立体几何大题专题(基础)
- 格式:doc
- 大小:303.50 KB
- 文档页数:4
1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点.(1)FD ∥平面ABC ;(2)AF ⊥平面EDB .2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。
(1)求证:MN //平面PAD ; (2)当∠PDA =45°时,求证:MN ⊥平面PCD ;F CBAEDA B C D EF 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ; (2)平面⊥EFC 面BCD .4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证 AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证 截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由]立体几何大题训练(3)C15. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ; (2)MN ⊥平面B 1BG .6. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.立体几何大题训练(4)7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G_ M _ D_1_ C_1_ B_1_ A_1_ N_ D _ C_ B _ ABA 1FE、E1分别是棱AD、AA1的中点(1)设F是棱AB的中点,证明:直线EE1∥面FCC1;(2)证明:平面D1AC⊥面BB1C1C。
【一专三练】 专题03 立体几何大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·河北·校联考模拟预测)在斜三棱柱111ABC A B C -中,ABC V 是等腰直角三角形,,AB BC AC ==,平面11ACC A ⊥底面ABC ,112A B AA ==.(1)证明:1A B AC ⊥;(2)求二面角11A BC C --的正弦值.2.(2023·浙江金华·浙江金华第一中学校考模拟预测)如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =,13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.3.(2023·江苏泰州·统考一模)如图,在ABC V 中,AD 是BC 边上的高,以AD 为折痕,将ACD V 折至APD △的位置,使得PB AB ⊥.(1)证明:PB ⊥平面ABD ;(2)若4,2AD PB BD ===,求二面角B PA D --的正弦值.4.(2023·辽宁阜新·校考模拟预测)如图,在等腰直角三角形ABC 中(如图1),∠A =90°,点E ,F 分别是AB ,BD 的中点,将△ABC 沿AD 折叠得到图2所示图形,设l 是平面EFC 和平面ACD 的交线.(1)求证:l ⊥平面BCD ;(2)求平面ACD 和平面BCD 夹角的余弦值.5.(2023·江苏南通·统考模拟预测)三棱柱111ABC A B C -中,112AB AB AA AC ====,120BAC ∠= ,线段11A B 的中点为M ,且BC AM ⊥.(1)求1AA 与BC 所成角的余弦值;(2)若线段11B C 的中点为P ,求二面角11P AB A --的余弦值.6.(2023·福建莆田·统考二模)如图,直三棱柱111ABC A B C -的侧面11BCC B 为正方形,22AB BC ==,E ,F 分别为AC ,1CC 的中点,11BF A B ⊥.(1)证明:BF ⊥平面11A B E ;(2)求平面11A B E 与平面11ACC A 夹角的余弦值.7.(2023·辽宁·校联考一模)如图,四棱锥P ABCD -中,底面ABCD 是菱形,PD ⊥底面ABCD ,PD DA =,M 为AD 的中点,且平面PBM ⊥平面PDA .(1)证明:BM AD ⊥;(2)求二面角M PB C --的正弦值.8.(2022·河北邯郸·统考二模)如图,在三棱锥P -ABC 中,△ABC 为等腰直角三角形,且2AB AC ==,△ABP 是正三角形.(1)若PC BC =,求证:平面ABP 平面ABC ;(2)若直线PC 与平面ABC 所成角为π4,求二面角P AB C --的余弦值.9.(2023·江苏·统考一模)在三棱柱111ABC A B C -中,平面11A B BA ⊥平面ABC ,侧面11A B BA 为菱形,1π3ABB ∠=,1AB AC ⊥,2AB AC ==,E 是AC 的中点.(1)求证:1A B ⊥平面1AB C ;(2)点P 在线段1A E 上(异于点1A ,E ),AP 与平面1A BE 所成角为π4,求1EP EA 的值.10.(2022·山东·潍坊一中校考模拟预测)在如图所示的多面体AFDCBE 中,AB ⊥平面BCE ,////AB CD EF ,BE EC ⊥,4AB =,2EF =,24EC BE ==.(1)在线段BC 上是否存在一点G ,使得//EG 平面AFC ?如果存在,请指出G 点位置并证明;如果不存在,请说明理由;(2)当三棱锥D AFC -的体积为8时,求二面角D AF C --的余弦值.11.(2022·山东日照·校联考二模)如图,等腰梯形ABCD 中,AD BC ∥,12AB BC CD AD ===,现以AC 为折痕把ABC V 折起,使点B 到达点P 的位置,且PA CD ⊥.(1)证明:平面APC ⊥平面ADC ;(2)若M 为PD 上一点,且三棱锥D ACM -的体积是三棱锥P ACM -体积的2倍,求二面角P AC M --的余弦值.12.(2022·湖北武汉·武汉二中校考模拟预测)如图(1),平面四边形ABDC 中,90ABC D ∠=∠=︒,2AB BC ==,1CD =,将ABC V 沿BC 边折起如图(2),使AD =,点M ,N 分别为AC ,AD 中点.(1)判断直线MN 与平面ABD 的位置关系,并说明理由;(2)求二面角A MN B --的正弦值.13.(2022·湖北·校联考模拟预测)如图,四棱台1111ABCD A B C D -中,上底面1111D C B A 是边长为1的菱形,下底面ABCD 是边长为2的菱形,1D D ⊥平面ABCD 且11=D D(1)求证:平面11AA C C ⊥平面11BB D D ;(2)若直线AB 与平面11BB C C 1111ABCD A B C D -的体积.14.(2022·湖北宜昌·宜昌市夷陵中学校考模拟预测)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,90ACB ∠=︒,112BC AC CC ===,.(1)证明:11AC A B ⊥;(2)若12A C =,求二面角1A AB C --的余弦值.15.(2022·湖北十堰·丹江口市第一中学校考模拟预测)如图,在多面体ABCDEF 中,四边形CDEF 是边长为2的正方形,//,,33,2AB CD AD CD BE AB AD ⊥===.(1)求证:平面ADF ⊥平面BCE ;(2)求平面ADF 与平面BCF 所成锐角的余弦值.16.(2022·湖南岳阳·统考三模)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,F 是PD 的中点.(1)证明://PB 平面AFC ;(2)若直线PA ⊥平面ABCD ,2AC AP ==,且PA 与平面AFC ,求锐二面角F AC D --的余弦值.17.(2022·湖南·校联考模拟预测)如图,在直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点P 为棱11B C 的中点,点Q 为线段1A B 上的一动点.(1)求证:当点Q 为线段1A B 的中点时,PQ ⊥平面1A BC ;(2)当点Q 位于线段1A B 的什么位置时,1B Q 与平面1A BP 请说明理由.18.(2022·湖南长沙·长郡中学模拟预测)如图,已知直三棱柱111ABC A B C -,O ,M ,N 分别为线段BC ,1AA ,1BB 的中点,P 为线段1AC 上的动点,116AA =,8AC =.(1)若12AO BC =,试证1C N CM ⊥;(2)在(1)的条件下,当6AB =时,试确定动点P 的位置,使线段MP 与平面11BB C C 所.19.(2023·湖南长沙·雅礼中学校考模拟预测)如图,在三棱锥-P ABC 中,已知PA PB PC AB AC ====,E 是PA .(1)求证:平面PAB ⊥平面BCE ;(2)若BC AB =,求平面ABC 与平面ABE 夹角的正弦值.20.(2022·湖南长沙·长郡中学校考模拟预测)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)求当面11BB C C 与面DFE 所成的二面角的正弦值最小时,三棱锥1E BDB -的体积.21.(2022·广东·统考模拟预测)如图,已知AB BC ⊥, //BE CD ,90DCB ∠=︒,平面BCDE ⊥平面ABC , 2AB BC BE ===,4CD =,F 为AD 的中点.(1)证明:EF ⊥平面ACD ;(2)求平面ACE 与平面ABD 所成锐二面角的余弦值.22.(2022·江苏·统考二模)如图,在四棱锥P ABCD -中,四边形ABCD 是边长为2的菱形,PAB V 是边长为2的等边三角形,PD AB ⊥,PD =(1)求证:平面PAB ⊥平面ABCD ;(2)求平面PAB 和平面PCD 所成锐二面角的大小.23.(2022·江苏南通·校联考模拟预测)如图,在四棱锥P -ABCD 中,底面ABCD 是4长为的正方形,侧面PAD ⊥底面ABCD ,M 为PA 的中点,PA =PD(1)求证:PC ∥平面BMD ;(2)求二面角M -BD -P 的大小.24.(2022·江苏徐州·统考模拟预测)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD BC CD ⊥⊥,,O 为BD 的中点,,22AB AD BD CD ===.(1)证明:OA ⊥平面BCD ;(2)点E 在棱AD 上,若DE DA λ= ,二面角E BC D --的大小为π4,求实数λ的值.25.(2022·江苏泰州·统考模拟预测)如图,在正三棱柱111ABC A B C -中,1AB =,1CC =D 为BC 的中点,E 为侧棱1AA 上的点.(1)当E 为1AA 的中点时,求证://AD 平面1BC E ;(2)若平面1BC E 与平面ABC 所成的锐二面角为60 ,求AE 的长度.26.(2022·江苏常州·华罗庚中学校联考三模)如图,ABCD 是边长为6的正方形,已知2AE EF ==,且////ME NF AD 并与对角线DB 交于G ,H ,现以ME ,NF 为折痕将正方形折起,且BC ,AD 重合,记D ,C 重合后为P ,记A ,B 重合后为Q .(1)求证:平面PGQ ⊥平面HGQ ;(2)求平面GPN 与平面GQH 所成二面角的正弦值.27.(2022·海南省直辖县级单位·校联考一模)如图,在三棱台ABC DEF -中,已知平面ABED ⊥平面BCFE ,BA BC ⊥,3BC =,112BE DE DA AB ====(1)求证:直线⊥AE 平面BCFE ;(2)求平面CDF 与平面AEF 所成角的正弦值.28.(2023·广东惠州·如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为线段PB 的中点,F 为线段BC 上的动点.(1)证明:平面AEF ⊥平面PBC ;(2)若直线AF 与平面PAB ,求点P 到平面AEF 的距离.29.(2023·安徽蚌埠·统考二模)如图,正方体1111ABCD A B C D -的棱长为1,E ,F 是线段11B D 上的两个动点.(1)若//BF 平面ACE ,求EF 的长度;(2)若11114D E D B = ,求直线BE 与平面ACE 所成角的正弦值.30.(2023·山东·沂水县第一中学校联考模拟预测)已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.。
1.(本小题总分值14分)如图,在四棱锥 P ABCD 中,底面ABCD 是正方形,侧棱PD 底面ABCD, PD DC 1, E 是PC 的中点,作EF PB 交PB 于点F.(I)证实: PA //平面EDB; (II)证实:PB ,平面EFD; (III)求三棱锥P DEF 的体积.2 .(本小题总分值(m)求三棱锥(I )求证:B 118.(本小题总分值14分)如右图,在直角梯形ABCD中, B=90 °,1DC//AB,BC=CD= -AB=2 , G 为线段AB 的中点,将VADG 沿GD 2折起,使平面ADG 平面BCDG,得到几何体A-BCDG.(1)假设E,F分别为线段AC,AD的中点,求证:EF//平面ABG;(2)求证:AG 平面BCDG;(3)求V C-ABD 的值.4、(本小题总分值14分)如图4, AA是圆柱的母线, AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点, AA AB 2.(1)求证:BC 平面A〔AC ;(2)求三棱锥A ABC的体积的最大值.图4C (n ) 求证:EF 面PAC;〔出〕求三棱锥B-PAC的体积.6 .〔本小题总分值14分〕如图,平行四边形ABCD中,CD 1, BCD 60,且BD CD ,正方形ADEF 和平面ABCD成直二面角,G, H是DF , BE的中点.〔I〕求证:BD 平面CDE ;〔n〕求证:GH 〃平面CDE;〔出〕求三棱锥D CEF的体积.7.〔本小题总分值14分〕右图是一个直三棱柱〔以A i B i C i为底面〕被一平面所截得到的几何体,截面为ABC.A i B i = B i C i = l, ZAi B i C i = 90 ,AA i = 4,BB i=2, CC i=3.(I)设点O是AB的中点,证实:OC//平面A i B i C i;(II)求此几何体的体积.8 .(本小题总分值i4分)如图,在正方体ABCD—A i B i C i D i中,E、F为棱AD、AB的中点.(i )求证:EF//平面CB i D i;(2)求证:平面CAA i C■平面CB i D i.9 .(本小题总分值i4分)如图i ,在直角梯形ABEF中(图中数字表示线段的长度),将直角梯形DCEF沿CD折起,使平面DCEF 平面ABCD,连结局部线段后围成一个空间几何体,如图2.(I)求证:BE〃平面ADF ;(n)求三棱锥F BCE的体积.图图-10 .(本小题总分值14分)在直三棱柱ABC ABG中,AD 平面ABC,其垂足D落在直线A〔B上.(I )求证:BC A1B ;(n)假设AD J3, AB BC 2, P为AC的中点,求三棱锥P ABC的体积.B1…1 .解:(1)证实:连结AC, AC交BD于O,连结EO••・底面ABCD是正方形,,点O是AC的中点在PAC中,EO是中位线,,PA // EO而EO 平面EDB且PA 平面EDB,所以,PA //平面EDB.(2)证实:PD,底面ABCD 且DC 底面ABCD,,PD DCPD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,.DE PC ①同样由PD,底面ABCD,得PDXBC•••底面ABCD是正方形,有DCXBC,,BC,平面PDC 而DE 平面PDC, BC DE ②由①和②推得DE 平面PBC而PB 平面PBC, . DE PB又EF PB 且DE EF E,所以PB ,平面EFD................................ 8分(3) . PD DC 1,由 PD ,平面 ABCD,PDXBC,又.BCXCD, PDACD = D,BC± PC.-CL 2f在Z^BDE 中,DE -------- , BD22221 DE2 BE 2 BD 2 — 2 而由(2), PB,平面EFD,••.BC,平面 PCD,3 c-一 2 0,即 DEL BE.2PBXDE,因而 DEL 平面 BEF,2在 RtABPD 中,BF BP BD , BF1 1 . V DE EF PF 32 2.解:(I)证实:连结 BD ,那么 BD // B 1D 1,ABCD 是正方形,,AC BD. CE 面 ABCD,,CE BD .又 A .CE C, BD 面 ACE. . AE 面 ACE, . . BD AE ,• .B 1D 1 AE .(n)证实:作BB 1的中点F,连结AF 、CF 、EF.• •・E 、F 是 CC 、BB 1 的中点,,CE?B 1F , • •・四边形B 〔FCE 是平行四边形,, CF// B 1E .E,F 是 CC 、BB 1 的中点,,EF//BC ,又 BC//AD , EF //AD ...............14分136;Rt 革EFEF. AF I CF C , B 1EI ED E ,,平面 ACF 〃面 B 1DE .又 AC 平面 ACF , . . AC 〃面 B 1DE .4证实:二.是底面圆周上异于 A, B 的任意 柱底面圆的直径, •••BCXAC,……2 分,.AA1,平面 ABC , BC i 平面 ABC, . AAiXBC,…… 4 分•.AA i AAC=A , AA 1 i 平面 AA i C, AC i 平面 AA1 C, . EC ,平面AA1C.……6分 (2)解法 1 :设 AC=x ,在 RtMBC 中,BC = J AB 2 AC 2 h x 2(o<x<2),……7 分....1 一 … 1 11 -~~2故 V ARABC = —S VABC AA 1— — AC BC AA 1 _x \ 4x (0<x<2),13 3 23即 V A 「ABC =4“ x 2 1 \/x 2 (4 x 2):J (x 2~2)2~4 . ……11 分 23 33,-0<x<2 , 0<x 2<4 ,「.当 x 2=2,即 x = 五时, 三棱锥A 1-ABC 的体积的最大值为 -.……14分35(1)证实:在三角形 PBC 中,E 是PC 中点.F 为PB 中点所以 EF//BC , BC 面ABC, EF 面ABC, 所以 EF 〃面ABC ……4分,四边形ADEF 是平行四边形,AF // ED ,(3)S ABD - AB AD 2 •2VA BDE VE ABD1S ~ SABDCE1S3 SABDCE2 3又AB 是.O 的直径,所以BC AC …… ⑵ ……7分 由(1) (2)得 BC 面PAC 因EF//BC BC 面PAC ,所以EF 面PAC ……9分(出)因PA OO 所在的平面,AC 是PC 在面ABC 内的射影,1V B PACV P ABC S ABC PA37 . (1)证实:作OD //.交片81于口,连C 1D .那么 OD // BB 1 // CC 1 .作BH(n) PA BC面ABC 面ABCBC PA所成角 PCA 450,PA=AC11分在Rt ABC 中,E 是PC 中点,BAC -, AC BC 2412分Q O 是AB 的中点,OD1-(AA 1 BB 1) 3 CC 1 .2那么ODCQ 是平行四边形,OC // C 1D .……4分Q C 1D 平面 C 1B 1A 且 OC 平面C1B1A ,OC // 面 A 1B 1C 1.(2)如图,过B 作截面BA 2c 2CC 1 于 A 2,//面ABG,分别交AA1,Q CC 1 面 BA 2c 2, CC 1BH ,那么BH 平面AC .又Q A 2B AB 1 1 , BC 2B 1c l 1 , BH --, 2V B AA 2C 2C1 S A A 2c 2c3BH 1 1 厂J.21 (1 2) '2 -3 2 22PCA 即为PC 与面ABC'.2----- …14分3所求几何体体积为:V V B AACC . 八八 2 J 2 J8 .〔本小题总分值14分〕折叠之后平行关系不变. BC 平面ADF , AD 平面 • .BC//平面 ADF ,V AB|C 1 A2BC 21八, SA A 1B 1C 1BB 1 - 2 1〔1〕证实:连结 BD .在长方体AC i 中, 对角线BD//B 1D 1. 又Q E 、F 为棱AD 、AB 的中点, ・.EF //BD . . .EF //BD 1. 又 B 1D 1 平面 CBD 1, EF 平面 CB 1D 1,,EF//平面 CB 1D 1. (2) Q 在长方体 AC [中,AA 1,平面 A 1B 1C 1D 1,而 B 1D 1 平面 A 1B 1C 1D 1, . AA iX B i D i . 又Q 在正方形 A 1B 1C 1D 1 中,A 1C 1 XB 1D 1, .. B 1D 1,平面 CAA 1C 1. 又Q B 1D 1 平面 CB 1D 1,,平面 CAA 1C 1,平面 CB 〔D 1. 14分9 .〔本小题总分值14分〕 证实:〔I 〕证法一:取 DF 中点为G,连结AG, EG 中, 八 1一 八 一八.CE — DF ,,EG 〃CD 且 EG CD 2 又•••AB 〃CD 且AB CD,,EG 〃AB 且 EG AB四边形ABEG 为平行四边形,,BE//AG. BE 平面ADF , AG 平面 ADF,. ・BE 〃平面 ADF ,证法二:由图1可知BC // AD , CE//DFV A 1B 1C 1 A 2BC 2同理CE〃平面ADF ................... 4分. BCI CE C , BC , CE 平面BCE ,,平面BCE 〃平面ADF ......... 6分. BE 平面BCE ,,BE 〃平面ADF ......... 7 分(II)解法1:V F BCE V B CEF .................... 8分由图1可知BC CD.平面DCEF 平面ABCD ,平面DCEF I平面ABCD CDBC 平面ABCD,..BC 平面DCEF ,1 1由图 1 可知DC CE 1 S CEF -CE DC .................. ........... 12 分2 2V F BCE V B CEF 3 BC S CEF解法2:由图1可知CD BC , CD CEBCI CE C. .CD 平面BCE ,. DF //DC点F到平面BCE的距离等于点D到平面BCE的距离为1 ,由图1可知BC CE 1 S BCE 1-BC CE 2BCE 1 … c 13 CD S BCE 6解法3:过E作EH FC ,垂足为H , ....................... 8分由图1可知BC CD•••平面DCEF 平面ABCD,平面DCEFI 平面ABCD CD11分A B11分BC 平面 ABCD,. BC 平面 DCEF ,EH 平面 DCEF.BC EH,EH 平面BCF 1 、5S BCF -BC DF —, .......... 12 分 2 2又 BD CD. .BD ¥® CDE(n )证实:连结 EA ,那么G 是AE 的中点••• EAB 中,GH // AB又 AB//CD . GH //CD . .GH 〃平面CDE 11分 由 BC FC , FC .DC 2 DF 2 5, 在 CEF 中,由等面积法可得 EHV F BCE V E BCF EH S BCF13分 14分 6.(本小题总分值14分)(I )证实:平面 ADEF 平面ABCD ,交线为ADED AD• .ED 平面ABCDED BD2〔出〕解:设Rt BCD中BC边上的高为h1 1 -依题意:一2 h 1 32 23• • h —2_ ___ _____ .. 一、. .3即:点C到平面DEF的距离为- ---------------- 10•V D CEF V C DEF .32,33分------- 14 分。
立体几何大题专题(基础)人生中有几个必不可少的东西:自制力、冷静头脑、希望和信心。
练1:在四棱锥P-ABCD中,底面ABCD是平行四边形,E是侧棱PD的中点,需要证明PB∥平面EAC。
练2:在三棱柱ABC-A1B1C1中,M是AB的中点,需要证明BC1∥平面A1CM。
练3:在三棱柱ABC-A1B1C1中,M是BC的中点,需要证明A1C∥平面AB1M。
练4:在四棱锥P-ABCD中,底面ABCD是平行四边形,E、F分别为PA、BC的中点,需要证明EF∥平面PCD。
练5:在三棱柱ABC-A1B1C1中,M、N分别为AC、B1C1的中点,需要证明MN∥平面ABC1.练6:在四棱锥P-ABCD中,底面ABCD是平行四边形,M、N分别为PC、AD的中点,需要证明MN∥平面PAB。
练7:在三棱柱ABC-A1B1C1中,M为CC1的中点,N为AB的中点,需要证明CN∥平面AB1M。
练8:在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是梯形,AD∥BC,BAD=90,AD=2AB=2BC,PA=2AB,E为PC的中点,需要证明AE⊥DE。
练9:在直三棱柱ABC-A1B1C1中,ACB=90,AA1=2AC1,E、F分别为CC1、BB1的中点,Q为A1E的中点,需要证明C1Q⊥FQ。
练10:在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,PA=AB=BC,ABC=60,DC⊥AC,AF⊥PD,E为PC的中点,需要证明EF⊥PD。
练11:在四棱锥P-ABCD中,底面ABCD是矩形,平面PAB⊥平面ABCD,需要证明平面PBC⊥平面PAB。
人生中有几个绝对不能失去的东西,包括自制力、冷静头脑、希望和信心。
这些品质可以帮助我们在生活中取得成功。
练12:在五面体ABCDEF中,ADEF是正方形,FA垂直于平面ABCD,AD平行于BC,且角BAD等于角CDA等于45度。
需要证明平面ABF垂直于平面CDE。
练13:在四棱锥P-ABCD中,PA垂直于平面ABCD,ABCD是菱形,且角ABC等于60度,E是AD的中点。
立体几何大题一 证明方法汇总二 同步练习汇总:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形(2) 若BD=23,AC=2,EG=2。
求异面直线AC 、BD 所成的角和EG 、BD 所成的角。
AHGFEDCB22.如图,四面体ABCD 中,BCD AD 平面⊥,E 、F 分别为AD 、AC 的中点,CD BC ⊥. 求证:(1)BCD EF 平面// (2)ACD BC 平面⊥.(简单题),以线面平行的性质定理去找平行线,用判定定理证明!!!!3. 如图,P 为ABC ∆所在平面外一点,⊥PA 平面ABC ,︒=∠90ABC ,PB AE ⊥于E ,PC AF ⊥于F求证:(1)⊥BC 平面PAB ;(2)⊥AE 平面PBC ; (3)⊥PC 平面AEF . 线面垂直的经典例题!!!!!!!!4、如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,FEPCBA(1)求证:AC ⊥平面B 1D 1DB; (2)求证:BD 1⊥平面ACB 1 (3)求三棱锥B-ACB 1体积.5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D(2 )1AC ⊥面11AB D . D 1ODB AC 1B 1A 1C6、如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点 求证:(1)PA ∥平面BDE D 1C 1B 1A CDBA4(2)平面PAC ⊥平面BDE(3)若棱锥的棱长都为2,求棱锥的体积。
7.如图,PA ⊥平面ABC ,平面PAB ⊥平面PBC 求证:AB ⊥BC8.如图,在三棱锥S-ABC 中,,90︒=∠=∠=∠ACB SAC SAB , (Ⅰ)证明SC ⊥BC ;PA B CS(Ⅱ),29,13,2===SB BC AC 若已知 求侧面SBC 与底面ABC 所成二面角的大小。
(2020年新高考立体几何)20.如图,四棱锥P-ABCD的底面为正方形,PD垂直底面ABCD。
设平面PAD与平面PBC的交线为L。
(1)证明:l垂直平面PDC;
(2)已知PD=AD=1,Q为L上的点,求PB与平面QCD所成角的正弦值的最大值。
(2020年天津卷立体几何)17.如图,在三棱柱ABC-A1B1C1中,CC1垂直平面ABC,AC垂直BC,AC=BC=2,CC1=3,点D,E分别在棱CC1上,且AD=1,CE=2,M为棱A1B1的中点。
(I)求证:C1M垂直B1D
(II) 求二面角B-B1E-D的正弦值
(III)求直线AB与平面DB1E所成角的正弦值
(2020年浙江卷立体几何)19.如图,在三棱台ABC-DEF中,平面ACFD 垂直平面ABC,角ACB=角ACD=45度,DC=2BC。
(I)证明:EF垂直DB
(II)求直线DF与平面DBC所成角的正弦值。
(2020年北京卷立体几何)16.如图,在正方体ABCD-A1B2C3D4中,E为BB1的中点。
(I)求证:BC1//平面AD1E;
(II)求直线AA1与平面AD1E所成角的正弦值。
高考立体几何基础题题库一(有详细答案)1、二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则 (A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900 解析:C1和∠2分别为直线AB 与平面,αβ所成的角。
根据最小角定理:斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角2ABO ∴∠>∠1902190ABO ∠+∠=∴∠+∠≤2. 下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是PPQQRSSPPPQQRR RSSSPP PQQQ R RS SS PP Q QR RRSS(A ) (B ) (C ) (D ) D解析: A 项:PS 底面对应的中线,中线平行QS ,PQRS 是个梯形B 项:如图C 项:是个平行四边形D 项:是异面直线。
3. 有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线 (B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b (D )若α∥β,β∩γ=∅,则α∩γ=∅ D解析:A 项:如正方体的一个角,三个平面相交,只有一条交线。
B 项:如正方体的一个角,三个平面互相垂直,却两两相交。
C 项:如图4. 如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为11111C解析:11B C ⊥平面AB 111,B C PB ∴⊥,如图:P 点到定点B 的距离与到定直线AB 的距离相等,建立坐标系画图时可以以点B 1B 的中点为原点建立坐标系。
5. 在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是(A )4条 (B )6条 (C )8条 (D )10条 C解析:如图这样的直线有4条,另外,这样的直线也有4条,共8条。
立体几何基础A 组题一、选择题:1.下列命题中正确命题的个数是 ( ) ⑴ 三点确定一个平面⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内 ⑶ 两两相交的三条直线在同一平面内⑷ 两组对边分别相等的四边形是平行四边形A.0B.1C.2D.3答案:A2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A.1条 B.2条 C.3条 D.4条答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l // (3) 若m l //,则βα⊥ (4) 若 m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2)答案:B4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( ) A.与m 、n 都相交 B.与m 、n 中至少一条相交 C.与m 、n 都不相交 D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是 ( )A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥ C.c a b c b a //////⇒⎭⎬⎫ D. c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD ,BC=BD ,则直线a 、b 所成的角为 ( ) A. ︒90 B. ︒60 C. ︒45 D. ︒30答案:A7.下列四个命题中正确命题的个数是 ( ) 有四个相邻侧面互相垂直的棱柱是直棱柱 各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D.0个答案:D8.设M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这些集合之间关系是 ( ) A.Q M N P B.Q M N P C.Q N M P D.Q N M P答案:B9.正四棱锥P —ABCD 中,高PO 的长是底面长的21,且它的体积等于334cm ,则棱AB 与侧面PCD 之间的距离是 ( ) A.cm 2 B. cm 2 C. cm 1 D.cm 22答案:A10.纬度为α的纬圈上有A 、B 两点,弧在纬圈上,弧AB 的长为απcos R (R 为球半径),则A 、B 两点间的球面距离为 ( )A. R πB. R )(απ-C. R )2(απ-D. R )2(απ-答案:D11.长方体三边的和为14,对角线长为8,那么 ( ) A.它的全面积是66 B.它的全面积是132C.它的全面积不能确定D.这样的长方体不存在答案:D12.正四棱锥P —ABCD 的所有棱长都相等,E 为PC 的中点,那么异面直线BE 与PA 所成角的余弦值等于( )A.21B. 22C. 32D. 33答案:D13.用一个过正四棱柱底面一边的平面去截正四棱柱,截面是 ( )A.正方形B.矩形C.菱形D.一般平行四边形答案:B二、填空题:14.正方体1111D C B A ABCD -中,E 、F 、G 分别为AB 、BC 、CC 1的重点,则EF 与BG 所成角的余弦值为________________________答案:510 15.二面角βα--a 内一点P 到两个半平面所在平面的距离分别为22和4,到棱a 的距离为24,则这个二面角的大小为__________________答案:︒︒16575或16.四边形ABCD 是边长为a 的菱形,︒=∠60BAD ,沿对角线BD 折成︒120的二面角A —BD —C 后,AC 与BD 的距离为_________________________答案:a 43 17.P 为︒120的二面角βα--a 内一点,P 到α、β的距离为10,则P 到棱a 的距离是_________________答案:3320 18.如图:正方形ABCD 所在平面与正方形ABEF 所在平面成︒60的二面角,则异面直线AD 与BF 所成角的余弦值是______________________答案:4219.已知三棱锥P —ABC 中,三侧棱PA 、PB 、PC 两两互相垂直,三侧面与底面所成二面角的大小分别为γβα,,,则=++γβα222cos cos cos _______________答案:1 20.若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值是_____________(只需写出一个可能的值)。
立体几何大题训练题一、解答题(共17题;共150分)1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,在四边形ABCD中,∠ABC= ,AB=4,BC=3,CD= ,AD=2 ,PA=4.(1)证明:CD⊥平面PAD;(2)求二面角B-PC-D的余弦值..2.如图,在四棱锥中,平面,在四边形中,,,,,,.(1)证明:平面;(2)求B点到平面的距离3.如图,在四棱锥中,底面为长方形,底面,,,为的中点,F 为线段上靠近B 点的三等分点.(1)求证:平面;(2)求平面与平面所成二面角的正弦值.4.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.5.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且MC=2MB,求点C到平面POM的距离.6.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值. 7.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.8.如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.9.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60°,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值。
10.已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.(1)求证:直线平面;(2)求平面和平面所成的锐二面角的余弦值.11.如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,∠ABC=90°.∠BAC=30°,A1A=A1C=AC,E,F 分别是AC,A1B1的中点(1)证明:EF⊥BC(2)求直线EF与平面A1BC所成角的余弦值.12.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.13.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.14.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.15.如图所示多面体中,AD⊥平面PDC,四边形ABCD为平行四边形,点E,F分别为AD,BP的中点,AD =3,AP=3 ,PC .(1)求证:EF//平面PDC;(2)若∠CDP=120°,求二面角E﹣CP﹣D的平面角的余弦值.16.如图,四棱锥中,侧棱垂直于底面,,,为的中点,平行于,平行于面,.(1)求的长;(2)求二面角的余弦值.17.如图,在斜三棱柱中,侧面,,,,.(Ⅰ)求证:平面平面;(Ⅱ)若为中点,求二面角的正切值.答案解析部分一、解答题1.【答案】(1)解:连接,由∠ABC= ,AB=4,BC=3,则,又因为CD= ,AD=2 ,所以,即,因为PA⊥平面ABCD,平面ABCD,所以,因为,所以CD⊥平面PAD;(2)解:以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为z轴,建立空间直角坐标系,如图:作交与点G,,即,所以,,所以,所以,,,,则,,,设平面的一个法向量为,则,即,令,则,,即,设平面的一个法向量为,则,即,令,则,,即,由,所以二面角B-PC-D的余弦值为.【解析】【分析】(1)连接,证出,利用线面垂直的性质定理可得,再利用线面垂直的判定定理即可证出.(2)以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为轴,建立空间直角坐标系,分别求出平面的一个法向量与平面的一个法向量,利用向量的数量积即可求解.2.【答案】(1)解:在平面中,,,,则,又,∴,即,又平面,则,又,∴平面.(2)解:在平面中,过A作BC的平行线交CD的延长线于M,因为,,,则,又因为,,所以.所以又,则,所以,在中,.因为,则面,所以由可知:,,所以,则,因此P点到平面的距离为.【解析】【分析】(1)在三角形中,由勾股定理可证得,由平面,可得,根据线面垂直的判定定理即可证得结论;(2) 在平面中,过A作BC的平行线交CD 的延长线于M,因为利用等体积转换即可求得距离.3.【答案】(1)证明:,为线段中点,.平面,平面,.又底面是长方形,.又,平面.平面,. 又,平面.(2)解:由题意,以为轴建立空间直角坐标系,则,,,,,.所以, ,,,设平面的法向量,则,即,令,则,,,同理可求平面的法向量,,,即平面与平面所成角的正弦值为.【解析】【分析】(1)通过,可证明平面,进而可得,结合证明线面垂直.(2)以为轴建立空间直角坐标系,可求出平面的法向量,平面的法向量,则可求出两向量夹角的余弦值,从而可求二面角的正弦值.4.【答案】(1)解:由已知可得,BF⊥PF,BF⊥EF,又,∴BF⊥平面PEF.∴又平面ABFD,平面PEF⊥平面ABFD.(2)解:作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE= .又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量. 设DP与平面ABFD所成角为,则.∴DP与平面ABFD所成角的正弦值为.【解析】【分析】(1)在翻折过程中,作于H,由得到,从而得到面面垂直;(2)DP与平面所成的角就是,在三角形中求其正弦值.5.【答案】(1)∵PA=PC=AC=4 且O是AC的中点∴PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)过点C作CH⊥OM交OM于点H又∵PO⊥平面ABC∴∴CH的长度为点C到平面POM的距离在△COM中,CM= ,OC=2,∠OCM=45°∴∴OM=∴【解析】【分析】(1)由线面垂直的判定定理易得;(2)由线面垂直可得面面垂直,易找点面距,可求.6.【答案】(1)PA=PC=AC=4 且O是AC的中点PO⊥AC∵AB=BC=2 ,AC=4,∴∴∠ABC=90°连接BO则OB=OC∴PO2+BO2=PB2PO⊥OB,PO⊥OCOB∩OC=O∴PO⊥平面ABC(2)∵PO⊥平面ABC,∴PO⊥OB∴AB=BC=2 O是AC的中点∴OB⊥AC OB⊥平面PAC如图所示以O为坐标原点,为x轴正方向建立如图所示的直角坐标系O-xyz则P(0,0,)A(,0,-2,0),C(0,2,0),B(2,0,0)平面PAC法向量为=(1,0,0)设M(x,2-x,0)平面PAC法向量为=(1,λ,μ),=(0,2,), = (x,4-x,0)则即即得到,∴x=-4(舍),x=即M∴PAM的法向量记PC与平面PAM所成的角为θ∴即PC与平面PAM所成的角为的正弦值为.【解析】【分析】(1)由线面垂直的判定定理易得;(2)先由条件建系,找到点M的位置,再用公式求线面角.7.【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.8.【答案】(1)解:由已知得,平面,平面,故.又,所以平面.(2)由(1)知.由题设知,所以,故,.以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系D-xyz,则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),,.设平面EBC的法向量为=(x,y,x),则即所以可取= .设平面的法向量为=(x,y,z),则即所以可取=(1,1,0).于是.所以,二面角的正弦值为.【解析】【分析】(1)根据题意由线面垂直的性质得出线线垂直,再由线线垂直的判定定理出线面垂直。
练习1:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,E 为侧棱PD 的中点,证明:PB ∥平面EAC
练习2:如图:三棱柱ABC —111C B A 中,M 为AB 的中点,证明:1BC ∥平面CM A 1
练习3:如图:三棱柱ABC —111C B A 中,M 为BC 的中点,证明:C A 1∥平面M AB 1
练习4:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,E 、F 分别为PA 、BC 的中点,证明:EF ∥平面PCD
练习5:如图:三棱柱ABC —111C B A 中,M 、N 分别为AC 、11C B 的中点,证明:MN ∥平面
11A ABB
练习6:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,M 、N 分别为PC 、AD 的中点,证明:MN ∥平面PAB
练习7:如图:三棱柱ABC —111C B A 中,M 为1CC 的中点,N 为AB 的中点,证明:CN ∥平面M AB 1
练习8:如图:四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是梯形,AD ∥BC ,
090=∠BAD ,BC AB AD 22==,AB PA 2=,E 为PC 的中点,证明:AE ⊥DE
练习9:如图:直三棱柱ABC —111C B A 中,0
90=∠ACB ,1112C A AA =,E 、F 分别为1CC 、
1BB 的中点,Q 为E A 1的中点,证明:Q C 1⊥FQ
练习10:如图:四棱锥P —ABCD 中,PA ⊥平面ABCD ,AB ⊥
AD ,BC AB PA ==,
060=∠ABC ,DC ⊥AC ,AF ⊥PD ,E 为PC 的中点,证明:EF ⊥PD
练习11:如图:四棱锥P —ABCD 中,底面ABCD 是矩形,平面PAB ⊥平面ABCD ,证明:平面PBC ⊥平面PAB
练习12:如图:五面体ABCDEF 中,
ADEF 是正方形,FA ⊥平面ABCD ,AD ∥BC ,
045=∠=∠CDA BAD ,证明:平面ABF ⊥平面CDE
练习13:如图:四棱锥P —ABCD 中,PA ⊥平面ABCD ,ABCD 是菱形,60ABC ∠=︒,E 为AD 的中点,证明:平面PAD ⊥平面PCE
练习14:如图:四棱锥P —ABCD 中,平面PAC ⊥平面ABCD ,2==BC AC ,2=AB ,
证明:平面PAC ⊥平面PBC。