23.1图形的旋转(1)
- 格式:ppt
- 大小:849.00 KB
- 文档页数:13
23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。
【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。
23.1 图形的旋转(第一课时)教学设计教材分析:图形的旋转是在学习了图形的两种变换——轴对称和平移的基础上,进一步学习的一种图形基本变换,是将来进一步研究图形全等及其有关性质的基础。
本课通过多媒体课件展示实际生活中经常看到的一些图形旋转现象,给出图形旋转的大致形象,然后引导学生探索研究平面图形的旋转变换。
通过学生的自主探索、合作研究、交流体会,培养学生的观察能力、图形辨析能力和探索学习的能力。
教学目标:1、通过多媒体课件展示实际生活中经常看到的一些图形旋转现象和学生自己动手操作观察认识旋转,探索它的基本性质。
2、在发现、探究的过程中,完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力。
3、学生在经历了实验探究、知识应用以及知识内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性。
教学重点:归纳图形旋转的特征,并能根据这些特征绘制旋转后的几何图形。
教学难点:对图形进行旋转变换。
教学方式:按照学生认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为辅的教学方法。
教学资源准备:教师准备多媒体课件(开拓学生视野,激发学生学习兴趣)、课堂练习题、课堂达标测试题。
学生准备硬纸板、剪刀(训练学生的动手能力)。
教学过程:一、创设情境,导入新课问题:1.观察实例(课件展示)。
①钟表的指针在不停地旋转,从3点到5点,时针转动了多少度?②风车风轮的每个叶片在风的吹动下转动到新的位置。
这些现象有哪些共同特点?教师应关注:(1)学生观察实例的角度;(2)在学生发现实例现象的共同特点后,要求学生试着描述出旋转的定义。
归纳定义:把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角。
(设计意图:旋转是属于动态的问题,对于运动的图形学生在学习掌握上会存在一定的困难。
23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标1.知识与技能了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.2.过程与方法让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.。
人教版数学九年级上册23.1《图形的旋转(1)》说课稿一. 教材分析《图形的旋转(1)》是人教版数学九年级上册第23.1节的内容,本节课主要让学生掌握图形旋转的基本概念、性质和应用。
通过学习,学生能够理解图形旋转的定义,了解旋转中心、旋转方向和旋转角等概念,并能够运用旋转性质解决一些实际问题。
本节课的内容是学生进一步学习几何图形变换的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经学习了平面几何的基本知识和立体几何的部分内容,对于图形的变换和运动有一定的了解。
但是,对于图形的旋转,学生可能还存在着一些模糊的认识,需要通过本节课的学习进一步明确和巩固。
此外,学生对于实际问题中的图形旋转可能还不够熟悉,需要通过实例分析和练习来提高解决实际问题的能力。
三. 说教学目标1.知识与技能目标:学生能够理解图形旋转的定义,掌握旋转中心、旋转方向和旋转角等基本概念,并能够运用旋转性质解决一些实际问题。
2.过程与方法目标:通过观察、操作和思考,学生能够培养空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,勇于探索,体验成功解决问题的喜悦。
四. 说教学重难点1.教学重点:图形旋转的基本概念、性质和应用。
2.教学难点:旋转中心、旋转方向和旋转角的确定,以及运用旋转性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和实例分析法,引导学生主动探索、发现问题、解决问题。
2.教学手段:利用多媒体课件、几何画板等软件,展示图形旋转的过程和性质,提高学生的空间想象能力。
六. 说教学过程1.导入:通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生思考图形的旋转,激发学生的学习兴趣。
2.新课导入:介绍图形旋转的定义,引导学生理解旋转中心、旋转方向和旋转角等基本概念。
3.实例分析:通过几何画板展示一些图形旋转的实例,让学生观察和操作,理解旋转性质。