液晶电光曲线
- 格式:docx
- 大小:125.59 KB
- 文档页数:9
实验仪器:本实验所用仪器为液晶光开关电光特性综合实验仪,其外部结构如图6所示。
下面简单介绍仪器各个按钮的功能。
模式转换开关:切换液晶的静态和动态(图像显示)Array两种工作模式。
在静态时,所有的液晶单元所加电压相同,在(动态)图像显示时,每个单元所加的电压由开关矩阵控制。
同时,当开关处于静态时打开发射器,当开关处于动态时关闭发射器;静态闪烁/动态清屏切换开关:时候,作在动态的时候,此开关可以清除液晶屏幕因按动开关矩阵而产生的斑点;供电电压显示:显示加在液晶板上的电压,范围在0.00V~7.60V之间;供电电压调节按键:改变加在液晶板上的电压,调节范围在0V~7.6V之间。
其中单击+按键(或-按键)可以增大(或减小)0.01V。
一直按住+按键(或-按键)2秒以上可以快速增大(或减小)供电电压,但当电压大于或小于一定范围时需要单击按键才可以改变电压;透过率显示:显示光透过液晶板后光强的相对百分比;透过率校准按键:在接收器处于最大接收状态的时候(即供电电压为0V时),如果显示值大于“250”,则按住该键3秒可以将透过率校准为100%;如果供电电压不为0,或显示小于“250”,则该按键无效,不能校准透过率。
液晶驱动输出:接存储示波器,显示液晶的驱动电压;光功率输出:接存储示波器,显示液晶的时间响应曲线,可以根据此曲线来得到液晶响应时间的上升时间和下降时间;发射器:为仪器提供较强的光源;液晶板:本实验仪器的测量样品;接收器:将透过液晶板的光强信号转换为电压输入到透过率显示表;开关矩阵:此为16×16的按键矩阵,用于液晶的显示功能实验;液晶转盘:承载液晶板一起转动,用于液晶的视角特性实验;电源开关:仪器的总电源开关。
实验步骤:1. 准备工作:(1)将液晶板金手指1(如图7)插入转盘上的插槽,液晶凸起面必须正对光源发射方向,打开电源,点亮光源,让光源预热10分钟左右。
下图为液晶板方向(视角为正视液晶屏凸起面)(2)检查仪器初始状态:发射器光线必须垂直入射到接收器。
液晶的电光效应摘要:本实验中我们主要研究液晶的物理性质如旋光性电光效应等。
我们在实验中分别测量液晶盒的扭曲角及显示对比度、电光响应曲线及响应时间,观察分析液晶光栅。
我们通过这些来了解液晶在外电场作用下的变化及其引起的液晶光学性质的变化,并掌握对液晶电光效应测量的方法,最后还用白光光源观察了衍射特性。
关键词:液晶电光效应、响应时间、液晶光栅 1、引言19世纪末奥地利植物学家莱尼兹尔在测定有机化合物熔点时发现了液晶。
到了20世纪20年代随着更多液晶材料的发现及技术的发展,人们对液晶进行了系统深入的研究,并将液晶分类。
30年代到50年代人们对液晶的各向异性、液晶材料的电光效应等进行深入的研究。
到了60年代液晶步入了使用研究阶段。
自1968年海尔曼等人研制出世界上第一台液晶显示器以来,在四十年的时间里,液晶显示器以由最初在手表、计算器等“小、中型”显示器发展到各种办公自动化设备、高清晰的大容量平板显示器领域。
本次实验主要就是研究一些液晶的基本物理特性,包括各向异性旋光性等。
通过实验得到液晶盒的扭曲角、电光响应曲线及响应时间,观察分析液晶光栅和白光的衍射现象,知道液晶在外场作用下光学性质的改变并掌握相关的实验方法。
2、 理论 (1)、液晶的定义及分类1、一些物体在中介相中具有强烈的各向异性,同时又有类似于液体的流动性。
2、液晶根据分子排列和平移的取向有序性分为3类:近晶相、向列相、胆甾相。
(2)、液晶的基本物理性质:1、液晶的介电各项异性——这是电场对液晶分子的取向作用产生的。
当外电场平行于或者垂直于分子长轴时,分子极化率不同表示为 、 。
当一个任意取向的分子被外电场极化时,由于 与 的区别,造成分子感生电极矩的方向和外电场的方向不同,从而使分子发生转动。
对于自由分子,如果 > 则分子旋转至长轴与E 重合;如果 < 则长轴与E 垂直。
2、液晶的光学各向异性——双折射效应。
光在液晶中传播会产生寻常光与非寻常光,表现出光学的各项异性。
第1篇一、实验目的1. 理解液晶光开关的基本工作原理,掌握其电光特性。
2. 通过实验测量液晶光开关的电光特性曲线,并从中得到液晶的阈值电压和关断电压。
3. 探究驱动电压周期变化对液晶光开关性能的影响。
二、实验原理液晶是一种具有光学各向异性的有机化合物,其分子在电场作用下会改变排列方向,从而影响光线的传播。
液晶光开关利用这一特性,通过施加电压来控制光的透过。
TN(扭曲向列)型液晶光开关是最常用的液晶光开关之一。
其基本工作原理如下:1. 在两块玻璃板之间夹有液晶层,其中液晶分子在未加电压时呈扭曲排列,使得入射光发生偏振。
2. 当施加电压后,液晶分子排列方向改变,扭曲消失,光线的偏振状态也随之改变。
3. 通过控制电压的大小,可以调节光线的透过情况,从而实现光开关的功能。
三、实验仪器与材料1. 液晶电光效应实验仪一台2. 液晶片一块3. 可变电压电源一台4. 光强计一台5. 记录仪一台6. 连接线若干四、实验步骤1. 将液晶片放置在实验仪中,并调整光路,使光线垂直照射到液晶片上。
2. 连接可变电压电源,设置初始电压为0V。
3. 使用光强计测量透过液晶片的光强,记录数据。
4. 逐渐增加电压,每次增加0.5V,重复步骤3,记录数据。
5. 绘制电光特性曲线,分析阈值电压和关断电压。
6. 改变驱动电压的周期,重复实验,观察液晶光开关性能的变化。
五、实验结果与分析1. 电光特性曲线:根据实验数据,绘制电光特性曲线,如图1所示。
曲线呈现出典型的非线性关系,表明液晶光开关的电光特性。
图1 电光特性曲线2. 阈值电压和关断电压:根据电光特性曲线,确定阈值电压和关断电压。
阈值电压为液晶光开关开始工作的电压,关断电压为液晶光开关完全关闭的电压。
3. 驱动电压周期变化对性能的影响:改变驱动电压的周期,观察液晶光开关性能的变化。
实验结果表明,驱动电压周期变化对液晶光开关性能有一定影响,但影响程度较小。
六、结论1. 本实验成功实现了液晶光开关的电光特性测量,并得到了阈值电压和关断电压。
实训一液晶显示器(LCD)电光特性曲线测量一、实验目的:1.了解液晶显示技术的物理基础和相关特性;2.掌握液晶显示器件特性参数的测量方法;二、实验原理:通常固体加热或浓度减少后可以变成透明液体,其组成原子或分子由整齐的有序排列转变为无序排列。
同样物体随着温度降低或浓度的增加,可以从液体向固体转变,由无序排列转变为整齐的有规则的排列。
有些有机材料却不是直接从固体变液体,或者液体变固体,而是先经过一个中间状态,这种中间状态的外观是流动性的混浊液体,但其分子组成单元却转变为整齐、有规则的排列:每个组成单元都处在一定的位置,规则地排列。
这种能在某个温度范围内兼有液体和晶体二者特性的物质称为液晶,它是不同于通常固体、液体和气体的一种新的物质状态。
物质中基本组成单元非球形结构的很多,从形状上来看,有棒形、盘形等;从结构上看是复合结构,而它们都具有介于严格的液体与严格的晶体之间的中介相,即液晶。
显示技术应用最广的是由简单的杆形有机分子(即刚性棒状分子)为组成单元的液晶。
液晶由奥地利植物学家莱尼次尔(F.Reinitzer)于1988年发现。
他在测定有机物的熔点时,惊奇地发现某些有机物(胆甾醇的苯甲酸脂和醋酸脂)溶化后会经历一个不透明的呈白色浑浊液体状态,并发出多彩而美丽的珍珠光泽,只有在继续加热到某一温度才会变成透明清亮的液体;第二年,德国的物理学家莱曼(O.Lehmann)使用由他亲自设计、在当时最新式的附有加热装置的偏光显微镜对这些脂类化合物进行了观察,发现这类白色浑浊的液体在外观上虽然属于液体,但却显示出光学中各向异性晶体特有的双折射特性。
莱曼将其命名为“液体晶体”,这就是液晶名称的由来。
液晶物质基本上都是有机化合物,从其成分和物理条件上可分为热致液晶和溶致液晶。
后者主要在生物系统中大量存在,采用溶剂破坏结晶晶格,而热致液晶是加热破坏结晶品格而形成的,主要用于显示液晶材料。
液晶一方面具有像液体一样的流动性和连续性,另一方面又具有像晶体一样的各向异性(在晶格结点上作有规则的排列,即三维有序),这种液体和晶体之间的中间物质是一种有序的流体。
实验目的:1.测定液晶样品的电光曲线,根据电光曲线求出样品的阀值电压、饱和电压、对比度、陡度等电光效应的主要参数;2.了解最简单的液晶显示器件的显示原理。
实验原理1. 液晶液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。
液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序就形成液晶方式而言,液晶可分为热致液晶和溶致液晶。
热致液晶又可分为近晶相、向列相、和胆甾相。
其中向列相液晶是液晶显示器件的主要材料。
2.液晶的电光效应液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。
液晶的电光效应种类繁多,主要有动态散射型(DS)、扭曲向列相型(TN)、超扭曲向列相型(STN)、有源矩阵液晶显示(TFT)电控双折射(EBC)等。
其中应用较广的如TFT型主要用于液晶电视、笔记本电脑等高档电子产品;STN型主要用于手机屏幕等中档电子产品;TN型主要用于电子表、计算器、仪器仪表、家用电器等中低档产品,是目前应用最普遍的液晶显示器件。
TN型液晶显示器件原理较简单,是STN、TFT等显示方式的基础。
本实验所使用的液晶样品即为位TN型3.TN型液晶盒结构在覆盖透明电极的两玻璃基片之间,夹有正介电各向异性的向列相液晶薄层,四周用环氧树脂密封。
玻璃基片内侧覆盖着一层定向层,通常是一薄层高分子有机物,经定向摩擦处理,可使棒状液晶分子平行于玻璃表面,沿定向处理的方向排列。
上下玻璃表面的定向方向是相互垂直的,这样,盒内液晶分子的取向逐渐扭曲,从上玻璃片到下玻璃片扭曲了90度,所以称为扭曲向列型。
4.扭曲向列型电光效应无外电场作用时,当线偏振光垂直玻璃表面入射时,若偏振方向与液晶盒上表面分子取向相同,则线偏振光将随液晶分子轴方向逐渐旋转90度,平行于液晶盒下表面分子轴方向射出(液晶盒上下表面各附一片偏振片,其偏振方向与液晶盒表面分子取向相同,因此光可通过偏振片射出);若入射线偏振光偏振方向垂直于上表面分子轴方向,出射时,线偏振光方向也垂直于下表面液晶分子轴;当以其他线偏振光方向入射时,则根据平行分量和垂直分量的相位差,以椭圆、圆或直线等某种偏振光形式射出。
液晶vt曲线方程液晶显示器VT曲线方程是指描述液晶的电光特性的方程。
在液晶显示器中,VT曲线被广泛应用于电压与透光度之间的关系。
本文将详细介绍液晶VT曲线的定义、特点以及其数学表达形式。
液晶显示器是一种利用液晶材料的特性来控制透光度的高科技产品。
它由许多像素组成,每个像素可以通过电压控制来改变透光度。
液晶材料是一种具有高度有序的分子排列结构的材料,其分子呈现出不同的取向,可以通过电压的作用来改变这种取向。
VT曲线是指液晶显示器中电压与透光度之间的关系曲线。
此曲线描述了给定电压下液晶显示器的透光度。
VT曲线是一种非线性的曲线,通常由二次函数或高阶多项式来描述。
这是因为液晶材料的分子在不同的电压作用下呈现出复杂的响应。
而具体的液晶VT曲线方程则根据不同的液晶材料和结构来确定。
液晶VT曲线通常符合以下几个特点:1.对称性:在电压为零或接近零的情况下,液晶透光度为最大值(通常为1),电压为正数和负数时,透光度逐渐减小。
而且当电压达到一定阈值时,透光度迅速下降。
2.非线性:液晶VT曲线通常是非线性的,其关系不能简单地通过线性方程来描述。
这是由于液晶材料的分子响应与电场的强度和方向有关。
3.饱和性:当电场达到一定强度后,液晶的分子排列将饱和,即透光度达到最小值(通常为0)。
根据液晶的特性和结构,可以采用不同的数学方程来描述VT曲线。
常见的方程包括二次方程、高阶多项式和指数函数等。
以二次方程为例,液晶VT曲线的方程可以表示为:T(V) = aV^2 + bV + c其中T(V)为透光度与电压V的函数,a、b和c为拟合参数。
液晶VT曲线方程的具体形式会根据液晶材料的属性和结构来确定。
在实际中,科学家和工程师通常会通过实验来获得液晶的电光特性,然后使用拟合方法来确定液晶VT曲线的方程。
这样可以方便地预测和控制液晶显示器的透光度。
总结起来,液晶VT曲线方程是描述液晶显示器电压与透光度之间关系的数学方程。
液晶VT曲线通常具有对称性、非线性和饱和性等特点。
液晶电光曲线实验目的 1. 测定液晶样品的电光曲线;2. 根据电光曲线,求出样品的阀值电压Uth,饱和电压Ur,对比度Dr,陡度β等电光效应的主要参数;3. 用自配数字存储示波器观测液晶样品的电光响应时间;实验原理1.(液晶)液晶态是一种介于液体和晶体之间的中间态,既有液体的流动性、粘度、形变等机械性质,又有晶体的热、光、电、磁等物理性质。
液晶分子在形状、介电常数、折射率及电导率上具有各向异性。
因此,液晶具有电光效应,即对液晶施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化。
液晶显示器的种类有很多,利用液晶的电光效应而实现显示的有扭曲向列相液晶、超扭曲向列相液晶、高扭曲向列相液晶等。
扭曲向列相液晶,也称为TN型液晶,是应用范围最广、价格较便宜的液晶显示器。
我们常用的电子表、计算器、游戏机等的显示屏大都是TN型液晶。
液晶与液体、晶体之间的区别是:液体是各向同性的,分子取向无序;液晶分子取向有序,但位置无序,而晶体二者均有序。
就形成液晶方式而言,液晶可分为热致液晶和溶致液晶。
热致液晶又可分为近晶相、向列相、和胆甾相。
其中向列相液晶是液晶显示器件的主要材料。
2.(液晶电光效应)液晶分子是在形状、介电常数、折射率及电导率上具有各向异性特性的物质,如果对这样的物质施加电场,随着液晶分子取向结构发生变化,它的光学特性也随之变化,这就是通常说的液晶的电光效应。
液晶的电光效应种类繁多,主要有动态散射型(DS)、扭曲向列相型(T N)、超扭曲向列相型(STN)、有源矩阵液晶显示(TFT)电控双折射(ECB)等。
其中应用较广的如TFT型—主要用于液晶电视、笔记本电脑等高档电子产品;STN型主要用于手机屏幕等中档电子产品;TN型主要用于电子表、计算器、仪器仪表、家用电器等中低档产品,是目前应用最普遍的液晶显示器件。
TN型液晶显示器件原理较简单,是STN、TFT等显示方式的基础。
本实验所使用的液晶样品即为位TN型。
2.1 TN型液晶盒结构TN型液晶显示器是一个由上下两片导电玻璃制成的液晶盒,盒内充有液晶,四周密封。
液晶盒厚一般为几个微米,其中上下玻璃片内侧镀有显示电极,以使外部电信号通过电极加到液晶上。
上下玻璃基板内侧覆盖着一薄层高分子有机物定向层,经定向摩擦处理,可使棒状液晶分子平行于玻璃表面,沿定向处理的方向排列。
上下玻璃表面的定向方向是相互垂直的,这样,盒内液晶分子的取向逐渐扭曲,从上玻璃片到下玻璃片扭曲了90°。
所以称为扭曲向列型。
液晶盒玻璃片的两个外侧分别贴有偏振片,这两个偏振片的偏光轴互相平行(常黑型)或相互正交(常白型),且于液晶盒表面定向方向相互平行或垂直。
【2】TN型液晶盒结构图2.2 扭曲向列型电光效应无外电场作用时,由于可见光波长远小于向列相液晶的扭曲螺距,因此当线偏振光垂直玻璃表面入射时,若偏振方向与液晶盒上表面分子取向相同,则线偏振光将随液晶分子轴方向逐渐旋转90度,即出射光仍为线偏振且偏振方向平行于液晶盒下表面分子轴方向射出(见图1(a)不通电部分,图中液晶盒上下表面各附一片偏振片,其偏振方向与液晶盒表面分子取向相同,因此光可通过偏振片射出);若入射线偏振光偏振方向垂直于上表面分子轴方向,出射时,仍为线偏振光且方向也垂直于下表面液晶分子轴;当入射线偏振光与液晶盒上表面分子取向不为平行或垂直情况时,则根据平行分量和垂直分量的相位差,以椭圆、圆或直线等某种偏振光形式射出。
对液晶盒施加电压,当电压达到一定数值时,液晶分子长轴开始沿电场方向倾斜,电压继续增加到另一数值时,除附着在液晶盒上下表面的液晶分子外,所有液晶分子长轴都按电场方向进行重新排列(见1图(b)中通电部分),此时TN型液晶盒在无外电场作用时的90度旋光性随之消失。
【3】若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。
不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图3;其中纵坐标为透光强度,横坐标为外加电压。
最大透光强度的10%所对应的外加电压值称为阈值电压(Uth),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。
最大透光强度的90%对应的外加电压值称为饱和电压(Ur),标志了获得最大对比度所需的外加电压数值,Us小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。
对比度Dr=Imax/Imin,其中Imax为最大观察(接收)亮度(照度),Imin为最小亮度。
陡度β=Ur/Uth即饱和电压与阈值压之比。
U/V 2.3 TN-LCD结构及显示原理 TN型液晶显示器件结构如下图,液晶盒上下玻璃片的外侧均贴有偏光片,其中上表面所附偏振片的偏振方向总是与上表面分子取向相同。
自然光入射后,经过偏振片形成与上表面分子取向相同的线偏振光,入射液晶盒后,偏振方向随液晶分子长轴旋转90°,以平行于下表面分子取向的线偏振光射出液晶盒。
若下表面所附偏振片偏振方向与下表面分子取向垂直(即与上表面平行),则为黑底白字的常黑型,不通电时,光不能透过显示器(为黑态),通电时,90°旋光性消失,光可通过显示器(为白态);若偏振片与下表面分子取向相同,则为白底黑字的常白型,如下图所示结构。
TN-L CD可用于显示数字、简单字符及图案等,有选择的在各段电极上施加电压,就可以显示出不同的图案。
TN型液晶显示器件结构参考图实验仪器 FD-LCE-1 液晶电光效应实验仪实验装置示意图【4】第6/10页如图1所示,液晶电光效应实验仪主要由控制主机部分和导轨部分组成。
导轨部分从左到右依次为检偏器及光电探测器(连接在一起)、液晶样品、起偏器、半导体激光器。
各部件都与滑块连接,可在导轨上移动。
主机部分包括方波发生器、方波有效值电压表、光功率计。
技术指标: 1.半导体激光器:3V DC 电源;输出650nm红光 2.方波电压: 0-10V左右(有效值)连续可调;频率500Hz左右 3.光功率计:量程有0-200uW和0-2mW两档 4.光具座:长50.0cm 实验步骤 1.光学导轨上依次为:半导体激光器-起偏器-液晶盒-检偏器(带光电探测器)。
打开半导体激光器,调节各元件高度,使激光依次穿过起偏器、液晶盒、检偏器,打在光电探测器的通光孔上。
2.接通主机电源,拔下电压表输出导线,将光功率计调零,选用0-2mW档。
用话筒线连接光功率计盒光电转换盒,此时光功率计显示的数值为透过检偏器的光强大小,旋转起偏器至,使其偏振方向与液晶片表面分子取向平行(或垂直)。
旋转检偏器,观察,可旋转半导体激光器,使最大透射光强大于光功率计数值变化,若最大值小于。
最后旋转检偏器至透射光强值达到最小。
3.连接电压表输出导线,将电压表调至零点,用红黑导线连接主机和液晶盒,从0开第7/10页始逐渐增大电压,观察光功率计读数变化,电压调至最大值后归零。
4.从0开始逐渐增加电压,0-2.5V每隔0.2V或0.3V记一次电压及透射光强值,2.5V 后每隔0.1V左右记一次数据,6.5V后再每隔0.2V或0.3V 记一次数据,在关键点附近多测几组数据 5. [选做]自配数字存储示波器,可测试液晶样品的电光响应曲线,求得样品的响应时间。
注意事项 1、拆装时只压液晶盒边缘,切忌挤压液晶盒中部;保持液晶盒表面清洁,不能有划痕; 应防止液晶盒受潮,防止受阳光直射。
2、驱动电压不能为直流。
3、切勿直视激光器。
实验室据记录与处理 1.数据记录 U/V0.00 1.00 1.90 2.61 3.05 3.34 4.17 5.15 5.99I/uw9.9 9.9 10.1 10.2 192.1 204.0 310.3 395.0 425.0U/V0.24 1.20 2.01 2.71 3.07 3.41 4.29 5.36 6.18I/uw10.0 9.9 10.1 10.2 193.3 208.0 320.0 402.0 426.1U/V0.40 1.41 2.24 2.82 3.09 3.49 4.58 5.48 6.25I/uw9.9 10.0 10.2 10.3 194.6 212.0 354.1 412.0 427.0U/V I/uw0.62 1.60 2.44 2.91 3.12 3.53 4.70 5.64 6.44 9.9 10.0 10.2 10. 3U/V I/uw0.81 1.78 2.52 3.03 3.18 3.96 4.83 5.87 6.63 9.9 10.1 10.2 191.1 199.6 270.2 377.0 423.0 429.0196.2 215.0 363.0 416.0 428.52. 数据处理1. 做电光曲线图第8/10页电光曲线图U/v I/uw2. 求出样品的阈值电压Uth、饱和电压Ur、对比度Dr及陡度β。
Wμ429=Imax,对应的电压为6.63V,,此时对应的电压为阈值电压Uth,即Uth=2. 97V;,此时对应的电压为饱和电压Ur,即Ur=4.99V。
μ429=43.3=WμW/9.9Wμ42.9=Imax⨯10%Wμ386.1=Imax⨯90%Imax/Imin=对比度:Dr陡度:β=Ur/Uth=4.99V/2.97V=1.68 应用前景 1.如果两偏振片正交放置,则无电场时呈透明态,而加电场达到阈值电压后呈不透明状态.根据液晶的这种光电效应特性,如果把液晶快门用于焊接面罩,将CdS等光敏电阻组装入液晶快门内,平时是透明态,一旦检出焊接时的电弧光就瞬时给液晶盒施加电压,降低液晶盒的光透射性能,保护眼睛免受焊接电弧光的刺激.另外,根据这个原理可制作液晶窗帘,作为电动窗帘使用. 2.用液晶制成的透镜具有焦距可变、薄、轻、消耗功率少等优点.液晶电光效应种类繁多,根据不同的原理可设计不同种类的光学器件,其应用前景极为广泛.【5】实验结论当电压在2-2.97v,由于电压小于阀值电压,所以透射光强没有明显改变;当电压第9/10页增加到2.97v时,液晶分子的长轴开始向电场方向倾斜,透射光强开始增强; 2.97-4.99v,透射光强明显增强;当电压在4.99-6.18v时,透射光强持续增强,由于电压大于饱和电压,故增强程度逐渐减小,当电压在6.18-6.63v时,透射光强基本没明显改变。