立体几何经典试题(含答案)
- 格式:doc
- 大小:456.50 KB
- 文档页数:6
A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD 与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.答案:D解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.答案:B解析:解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S△ABH=S ABCD=故选B3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④答案:D解析:解:如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点对于①因为FG∥BC1,△BDC1是正三角形,FG⊥BD,不正确.对于②因为平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,正确.③面EFG∥面ACC1A1;显然不正确.④EF∥平面CDD1C1内的D1C,所以EF∥面CDD1C1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.答案:D解析:解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC⊥AB;又AB⊥BC,BC∩PC=C,∴AB⊥平面PBC;又CH⊂平面PBC,∴AB⊥CH,又CH⊥PB,PB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,∴CH⊥DH;又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;在Rt△PBC,设BC=x,则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.答案:解析:解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,可得四边形EFGH为矩形,且此矩形的长和宽分别为和,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;对于③、由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=AB,在Rt△PAD中,PA=AD=2AB,∴PD=2AB,∴直线PD与平面PAB所成角的正弦值为=,∴直线PD与平面PAB所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.答案:4解析:解:由已知PA⊥底面ABC,∠ABC=90°,所以CB⊥PA,CB⊥AB,又PA∩AB=A,所以CB⊥平面PAB,所以CB⊥PB,所以此三棱锥P-ABC中直角三角形有△ABC,△ABP,△ACP,△PBC共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cos∠B1C1A==,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FD⊥AC1,则AD=DC1,故(2)正确;(3)连接CD,则CD⊥AC1,且FD⊥AC1,则∠CDF为二面角F-AC1-C的平面角,CD=,CF=,DF===,即CD2+DF2=CF2,故二面角F-AC1-C的大小为90°,故(3)正确;(4)由于CD⊥AC1,且FD⊥AC1,则AD⊥平面CDF,则V D-ACF=V A-DCF=•AD•S△DCF=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a,OA=R,在△OEA中,OE=,AE=,∵AO2=OE2+AE2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.故答案为:①②④⑤.三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.答案:证明:在△ABD中,∵AE:AB=AG:AD,∴EG∥BD.同理,GF∥DC,EF∥BC.又∠GEF与∠DBC方向相同.∴∠GEF=∠DBC.同理,∠EGF=∠BDC.∴△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D-ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.。
《立体几何》测试及答案(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1 .已知平而。
内的一条直线1及平而£,则'3_L £”是“ a_L £”的()A.充分必要条件B.充分不必要条件C.必要不充分条件 D,既不充分也不必要条件 解析根据直线与平面垂直的判定定理,由lu "”可证得“a_L £”,即充分性是 成立的.反之由“ a 工B,k a”不一定得到“AL £”,即必要性不成立.所以是 “。
J_ £ ”的充分不必要条件.故选B.答案B72 .已知圆锥的顶点为凡母线州,所所成角的余弦值为石,以与圆锥底面所成角为45° ,若 O △为5的面积为5仃,则该圆锥的侧面积为() A. 40(72 +1) nB. 40^2 HC.8(4i5 + 5) nD. 8710 n解析设。
为圆锥底而圆的圆心,设底而圆的半径为r.以与圆锥底而所成角为45° ,即/80=45°.所以以=小厂7 7母线闩1,所所成角的余弦值为5即cosN 川沙=小 o o 由 S^=^PA • j^sinZJj^=|x2?X^^=5J15. A?=40, , 2 o v故 S 秘侧=n r • PA — n r • \[2r=y[2 n y = 4(h/2 n .答案B3 .如图,在正四棱柱物/一儿RG 〃中,底而边长为2,直线。
乙与平而月以所成角的正弦值 为今则该正四棱柱的高为()贝I] sinN 川哈、= 7、J15 S 8A. 2B. 3C. 4D. 5解析以〃为坐标系原点,DA, DC 、弧所在直线分别为x, y, z 轴建立空间直角坐标系。
一 xyz,如图所示,设正四棱柱的高为方,则。
(0, 0,0),月(2, 0, 0),。
(0, 2, 0), 〃(0, 0, 血,4(0, 2,a ),五=(0, 0,方),赤=(-2, 2, 0),遨=(0, -2,方).设平而月曲的法n • m —2乂+2%=0,向量为〃=(%,必,%),则j —令二=2,则必=方,&=方,A=(/b h,.n •速=-2%+方冬=0, 2)为平面月四的一个法向量.又直线CG 与平面月8所成角的正弦值为所以cos " CG )答案C4 .设三棱柱 四。
立体几何试题及答案一、选择题1. 已知一个正方体的体积为8立方厘米,那么它的棱长为多少厘米?A. 2B. 4C. 3D. 2√2答案:C2. 一个长方体的长、宽、高分别为3厘米、4厘米、5厘米,那么它的表面积是多少平方厘米?A. 62B. 94C. 96D. 100答案:B3. 一个圆锥的底面半径为3厘米,高为4厘米,那么它的体积是多少立方厘米?A. 36πB. 48πC. 72πD. 96π答案:B二、填空题4. 如果一个圆柱的底面半径为5厘米,高为10厘米,那么它的体积是_____立方厘米。
答案:7855. 一个球的体积是4/3π立方厘米,那么它的半径是_____厘米。
答案:16. 一个棱锥的底面是边长为4厘米的正方形,高为5厘米,那么它的体积是_____立方厘米。
答案:32三、解答题7. 已知一个圆锥的底面半径为3厘米,高为5厘米,求圆锥的体积。
解:圆锥的体积公式为V = 1/3πr²h,代入数据得:V = 1/3 × π × 3² × 5 = 15π(立方厘米)答:圆锥的体积为15π立方厘米。
8. 一个正四面体的棱长为a厘米,求它的体积。
解:正四面体的体积公式为V = a³√2/12,代入数据得:V = a³√2/12(立方厘米)答:正四面体的体积为a³√2/12立方厘米。
9. 一个长方体的长、宽、高分别为2a厘米、a厘米、a厘米,求它的体积。
解:长方体的体积公式为V = 长× 宽× 高,代入数据得:V = 2a × a × a = 2a³(立方厘米)答:长方体的体积为2a³立方厘米。
1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(1)线段的中点为,线段的中点为,求证:;(2)求直线与平面所成角的正切值.解:(1)取的中点为,连,,则,面/面, .............. 分5(2)先证出面,.............. 分8为直线与平面所成角,................ 分11................ 分142、己知多面体ABCDE中,DE平面ACD,, AC=AD=CD=DE=2 AB =1, O 为CD 的中点.(1)求证:AO平面CDE(2)求直线BD与平面CBE所成角的正弦值3、如图,在△中,,,点在上,交于,交于•沿将△翻折成△,使平面平面;沿将△翻折成△ ,使平面平面.( 1 )求证:平面;(2 )若,求二面角的平面角的正切值.解:(1)因为,平面,所以平面.因为平面平面,且,所以平面. …2分同理,平面,所以,从而平面. …4分所以平面平面,从而平面.2)因为,,所以,,,.过E作,垂足为M,连结.由( 1)知,可得,所以,所以.所以即为所求二面角的平面角,可记为.在Rt△中,求得,所以. …4、如图,平面ABC,平面BCD, DE=DA=AB=AC,. M(1) 求直线EM与平面BCD所成角的正弦值;(2) P为线段DM上一点,且DM,求证:AP//DE. (12)分15 分为BC中点.解:(1) 平面,为在平面上的射影,为与平面所成角. …分2平面,, 设,又,. 在△中,,,又为中点,, ,.…5分在△中,,.……………………分 (7)2),为中点, .又平面, ,平面.又平面,,分11 …分9又,平面. .............. 分13又平面,. .............. 分145、如图,已知ABCD是边长为1的正方形,AF丄平面ABCD, CE// AF,(1)证明:BD丄EF;(2)若AF= 1,且直线BE与平面ACE所成角的正弦值为,求的值.解:(1)连结BD、AC,交点为O. •/ ABCD是正方形/• BD丄AC ……2分•/ AF丄平面ABCD A AF丄BD ……4分••• BD丄平面ACEF (6)A BD丄EF ……7分(2)连结0E,由(1)知,BD丄平面ACEF所以/ BEO即为直线BE与平面ACE所成的角. ……10分•/ AF丄平面ABCD, CE// AF , • CE丄平面ABCD, CE1 BC,•/ BC =1 , AF= 1 ,贝U CE= , BE= , B0=,• RtA BEO 中,,…1盼因为解得. …… 15分6、如图在几何体中平面ABC分别是的中点.(1) 求证:平面CDE;(2) 求二面角的平面角的正切值.解:(1)连接ACR1R交EC于点F ,由题意知四边形ACCR1RE是矩形,贝U F是ACR1R的中连接DF, •/ D是AB的中点,•ABCR1R勺中位线,a BCR1R//DF, 4 分•/ BCR1RF面EDC DF平面EDC,• BCR1R//平面CDE. 7 分(2)作AH丄直线CD,垂足为H ,连接HE,•/ AAR1R丄平面ABC, • AAR1RL DC,CD丄平面AHE,CD丄EH ,••• AHE是二面角E -CD -A的平面角. 11分•/ D是AB的中点,• AH等于点B到CD的距离,在厶BCD中,求得:AH=, 在厶AEH中,即所求二面角的正切值为.7、如图,已知平面与直线均垂直于所在平面,且,( 1 )求证:平面;(2)若,求与平面所成角的正弦值.解:(1)证明:过点作于点,•••平面丄平面,•平面……2分又•••丄平面•- 〃 , ......... 分又•••平面• 〃平面 ......... 分(2) •••平面•,又•/••………………分8•点是的中点,连结,则•平面•//,•四边形是矩形………………分10设得:,又•••,•,从而,过作于点,则:•是与平面所成角…………………………………………分…… •,• 与平面所成角的正弦值为…………………………分14&如图,在直三棱柱中,是等腰直角三角形,,侧棱AA仁2, D, E分别为点,点E在平面ABD上的射影是的重心.(1) 求证:DE// 平面ACB;(2) 求A1B与平面ABD所成角的正弦值.12CC1 与A1B 的中9、如图,在侧棱垂直于底面的三棱柱ABC-A1B1中,底面△ ABC为等腰直角三角形,/ B=90°D为棱BB1的中点。
立体几何试题及答案一、选择题1. 一个正方体的棱长为a,其表面积为:A. 3a²B. 4a²C. 6a²D. 8a²答案:C2. 一个长方体的长、宽、高分别为l、w、h,其体积为:A. lwhB. 2(lwh)C. l²wD. lw²答案:A3. 圆柱的底面半径为r,高为h,其体积为:A. πr²hB. 2πr²hC. πrhD. πr²答案:A二、填空题1. 一个球的体积公式为:_________________。
答案:\( V = \frac{4}{3}πr^3 \)2. 圆锥的体积公式为:_________________。
答案:\( V = \frac{1}{3}πr^2h \)3. 若一个棱锥的底面积为S,高为h,则其体积为:_________________。
答案:\( V = \frac{1}{3}Sh \)三、计算题1. 已知一个正四面体的棱长为a,求其表面积和体积。
解:正四面体的表面积为:\( S_{表} = 4 \times \frac{\sqrt{3}}{4}a^2 = \sqrt{3}a^2 \)正四面体的体积为:\( V = \frac{1}{3} \times \frac{\sqrt{3}}{4}a^2 \times\frac{\sqrt{2}}{2}a = \frac{\sqrt{2}}{12}a^3 \)2. 已知一个圆柱的底面半径为r,高为h,求其表面积和体积。
解:圆柱的表面积为:\( S_{表} = 2πr^2 + 2πrh \)圆柱的体积为:\( V = πr^2h \)四、证明题1. 证明:在一个球面上,任意两个大圆的弦所成的角都是直角。
证明:设球面上的两个大圆为O₁O₂和O₃O₄,弦AB和CD分别位于这两个大圆上,连接O₁A、O₁B、O₂A、O₂B、O₃C、O₃D、O₄C、O₄D。
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1
2AA 1,D 是棱
AA 1的中点
(I)证明:平面BDC 1⊥平面BDC
(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.
【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ⋂=,∴BC ⊥面11ACC A , 又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,
由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C ⋂=, ∴1DC ⊥面BDC , ∵1DC ⊂面1BDC , ∴面BDC ⊥面1BDC ;
(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132
+⨯⨯⨯=1
2,
由三棱柱111ABC A B C -的体积V =1,
∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,
AB ⊥平面PAD ,//AB CD ,PD AD =,E 是
PB 的中点,F 是CD 上的点且1
2
DF AB =
,PH 为△PAD 中AD 边上的高.
(1)证明:PH ⊥平面ABCD ;
(2)若1PH =
,AD =
,1FC =,求三
棱锥E BCF -的体积;
(3)证明:EF ⊥平面PAB .
B 1
C B
A
D
C 1
A 1
【解析】(1)证明:因为AB ⊥平面PAD ,
所以PH AB ⊥。
因为PH 为△PAD 中AD 边上的高, 所以PH AD ⊥。
因为AB AD A = ,
所以PH ⊥平面ABCD 。
(2)连结BH ,取BH 中点G ,连结EG 。
因为E 是PB 的中点, 所以//EG PH 。
因为PH ⊥平面ABCD ,
所以EG ⊥平面ABCD 。
则1122
EG PH =
=, 111
332E B C F B C F
V S E G F C A D G -∆=
⋅=⋅⋅⋅⋅=12。
(3)证明:取PA 中点M ,连结MD ,ME 。
因为E 是PB 的中点,
所以1
//2ME AB =。
因为1
//2
DF AB =,
所以//ME DF =
,
所以四边形MEDF 是平行四边形, 所以//EF MD 。
因为PD AD =, 所以MD PA ⊥。
因为AB ⊥平面PAD , 所以MD AB ⊥。
因为PA AB A = ,
所以MD ⊥平面PAB , 所以EF ⊥平面PAB 。
3. 如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且A D D E F ⊥,为11B C 的中点.
求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .
【答案】证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC 。
又∵AD ⊂平面ABC ,∴1CC AD ⊥。
又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E = ,,∴AD ⊥平面11BCC B 。
又∵AD ⊂平面ADE ,∴平面ADE ⊥平面11BCC B 。
(2)∵1111A B A C =,F 为11B C 的中点,∴111A F B C ⊥。
又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥。
又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C = ,∴1A F ⊥平面111A B C 。
由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD 。
又∵AD ⊂平面1, ADE A F ∉平面ADE ,∴直线1//A F 平面ADE 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点.
(1)证明:EF ∥面PAD ;
(2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.
如图,连接AC ,
∵ABCD 为矩形且F 是BD 的中点, ∴AC 必经过F
1分
又E 是PC 的中点, 所以,EF ∥AP
2分
∵EF 在面PAD 外,PA 在面内,∴EF ∥面PAD
(2)∵面PAD ⊥面ABCD ,CD ⊥AD ,面PAD 面ABCD=AD ,∴CD ⊥面PAD ,
又AP ⊂面PAD ,∴AP ⊥CD
又∵AP ⊥PD ,PD 和CD 是相交直线,AP ⊥面PCD 又AD ⊂面PAD ,所以,面PDC ⊥面PAD
(3)取AD 中点为O ,连接PO ,
因为面PAD ⊥面ABCD 及△PAD 为等腰直角三角形,所以PO ⊥面ABCD , 即PO 为四棱锥P —ABCD 的高
∵AD=2,∴PO=1,所以四棱锥P —ABCD 的体积1233
V PO AB AD =
⋅⋅= 5. 在如图所示的几何体中,四边形ABCD 是正方形,
MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==.
(I )求证:平面EFG ⊥平面PDC ;
(II )求三棱锥P MAB -与四棱锥P ABCD -的体积
之比.
【解析】(I )证明:由已知MA 平面ABCD ,PD ∥MA , 所以 PD ∈平面ABCD
又 BC ∈ 平面ABCD , 因为 四边形ABCD 为正方形, 所以 PD ⊥ BC
又 PD ∩DC=D , 因此 BC ⊥平面PDC 在△PBC 中,因为G 平分为PC 的中点,
所以 GF ∥BC
因此 GF ⊥平面PDC 又 GF ∈平面EFG , 所以 平面EFG ⊥平面PDC.
(Ⅱ )解:因为PD ⊥平面ABCD,四边形ABCD 为正方形,不妨设MA=1, 则 PD=AD=2,AB CD
所以 V p-ABCD =1/3S 正方形ABCD ,PD=8/3 由于 DA ⊥面MAB 的距离
所以 DA 即为点P 到平面MAB 的距离,
三棱锥 Vp-MAB=1/3×1/2×1×2×2=2/3,所以 Vp-MAB :Vp-ABCD=1:4。
6.
如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直。
EF//AC ,,CE=EF=1 (Ⅰ)求证:AF//平面BDE ; (Ⅱ)求证:CF ⊥平面BDF;
证明:(Ⅰ)设AC 于BD 交于点G 。
因为EF ∥AG,且EF=1,AG=1
2
AG=1 所以四边形AGE F 为平行四边形 所以AF ∥EG
因为EG ⊂平面BDE,AF ⊄平面BDE, 所以AF ∥平面BDE
(Ⅱ)连接FG 。
因为EF ∥CG,EF=CG=1,且CE=1,所以平行四边形CE FG 为菱形。
所以CF ⊥EG.
因为四边形ABCD 为正方形,所以BD ⊥AC.又因为平面ACEF ⊥平面ABCD,且平面ACEF ∩平面ABCD=AC,所以BD ⊥平面ACEF.所以CF ⊥BD.又BD ∩EG=G,所以CF ⊥平面BDE. 7.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点,
(Ⅰ)求证:FH ∥平面EDB; (Ⅱ)求证:AC ⊥平面EDB; (Ⅲ)求四面体B —DEF 的体积;
(1),1//
,21
//,2
////AC BD G G AC EG GH H BC GH AB EF AB EFGH EG FH EG EDB FH EDB ∴∴⊂∴证:设与交于点,则为的中点,连,由于为的中点,故又四边形为平行四边形
,而平面,平面0,.,.
.//,,90,.FB BFG FH FH BF FG H BC FH BC FH ABCD FH AC FH EG AC EG AC BD EG BD G AC EDB
FB BFC BF CDEF BF B DEF BC A ∏⊥∴⊥⊥∴⊥∴⊥∴⊥=∴⊥∴⊥∴⊥∴⊥⊥⋂=∴⊥⊥∠=∴⊥∴-= ()证:由四边形ABCD 为正方形,有AB BC 。
又EF//AB ,EF BC 。
而EF ,EF 平面EF AB 又为的中点,。
平面又,又,平面(Ⅲ)解:EF 平面为四面体
的高,又2,111*.
323
B DEF B BF F
C V BF
-=∴====∴
8.如图,在直三棱柱111ABC A B C -中,E 、F 分别是
1A B 、1A C 的中点,点D 在11B C 上,11A D B C
⊥。
求证:(1)EF ∥平面ABC ;
(2)平面1A FD ⊥平面11BB C C . A
B
C
D E F
H。