六、实验结论七、指导老师评语及得分:附件:源程序等。
发送程序清单:org 0000hljmp mainorg 000bhljmp t0_intorg 0100hmain: mov tmod,#21h ;T0方式1 T1方式2自动重装 mov tl0,#0h ;装初值mov th0,#0hmov tl1,#0f4h ;装初值mov th1,#0f4hsetb ea ;开T0中断setb et0setb tr0 ;开始计数setb tr1mov r1,#0fh ;用于延时计数mov a,#0mov scon,#40h ;方式1amain: mov sbuf,a ;开始发送jnb ti,$ ;判断发送是否结束clr tiljmp amaint0_int:mov tl0,#0h ;装初值mov th0,#0hdjnz r1,next ;T0计数r1次inc a ;a数值加一mov r1,#0fhnext: retiend接收程序清单:org 0000hljmp mainorg 0023hljmp bisorg 0100hmain: mov tmod,#20h ;设置T1计数方式波特率 mov tl1,#0f4h ;波特率设置为2.4kb/s mov th1,#0f4hsetb tr1 ;启动T1mov scon,#50h ;方式1允许接受mov ie,#90h ;开串口中断sjmp $bis: jnb ri,bis ;等待接收完成clr ri ;清除接受标志位mov a,sbufmov p0,a ;送p0口显示retiend发射模块实物图:接收模块实物图:接收数据后的现象图:接收到55h后的现象图:接收到aah后的现象图:。
1 概述1.1 课题的目的、背景和意义最近几年来,由于无线接入技术需求日益增大,以及数据交换业务(如因特网、电子邮件、数据文件传输等)不断增加,无线通信和无线网络均呈现出指数增加的趋势。
有力的推动力无线通信向高速通信方向发展。
然而,工业、农业、车载电子系统、家用网络、医疗传感器和伺服执行机构等无线通信还未涉足或者刚刚涉足的领域,这些领域对数据吞吐量的要求很低,功率消耗也比现有标准提供的功率消耗低。
此外,为了促使简单方便的,可以随意使用的无线装置大量涌现,需要在未来个人活动空间内布置大量的无线接入点,因而低廉的价格将起到关键作用。
为降低元件的价格,以便这些装置批量生产,所以发展了一个关于这种网络的标准方案。
Zigbee就是在这一标准下一种新兴的短距离、低功耗、低数据传输的无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。
对于这种短距离、低功耗、低数据传输无线技术,它不仅在工业、农业、军事、环境、医疗等传统领域有着巨大的应用价值,未来应用中还可以涉及人类日常生活和社会生产活动的所有领域。
由于各方面的制约,这种技术的大规模商业应用还有待时日,但已经显示出了非凡的应用价值,相信随着相关技术的发展和推进,一定会得到更广泛应用。
1.2国内外无线技术相关现状及Zigbee现状无线通信从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子管技术,至该阶段末期出现才出现150MHVHF单工汽车公用移动电话系统MTS。
第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ器件技术已向半导体过渡,大多为移动环境的专用系统,并解决了移动电话与公用电话的接续问题。
第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出蜂窝系统概念并于70年代末进行了AMPS试验。
第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个通信业务方向迈进,此时出现D-AMPS、TACS、ETACS、GSM\DCS、cdmaone、PDC、PHS、DECT、PACS、PCS、等各类系统与业务运行。
第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题内。
近10年来,我国在移动通信领域的科研、设备生产等方面也取得了可喜的进步,国产移动通信设备交换系统、基站和手机等都已经投入生产,并陆续投方市场,第三代移动通信系统的开发和研究也正与世界同步。
21世纪的电信技术正进入一个关键的转折期、未来十年将是技术发展最为活跃的时期。
信息化社会到来以及IP技术兴起,正深刻地改变着电信网络的面貌以及未来技术发展走向,未来无线通信技术发展主要趋势是宽带化、分组化、综合化、个人化。
无线技术也分不同种类,通常以产生无线信号的方式来区分,目前主要的方式有调频无线技术、红外无线技术和蓝牙无线技术三种,其成本和特点也不尽相同。
广泛应用于音响键鼠等各项内容,有很好的发展。
而所谓无线技术,就是通过发射模块,以波的形式由接收模块接收,之后把发射的内容解调出来。
Zigbee无线技术是一种介于无线标记技术和蓝牙之间的技术方案,Zigbee是一种高可靠的无线数传网络,类似于GSM(全球移动通信)和CDMA(数字通信中出现的一种先进无线扩频通信技术),Zigbee模块类似与移动网络基点,Zigbee技术是建立在IEEE802.15.4标准上,为了促进Zigbee技术发展,2001年8月成立Zigbee联盟,2002年下半年,英国invensys 公司、日本三菱电子公司、摩托罗拉电子公司以及荷兰飞利浦半导体公司四大巨头共同宣布,它们将加入“Zigbee联盟”,目前该联盟已经有150家成员,以研发名为Zigbee 的下一代无线通信为标准。
其功能超越蓝牙简单而实用,大规模简化蓝牙的复杂,专注于低传输应用,但是Zigbee不支持语音,而其低功耗、低价格和可靠是它的亮点,让它超越蓝牙简单而实用。
预计在未来Zigbee无线传输将大规模占领市场。
1.3 课题任务要求(1)实现Zigbee无线模块间的无线通信;(2)发射模块间传输距离大于100米;(3)发射模块间可以实现点对点和广播传输数据,即有相同的通信协议;(4)传输数据在PC或1602液晶屏上显示出来;(5)个人电脑内对单片机的控制;(6)实现单片机对zigbee模块的控制与设置;(7)与同一课题并采用zigbee方案的其他小组组成小型局域网络,相互通信。
2 技术方案如下图所示,此次技术方案是:应用Zigbee模块的接收与发送数据功能,对数据的接收与发送,Zigbee模块连接在单片机功能引脚TXD、RXD,这样可以对传送数据处理,用单片机的I/O口连接上液晶显示屏可以对接收与发送的数据显示,串口连接上单片机与PC机相连,可对单片机输入程序控制和输入发送数据。
基于stc89C52单片机组成的系统,对zigbee和1602液晶屏进行控制和通信。
2.1 芯片选择Zigbee模块型号:DRF1605,主要功能:串口(UART)转Zigbee无线数据透明传输。
这次我们实习无线接受与发送运用Zigbee模块,Zigbee模块接收与发送是这样的:Zigbee模块有两种节点模式,一种是coordinator(主节点),另一种Router(从节点),这两种节点可以有各自的PAN ID(地址),Zigbee模块出厂默认地址是Router 一种,可以用软件修改其PAN ID,当有一个coordinator节点时,其他的Router可以与其连接,当很多Router节点在这coordinator节点连接时,就可以形成一个网络,在这网络中任意节点可以相互传输数据。
Zigbee模块传输数据有两种方式:一种数据透明传输,另一种是数据点对点传输,所谓透明传输,就是coordinator主节点这网络上发送数据时,任意Router都能接收到发送的数据;而点对点传输,就是在coordinator网络发送数据时,任意两个节点间发送数据,只能这两节点收到数据。
图2.2 Zigbee结构及引脚定义图转串口芯片选用MAX232。
RS232C是一种电压型总线标准,可用于设计计算机接口与终端或外设之间的连接,以不同的极性的电压表示逻辑值。
-3至-25表示逻辑“1”,+3至+25表示逻辑“0”,其电平是TTL和CMOS电平是不同的,所以在通信时必须进行转换。
MAXIM公司的MAX232接收/发送器是MAXIM公司特别为满足EIA/TEA2232的标准而设计的,它们具有功耗低、工作电源为单电源、外接电容仅为0.1uF或1uF的电容,其价格低,可在一般需要串行通信的系统中使用。
MAX232引脚C1+与C1-、C2+与C2-、V+与VCC、V-与GND之间的4个0.1uF的电容不可缺少,一般选用陶瓷介质的电容。
MAX232可以用作单片机和单片机之间、单片机和PC机串口之间的符合RS232串行接口电路。
只要将待进行串行传输的设备的发送和接收端相应的接上,编程即可[3]。
图 2.4 Max232内部结构及一家定义STC89C52单片机控制核心单片机选用STC89C52,完全能满足本系统要求。
表 2.11 P3口功能引脚端口引脚第二功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 0INT(外部中断0)P3.3 1INT(外部中断1)P3.4 T0(定时器0)P3.5 T1(定时器1)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器都选通)3. 硬件设计3.1 Zigbee模块引脚连接设计图 3.1 Zigbee模块电路图3.2 Z igbee模块电源设计Zigbee模块电源采用的是3.3v直流电,电路中直接采用四个电容滤波,用芯片LM1117-3.3稳压得到。
单片机系统采用的是5V直流电,用7805稳压芯片可得。
图3.2 电源电路3.3V图3.3 电源电路 5V 3.3 单片机设计电路图 3.4 单片机连接图3.4 串口电路设计图 3.5 串口电路4.软件设计4.1软件功能说明按本课题设计要求,程序所要实现的功能如下:1)、实现1602液晶屏实时显示系统状态,提供较好的人机界面;2)、实现通过按键设置Zigbee模块的工作模式,即给zigbee发送命令,zigbee 工作状态及命令见附录;3)、用预先定好的通信协议进行数据的收发控制,实现点对点通信和广播数据,并在1602显示系统的工作状态。
4.2软件总流程图图4-1整体思路按上图设计思路编写程序,程序流程图如下:图4-2 程序流程图4.3各功能软件4.4软件测试4.5 软件设计总结5.通信协议5.1模块说明这次实习,我们用的是ZigBee模块,DRF系列ZigBee模块目前包括DRF1601、DRF1602、DRF1605、DRF1605H、DRF2617-ZR232、DRF2618-ZUSB、DRF2619-ZR485及相关配套底板,它是基于TI 公司CC2530F256芯片,运行ZigBee2007/PRO协议的ZigBee 模块,它具有ZigBee协议的全部特点,这有区别于其它种类的ZigBee模块。
其主要特点包括:(一)自动组网:所有的模块上电即自动组网,Coordinator 自动给所有的节点分配地址,不需要用户手动分配地址,网络加入、应答等专业ZigBee组网流程;(二)简单数据传输:串口数据透传:Coordinator 从串口接收到的数据会自动发送给所有的节点,某个节点从串口接收到的数据,会自动发送给Coordinator。
通过串口即可在任意节点间进行数据传输,数据传输的格式为:0xFD(数据传输命令)+ 0x0A(数据长度)+ 0x73 0x79(目标地址)+ 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x10(数据,共0x0A Bytes);(三)唯一IEEE地址:DRF 系列模块采用的TI CC2530F256 芯片,出厂时已经自带IEEE 地址,用户无需另行购买IEEE地址,IEEE 地址(MAC地址)可作为ZigBee模块的标识;(四)用户可更改节点类型:用户可通过串口指令更改模块的节点类;(五)用户可更改无线电频道:用户可通过串口指令更改模块使用的无线电频道。
(六)简单易用:用户不用考虑ZigBee协议,像使用串口线一样使用无线模块5.2 ZigBee模块参数(1)电气参数:输入电压:DC 3.3V温度范围:-40C --85C串口速率:38400bps(默认),可设置9600bps,19200bps,38400bps,115200bps无线频率:2.4GHz无线协议:ZigBee2007 /PRO传输距离:可视距离400米发射电流:34mA(最大)接收电流:25mA(最大)低功耗模式:该款模块没有低功耗模式,客户可定制低功耗应用接收灵敏度:-96DBm主芯片:CC2530F256,256K Flash,TI公司最新一代ZigBee SOC芯片(2)机械参数:图5.2.1 机械参数图5.2.2 机械参数5.3 Zigbee模块的组网Zigbee网络通常由三种节点构成:Coordinator:用来创建一个Zigbee网络,并为最初加入网络的节点分配地址,每个Zigbee网络需要且只需要一个Coordinator;Router:也称为Zigbee全功能节点,可以转发数据,起到路由的作用,也可以收发数据,当成一个数据节点,还能保持网络,为后加入的节点分配地址;End Device:终端节点,通常定义为电池供电的低功耗设备,通常只周期性发送数据,不接收数据。