函数的奇偶性
- 格式:pdf
- 大小:242.89 KB
- 文档页数:9
1.函数的奇偶性(1)奇偶性的定高中数学函数的奇偶性(解析版)义奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称(2)函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称.结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶,偶)(÷⨯偶=偶,奇)(÷⨯偶=奇.结论7:若函数f (x )的定义域关于原点对称,则函数f (x )能表示成一个偶函数与一个奇函数的和的形式.记g (x )=12[f (x )+f (-x )],h (x )=12[f (x )-f (-x )],则f (x )=g (x )+h (x ).结论8:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论9:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论10:复合函数y =f [g (x )]的奇偶性:内偶则偶,两奇为奇.结论11:指数型函数的奇偶性(1)函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;(2)函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;(3)函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数;(4)函数f (x )=a x -a -x a x +a -x =a 2x +1a 2x-1(a >0且a ≠1)是奇函数;结论12:对数型函数的奇偶性(1)函数f (x )=log a m -x m +x (a >0且a ≠1)是奇函数;函数f (x )=log a m +xm -x (a >0且a ≠1)是奇函数;(2)函数f (x )=log a x -m x +m (a >0且a ≠1)是奇函数;函数f (x )=log a x +mx -m (a >0且a ≠1)是奇函数;(3)函数f (x )=log a mx -b mx +b (a >0且a ≠1)是奇函数;函数f (x )=log a mx +bmx -b(a >0且a ≠1)是奇函数;(4)函数f(x)=log a(1+m2x2±mx)(a>0且a≠1)是奇函数.2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y=f(x)满足f(x+a)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.推论1:如果函数y=f(x)满足f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.推论2:如果函数y=f(x)满足f(x)=f(-x),则函数y=f(x)的图象关于直线x=0(y轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y=f(x)满足f(a+x)+f(a-x)=2b,则函数y=f(x)的图象关于点(a,b)对称.推论1:如果函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.推论2:如果函数y=f(x)满足f(x)+f(-x)=0,则函数y=f(x)的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y=f(x)关于直线x=a轴对称,则以下三式成立且等价:f(a+x)=f(a-x)⇔f(2a-x)=f(x)⇔f(2a+x)=f(-x)若函数y=f(x)关于点(a,0)中心对称,则以下三式成立且等价:f(a+x)=-f(a-x)⇔f(2a-x)=-f(x)⇔f(2a+x)=-f(-x)考点一判断函数的奇偶性【方法总结】判断函数的奇偶性:首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f(-x)与f(x)的关系作出判断.分段函数奇偶性的判断,要分别从x>0或x<0来寻找等式f(-x)=f(x)或f(-x)=-f(x)成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.用函数奇偶性常用结论6或特值法可秒杀.【例题选讲】[例1](1)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x答案B解析对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y=x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin 2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.(2)下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2-cos x C.y=2x+12xD.y=x2+sin x 答案D解析对于A,定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;对于D,y=x2+sin x既不是偶函数也不是奇函数.(3)设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数答案D解析∵f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.(4)已知f(x)=4-x2,g(x)=|x-2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)·g(x)是奇函数C.h(x)=g(x)·f(x)2-x是偶函数D.h(x)=f(x)2-g(x)是奇函数答案D解析h(x)=f(x)+g(x)=4-x2+|x-2|=4-x2+2-x,x∈[-2,2].h(-x)=4-x2+2+x≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)·g(x)=4-x2|x-2|=4-x2(2-x),x∈[-2,2].h(-x)=4-x2(2+x)≠h(x),且h(-x)≠-h(x),不满足函数奇偶性的定义,是非奇非偶函数.C.h(x)=g(x)·f(x)2-x=4-x2,x∈[-2,2),定义域不关于原点对称,是非奇非偶函数.D.h(x)=f(x)2-g(x)=4-x2x,x∈[-2,0)∪(0,2],是奇函数.(5)已知函数f(x)满足f(x+1)+f(-x+1)=2,则以下四个选项一定正确的是()A.f(x-1)+1是偶函数B.f(x-1)-1是奇函数C.f(x+1)+1是偶函数D.f(x+1)-1是奇函数答案-12解析法一:因为f(x+1)+f(-x+1)=2,所以f(x)+f(2-x)=2,所以函数y=f(x)的图象关于点(1,1)中心对称,而函数y=f(x+1)-1的图象可看作是由y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到,所以函数y=f(x+1)-1的图象关于点(0,0)中心对称,所以函数y=f(x+1)-1是奇函数,故选D.法二:由f(x+1)+f(-x+1)=2,得f(x+1)-1+f(-x+1)-1=0,令F(x)=f(x+1)-1,则F(x)+F(-x)=0,所以F(x)为奇函数,即f(x+1)-1为奇函数,故选D.【对点训练】1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x1.答案B解析对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x 1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称2.答案B解析因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.下列函数中既不是奇函数也不是偶函数的是()A.y=2|x|B.y=lg(x+x2+1)C.y=2x+2-x D.y=lg1x+13.答案D解析对于D项,1x+1>0,即x>-1,其定义域关于原点不对称,是非奇非偶函数.4.已知f(x)=x2x-1,g(x)=x2,则下列结论正确的是()A.f(x)+g(x)是偶函数B.f(x)+g(x)是奇函数C.f(x)g(x)是奇函数D.f(x)g(x)是偶函数4.答案A解析令h(x)=f(x)+g(x),因为f(x)=x2x-1,g(x)=x2,所以h(x)=x2x-1+x2=x·2x+x2(2x-1),定义域为(-∞,0)∪(0,+∞).因为h(-x)=-x·2-x-x2(2-x-1)=x(1+2x)2(2x-1)=h(x),所以h(x)=f(x)+g(x)是偶函数,令F(x)=f(x)g(x)=x22(2x-1),定义域为(-∞,0)∪(0,+∞).所以F(-x)=(-x)22(2-x-1)=x2·2x2(1-2x),因为F(-x)≠F(x)且F(-x)≠-F(x),所以F(x)=g(x)f(x)既不是奇函数也不是偶函数.5.设f(x)=e x+e-x,g(x)=e x-e-x,f(x),g(x)的定义域均为R,下列结论错误的是() A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数5.答案D解析f(-x)=e-x+e x=f(x),f(x)为偶函数.g(-x)=e-x-e x=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2e x,f(-x)+g(-x)=2e-x≠-(f(x)+g(x)),且f(-x)+g(-x)=2e-x≠f(x)+g(x),所以f(x)+g(x)既不是奇函数也不是偶函数,D错误,故选D.6.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是() A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.答案C解析对于A:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,A错.对于B:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,B错.对于C:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)·|g(x)|=-h(x),∴h(x)是奇函数,C正确.对于D:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,D错.考点二已知函数的奇偶性,求函数解析式中参数的值【方法总结】已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.对于选填题可用特值法进行秒杀.【例题选讲】[例2](1)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案1解析f(x)为偶函数,则y=ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.(2)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则log a b=()A.1B.-1C.-12D.14答案B解析由题意得f(0)=0,∴a=2.∵g(1)=g(-1),∴ln(e+1)-b=ln(1e+1)+b,∴b=12,∴log212=-1.故选B.(3)若函数f(x)-1,0<x≤2,1,-2≤x≤0,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=答案-12解析因为f (x )-1,0<x ≤2,1,-2≤x ≤0,所以g (x )=f (x )+ax -1,-2≤x ≤0,1+a )x -1,0<x ≤2,因为g (x )-1,-2≤x ≤0,+a )x -1,0<x ≤2为偶函数,所以g (-1)=g (1),即-a -1=1+a -1=a ,所以2a =-1,所以a =-12.(4)已知函数f (x )=a -2e x +1(a ∈R )是奇函数,则函数f (x )的值域为()A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)答案A解析法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x +1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).(5)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________.答案-3解析当x >0,-x <0,f (-x )=-e-ax.因为f (x )是奇函数,所以当x >0时,f (x )=-f (-x )=e-ax,所以f (ln 2)=e-a ln2=(e ln 2)-a =2-a =8.解得a =-3.【对点训练】7.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.7.答案-32解析函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln(1+e 3x )-ln e 3x -ax =ln(e 3x +1)+ax ,即-3x -ax =ax ,所以2ax +3x =0恒成立,所以a =-328.若函数f (x )=x 3(12x -1+a )为偶函数,则a 的值为________.8.答案12解析解法1:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-x )=f (x ),即(-x )3(12-x -1+a )=x 3(12x -1+a ),所以2a =-(12-x -1+12x -1),所以2a =1,解得a =12.解法2:因为函数f (x )=x 3(12x -1+a )为偶函数,所以f (-1)=f (1),所以(-1)3×(12-1-1+a )=13×(121-1+a ),解得a =12,经检验,当a =12时,函数f (x )为偶函数.9.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.9.答案-1解析由题意得f (-1)+f (1)=0,即2(a +1)=0,解得a =-1,经检验,a =-1时,函数f (x )为奇函数.10.已知奇函数f (x )x +a ,x >0,-2-x,x <0,则实数a =________.10.答案-4解析因为函数f (x )为奇函数,则f (-x )=-f (x ),f (-1)=-f (1),所以4-21=-(21+a ),解得a =-4.11.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =()A .17B .-1C .1D .711.答案A解析因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又因为f (x )为偶函数,所以b =0,即a +b =17.故选A .12.若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax ,x ∈[-4,-1]的值域为________.12.答案-2,-12解析由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即-2,-12.考点三已知函数的奇偶性,求函数的值【方法总结】已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.【例题选讲】[例3](1)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=____.答案12解析∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.(2)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x +2x +b (b 为常数),则f (1)=________.答案52解析由题意知f (0)=20+2×0+b =0,解得b =-1.所以当x ≤0时,f (x )=2x +2x -1,所以f (1)=-f (-1)=-[2-1+2×(-1)-1]=52(3)设函数f (x )是定义在R 上的奇函数,且f (x )3(x +1),x ≥0,(x ),x <0,,则g (-8)=()A .-2B .-3C .2D .3答案A解析法一当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.【对点训练】13.若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=()A .2B .4C .-2D .-413.答案C解析根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.14.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则21(())f f e 的值为________.14.答案ln 2解析由已知可得21(f e =ln 1e 2=-2,所以21((f f e=f (-2).又因为f (x )是偶函数,所以21(())f f e =f (-2)=f (2)=ln 2.15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=()A .-6B .6C .4D .-415.答案D解析因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.16.设函数f (x )是定义在R 上的奇函数,且f (x )3x +1,x ≥0,x ,x <0,则g (f (-8))=()A .-1B .-2C .1D .216.答案A解析因为f (x )为奇函数,所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.考点四已知函数的奇偶性,求函数的解析式【方法总结】已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.对于奇函数可在x 以及解析式前同时加负号,对于偶函数可在x 前加负号进行秒杀.【例题选讲】[例4](1)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=()A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1答案D 解析通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D .优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D .(2)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则f (x )=________.答案-x -1-x ,x ≤0x -1+x ,x >0解析当x >0时,-x <0,则f (-x )=e x -1+x ,又f (-x )=f (x ),因此f (x )=e x -1+x .所以f (x )-x -1-x ,x ≤0x -1+x ,x >0.(3)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=()A .e x -e -xB .12(e x +e -x )C .12(e -x -e x )D .12(e x -e -x )答案D解析因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).【对点训练】17.已知f (x )是奇函数,且x ∈(0,+∞)时的解析式是f (x )=-x 2+2x ,若x ∈(-∞,0),则f (x )=________.17.答案x 2+2x解析由题意知f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,-x ∈(0,+∞),所以f (-x )=-(-x )2+2×(-x )=-x 2-2x =-f (x ),所以f (x )=x 2+2x .18.函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=()A .-2xB .2-xC .-2-xD .2x18.答案C解析当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .19.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.19.答案2-4x ,x >0x 2-4x ,x ≤0解析∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ),即f (x )=-x 2-4x (x <0),∴f (x )2-4x ,x >0,x 2-4x ,x ≤0.20.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.20.答案14解析法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =+14,所以当x <0时,函数f (x )的最大值为14.法二:当x >0时,f (x )=x 2-x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.考点五与奇函数相关的函数的求值【方法总结】对于可表示成奇函数加常数的函数,如果已知一个数的函数值,求它的相反数的函数值或求两个相反数的函数值的问题,可用奇函数的结论5的推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c ,如果是涉及到函数的最大值与最小值的问题则可用推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c 进行秒杀.【例题选讲】[例5](1)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+1(lg )2f 等于()A .-1B .0C .1D .2答案D解析设g (x )=ln(1+9x 2-3x )=f (x )-1,g (-x )=ln(1+9x 2+3x )=ln11+9x 2-3x=-g (x ).∴g (x )是奇函数,∴f (lg 2)-1+1(lg 2f -1=g (lg 2)+1(lg )2g =0,因此f (lg 2)+1(lg 2f =2.(2)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________.若g (10)=2019,则g (-10)的值为()A .-2219B .-2019C .-1919D .-1819答案D解析由题意,因为f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0)=f (0),即f (0)=0,令y =-x ,则有f (x -x )=f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ),即f (x )是奇函数,若g (x )=f (x )+sin x +x 2,g (10)=2019,则g (10)=f (10)+sin 10+100=2019,则g (-10)=f (-10)-sin 10+100=-f (10)-sin 10+100,两式相加得200=2019+g (-10),得g (-10)=200-2019=-1819,故选D(4)已知函数f (x )=a sin x +b ln 1-x1+x+t ,若1()2f +1()2f =6,则实数t =()A .-2B .-1C .1D .3答案D 解析令g (x )=a sin x +b ln1-x1+x ,则易知g (x )为奇函数,所以1(2g +1()2g -=0,则由f (x )=g (x )+t ,得1()2f +1()2f -=1()2g +1(2g -+2t =2t =6,解得t =3.故选D .(5)已知函数f (x )=2|x |+1+x 3+22|x |+1的最大值为M ,最小值为m ,则M +m 等于()A .0B .2C .4D .8答案C解析易知f (x )的定义域为R ,f (x )=2·(2|x |+1)+x 32|x |+1=2+x 32|x |+1,设g (x )=x 32|x |+1,则g (-x )=-g (x )(x ∈R ),∴g (x )为奇函数,∴g (x )max +g (x )min =0.∵M =f (x )max =2+g (x )max ,m =f (x )min =2+g (x )min ,∴M +m =2+g (x )max +2+g (x )min =4,故选C .【对点训练】21.已知函数f (x )=x +1x-1,f (a )=2,则f (-a )=________.21.答案-4解析法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2.所以f (a )+f (-a )=-2,故f (-a )=-4.法二:由已知得f (a )=a +1a -1=2,即a +1a =3,所以f (-a )=-a -1a -11=-3-1=-4.22.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为()A .3B .0C .-1D .-222.答案B解析设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B .23.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R ),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是()A .2和1B .2和0C .2和-1D .2和-223.答案B解析设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.24.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg2))=()A .-5B .-1C .3D .424.答案C解析设g (x )=ax 3+b sin x ,则f (x )=g (x )+4,且函数g (x )为奇函数.又lg(lg2)+lg(log 210)=lg(lg2·log 210)=lg1=0,所以f (lg(lg2))+f (lg(log 210))=2×4=8,所以f (lg(lg2))=3.故选C .25.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=()A .-3B .-1C .1D .325.答案C解析用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1.故选C .26.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.26.答案2解析显然函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.27.设函数f(x)=(e x+e-x)sin x+t,x∈[-a,a]的最大值和最小值分别为M,N.若M+N=8,则t=() A.0B.2C.4D.827.答案4解析设g(x)=(e x+e-x)sin x,x∈[-a,a],因为g(x)是奇函数,所以g(x)max+g(x)min=0,所以M+N=g(x)max+g(x)min+2t=2t=8,所以t=4.28.若定义在[-2020,2020]上的函数f(x)满足:对任意x1∈[-2020,2020],x2∈[-2020,2020]都有f(x1+x2)=f(x1)+f(x2)-2019,且x>0时有f(x)>2019,f(x)的最大值、最小值分别为M,N,则M+N =()A.2019B.2020C.4040D.403828.答案D解析令x1=x2=0得f(0)=2f(0)-2019,所以f(0)=2019,令x1=-x2得f(0)=f(-x2)+f(x2)-2019=2019,所以f(-x2)+f(x2)=4038,令g(x)=f(x)-2019,则g(x)max=M-2019,g(x)min=N -2019,因为g(-x)+g(x)=f(-x)+f(x)-4038=0,所以g(x)是奇函数,所以g(x)max+g(x)min=0,即M-2019+N-2019=0,所以M+N=4038.29.已知函数f(x)=(x2-2x)·sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=() A.4B.2C.1D.029.答案A解析f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令t=x-1,g(t)=(t2-1)sin t+t,则y=f(x)=g(t)+2,t∈[-2,2].显然M=g(t)max+2,m=g(t)min+2.又g(t)为奇函数,则g(t)max+g(t)min=0,所以M+m=4,故选A.30.若关于x的函数f(x)+cos xt≠0)的最大值为a,最小值为b,且a+b=2,则t=____.30.答案1解析f(x)+cos x t+t sin x+x2x2+cos x,设g(x)=t sin x+x2x2+cos x,则g(x)为奇函数,g(x)max=a-t,g(x)min=b-t.∵g(x)max+g(x)min=0,∴a+b-2t=0,即2-2t=0,解得t=1.。
函数的奇偶性第一部分 知识梳理1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数;2.函数奇偶性的判定方法①定义法:ⅰ)若函数的定义域不是关于原点对称的对称区域,则该函数既不是奇函数也不是偶函数;ⅱ)若函数的定义域关于原点对称,在判断()f x -是否等于()f x ±-,或判断()()f x f x ±-是否等于零,或判断()()f x f x -是否等于1±;判断函数奇偶性一般步骤:ⅰ)求函数的定义域,判断定义域是否关于原点对称ⅱ)用x -代替x ,验证()()f x f x -=-,奇函数;若()()f x f x -=,偶函数;否则,非奇非偶。
②图像法③性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍奇函数; 奇数个奇函数的积、商(分母不为零)为奇函数;一个偶函数与一个奇函数的乘积是奇函数3.奇偶函数图像的性质①()()()()0f x f x f x f x ⇔-=-⇔+-=奇函数⇔函数的图像关于中心原点对称;⇔偶函数()()()-()0f x f x f x f x -=⇔-=⇔函数的图像关于y 轴对称②若奇函数()f x 的定义域包含0,则(0)0f =.③()f x 为偶函数()()(||)f x f x f x ⇔=-=④奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.第二部分 精讲点拨考点1 奇偶函数的概念与性质1、下列说法错误的个数( )①图像关于坐标原点对称的函数奇函数 ②图象关于y 轴对称的函数是偶函数③奇函数的图像一定过坐标原点 ④偶函数的图像一定与y 轴相交.1A 个 .2B 个 .3C 个 .4D 个[].1EX (1)已知函数()y f x =是偶函数,其图像与x 轴有四个交点,则方程()0f x =的所有实根之和是( )A .4 B.2 C.1 D.0(2)已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >时,()f x 的图像如图,那么()f x 的值域是___________[].2EX (1)设奇函数()f x 的定义域为[]5,5-若当[]0,5x ∈时,()f x 的图象如右图,则不等式()0f x < 的解是____________(2)设()f x 是R 上的任意函数,则下列叙述正确的是 ( ).()()A f x f x -是奇函数 .()()B f x f x -是奇函数 .()()C f x f x --是偶函数 .()()D f x f x +-是偶函数(3)若函数(1)()y x x a =+-为偶函数,则a 等于( ).2A - .1B - .1C .2D(4)已知2()1x f x m x =++为奇函数,则(1)f -的值是________考点2 奇偶函数的判断判断下列函数的奇偶性(1)()f x = (2)()11f x x x =++- (3)()(f x x =-(4)23()f x x x =- (5)2223(0)()0(0)23(0)x x x f x x x x x ⎧-+>⎪==⎨⎪---<⎩考点3 函数奇偶性的应用(1) 已知53()8f x ax bx cx =++-,且()10f d =,求()f d -的值。
函数的奇偶性一、概念:1、若)(x f y =对定义域内的任何一个x ,都有)()(x f x f =-,称)(x f y =是偶函数;2、若)(x f y =对定义域内的任何一个x ,都有)()(x f x f -=-,称)(x f y =是奇函数;3、若函数)(x f y =是定义域的偶函数(或奇函数),称)(x f y =具有奇偶性。
二、理解1、必要条件:定义域关于原点成中心对称。
2、判定函数奇偶性的步骤一步:求定义域,并判定它是否关于原点对称; 二步:判定)(),(x f x f -的关系三、函数的奇偶性与函数的图象的关系1、若)(x f y =是偶函数⇔)(x f y =的图象关于y 轴成轴对称2、若)(x f y =是奇函数⇔)(x f y =的图象关于原点成中心对称四、函数的奇偶性与单调性的关系1、偶函数在原点两侧的对称区间上的单调性相反;2、奇函数在原点两侧的对称区间上的单调性一致五、常用结论1、若)(x f 是奇函数且0=x 在定义域内,则0)0(=f ;2、若)(x f 是偶函数,则|)(|)(x f x f =;3、已知)(x f 是整式函数,若奇次项系数为0,则)(x f 是偶函数;若偶次项(常数项为偶次项)系数为0,则)(x f 是奇函数;4、奇±奇=奇、偶±偶=偶、奇·奇=偶、偶·偶=偶、奇·偶=奇六、题型归纳1、判定奇偶性例1.判定 下列函数的奇偶性 (1)11)(2+-=x x x f ;(2)2|2|1)(2---=x x x f(3)|)(|)(x g x f =(其中1)(2+-=x x x g ) 2、关于奇偶性的应用(1)求参数的值例2.已知函数1)(2+-=ax x x f 是偶函数,则实数=a __ 例3.已知函数x x x f +=3)(是定义域)1,(+a a 上的奇函数,则实数=a _____(2)求函数值或解析式例4.已知函数4)(3++=bx ax x f ,若15)1(=f ,则)1(-f =___ 例5.已知函数)(x f 是定义在R 上的奇函数,且当0>x 时3)(2--=x x x f ,求)(x f 的解析式 (3)奇偶性和单调性的综合应用例7.已知函数)(x f 是定义在R 上的奇函数,且是R 上的增函数,解关于x 的不等式0)72()1(2<-++-x f x x f 例8.已知函数)(x f 是R 上的偶函数,且在]0,(-∞上是减函数,解关于x 的不等式)3()12(f x f >-u例9.已知函数)(x f 是定义在R 上的奇函数,且在),0(+∞上是增函数,又0)2(=-f ,则不等式0)(≥x f 的解集为______________。
函数的奇偶性证明函数的奇偶性是指当函数f(x)在点x获得f(x)值时,如果用-x 代替x,f(-x)的值与f(x)的值可能相等,也可能完全不等。
如果f(-x)=f(x),则此函数称之为奇函数,也称为偶函数。
二、为什么函数的奇偶性很重要函数的奇偶性被用来定义函数的性质以及函数的解析方法。
换言之,当被解析函数存在奇偶性,可以用来简化函数和解决相关问题。
具体来说,可以利用函数的奇偶性来简化经典函数的解析形式,从而获得解析解。
此外,函数的奇偶性还可用来证明函数的一致性律,如函数在原点处的导数连续性等。
三、函数的奇偶性及证明1、绝对值函数的奇偶性绝对值函数的定义是:如果x为实数,则绝对值函数的定义为|x|=x,如果x<0,则|x|= -x。
可以根据绝对值函数的定义,了解它的奇偶性。
当x=0时,|x|=0,即绝对值函数在原点处为零;当x=a 时,|-a|=-a,即绝对值函数在-a处为a,他们的函数值相等,即此函数为奇函数,其表达式为f(-x)=f(x),这表明绝对值函数是奇函数。
2、幂函数的奇偶性设x为实数,xn为x的幂,则可以指出,x-n为x的反幂。
例如,2-3=1/8,以及-2-3=-1/8,根据这一结果,可以证明x的幂函数的奇偶性。
因为当x>0(x<0)时,x-n>0(x-n<0),因此可以得出,x-n=|x-n|,利用绝对值函数的奇函数性质可以得出,当x>0,|x-n|=x-n,|-x-n|=-x-n,根据之前的结果,f(-x)=f(x)可得x的幂函数也是奇函数,其表达式为f(-x)=f(x)。
3、双曲函数的奇偶性双曲函数的定义是:当x>1时,函数为正双曲线,当x<-1时,函数为负双曲线。
可以将其表达式表示为y=sinhx或y=coshx。
由此可以推出,对于双曲函数的奇偶性也可以进行证明,即取x为实数,双曲函数满足f(-x)=f(x),因此双曲函数也是奇函数。
四、总结以上,本文简要分析了函数的奇偶性,介绍了为什么函数的奇偶性很重要,并根据常见函数的特点介绍如何证明函数的奇偶性。
函数的奇偶性(一) 主要知识: 1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数; 2.奇偶函数的性质:()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数⇔()f x 的图象关于y 轴对称; ()f x 是奇函数⇔()f x 的图象关于原点对称;()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.3.()f x 为偶函数()()(||)f x f x f x ⇔=-=.4.若奇函数()f x 的定义域包含0,则(0)0f =.(二)主要方法:1.判断函数的奇偶性的方法:()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式;()2图象法;()3性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D =上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数;2. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-. (三)典例分析:问题1.判断下列各函数的奇偶性:()1 1()(1)1x f x x x +=--; ()2 2lg(1)()|2|2x f x x -=--; ()3 2()lg(1)f x x x =+-; ()4 22(0)()(0)x x x f x x xx ⎧+<⎪=⎨-+>⎪⎩ 问题2.()1已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,3()(1)f x x x =+,则()f x 的解析式为()2(04上海)设奇函数()f x 的定义域为[]5,5-若当[]0,5x ∈时,()f x 的图象如右图,则不等式()0f x <的解是yxO 2∙ 5∙ ()y f x =∙()2已知函数21()ax f x bx c+=+()()2()()f x y f x y f x f y ++-=⋅(a 、b 、c Z ∈)为奇函数,又(1)2f =,(2)3f <,求a 、b 、c 的值 .问题5.()1已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,且12||||x x <,则A .12()()f x f x ->-B .12()()f x f x -<-C .12()()f x f x ->-D . 12()()f x f x -<-()2设定义在[]2,2-上的偶函数()f x 在区间[]0,2上单调递减,若(1)()f m f m -<,求实数m 的取值范围(四)巩固练习:1.已知函数2()f x ax bx c =++,[]23,1x a ∈--是偶函数,则a b +=2.已知1()21x f x m =++为奇函数,则(1)f -的值为 3.已知5)(357++++=dx cx bx ax x f ,其中d c b a ,,,为常数,若7)7(-=-f , 则=)7(f _______ 4.若函数)(x f 是定义在R 上的奇函数,则函数)()()(x f x f x F +=的图象关于 .A x 轴对称 .B y 轴对称 .C 原点对称 .D 以上均不对5.函数)0)(()1221()(≠-+=x x f x F x 是偶函数,且)(x f 不恒等于零,则)(x f.A 是奇函数 .B 是偶函数.C 可能是奇函数也可能是偶函数 .D 不是奇函数也不是偶函数函数的周期性1.周期函数:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT(,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数: 函数()y f x =满足对定义域内任一实数x (其中a 为常数),(1)()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; (2)()()f x a f x +=-,则()f x 是以2T a =为周期的周期函数; (3)()()1f x a f x +=±,则()f x 是以2T a =为周期的周期函数; (4)()()f x a f x b +=-,则()f x 是以T a b =+为周期的周期函数;以上(1)-(4)比较常见,其余几种题目中出现频率不如前四种高,并且经常以数形结合的方式求解。
函数的奇偶性定义:设函数y=f(x)如果对于任意的x A ∈都有发y=f(x)f(-x)=f(x),则称f(x)为偶函数设函数y=f(x)如果对于任意的x A ∈都有发f(-x)=-f(x),则称f(x)为奇函数注:1 函数y=f(x)是奇函数或偶函数,则称函数y=f(x)具有奇偶性2 定义域不关于原点对称或得不出y=f(x)和 f(-x)=-f(x),则称f(x)不具有奇偶性一 判断函数奇偶性的几种方法1.直接利用定义判定如果函数f(x)的定义域关于原点对称,则可验证是否满足f(-x)=-f(x)或f(-x)=f(x),从而判定f(x)是奇函数还是偶函数。
注:a:既是奇函数又是偶函数只能f(x)=0f(x)=0,但定义域的不同。
f(x)=0有无穷个b:若函数是奇函数则f(x)在x=0处有定义,则f(0)=0例1.判断下列函数的奇偶性 (1) 11)(--+=x x x f ; (2) xx x x f -+-=11)1()( ; (3)221)(2---=x x x f ; (4) ⎪⎩⎪⎨⎧>+<-=)0()1()0()1()(x x x x x x x f ④33)(22-+-=x x x f 既是奇函数又是偶函数 ⑤2)(2+--=a x x x f a=0时偶函数,a ≠0时非奇非偶函数 ⑥22)(+--=x x x f5.(2008年高考上海卷)若函数f (x )=(x +a )(bx +2a )(常数a 、b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________________.2.间接利用定义判定(定义的等价命题)f(x)+f(-x)=0⇔f(x)是奇函数,f(x)-f(-x)=0⇔f(x)是偶函数或当f(x)≠0时,1)()(-=-x f x f ⇔)(x f 是奇函数。
1)()(=-x f x f ⇔)(x f 是偶函数 注:函数以对数形式或根式出现时,可考虑此方法。
函数奇偶性判断方法1.函数奇偶性的必要性:函数的定义域必须关于原点对称,这样该函数可能有奇偶性。
2.定义法:x属于函数y=f(x)的定义域A,且-x属于A的条件下,如果f(-x)=-f(x)则y=f(x)为奇函数,如果f(-x)=f(x)则y=f(x)为偶函数。
3.根据函数图像对称性来判断:如果函数图像关于原点对称,则为奇函数,如果函数图像关于y轴对称,则为偶函数。
4.分段函数奇偶性的判断:要看每段上f(-x)与f(x)的关系,或要取绝对值符号,化简函数式。
5.复合函数奇偶性的判断:记F(x)=f[g(x)]——复合函数,则F(-x)=f[g(-x)],(1)如果g(x)是奇函数,即g(-x)=-g(x) ==> F(-x)=f[-g(x)],则当f(x)是奇函数时,F(-x)=-f[g(x)]=-F(x),F(x)是奇函数;当f(x)是偶函数时,F(-x)=f[g(x)]=F(x),F(x)是偶函数。
(2)如果g(x)是偶函数,即g(-x)=g(x) ==> F(-x)=f[g(x)]=F(x),F(x)是偶函数。
所以由两个函数复合而成的复合函数,当里层的函数是偶函数时,复合函数是偶函数,不论外层是怎样的函数;当里层的函数是奇函数、外层的函数也是奇函数时,复合函数是奇函数,当里层的函数是奇函数、外层的函数是偶函数时,复合函数是偶函数。
在其它的场合,就不能判断复合函数的奇偶性了。
6. 互为反函数的关系判断:如果一个函数是奇函数,则它的反函数也是起函数,但偶函数就不能这样的关系。
7. 用特殊值判断函数的奇偶性:比如:已知函数f(x)满足f(x+y)+f(x-y)=2f(x)(y) (x.y∈R)且f(0)≠0不等于零,证f(x)是偶函数。
解析:令x=y=0,则2f(0)=2f(0)^2,f(0)不等0,所以f(0)=1,令x=0,原式变为f(y)+f(-y)=2f(y)*f(0),所以f(y)=f(-y),偶函数得证。
§2.1.4函数的奇偶性
(普通高中课程标准实验教科书,数学1,必修,B版,人民教育出版社,50——53页)
生:两个函数图象是关于坐标原点中心对称的。
师:函数图象是以坐标原点为对称中心的中心对称图
形。
师:大家是用描点法来绘制函数图象的吧,我们需要计
算一些函数值。
那么大家有没有发现在这两个函数中)1(f )1(−f ,)2(f 与)2(−f ,)3(f 与)3(−f 有什么关系呢?x
x f 1=
)(341)(x x f =
生:他们是以y 轴为对称轴的轴对称图形。
师:那么大家在绘制函数图象的时候,有没有发现在这两个函数中)1(g 与)1(−g ,有什么关系呢?
通过计算我们能够得到:)1()1(g g =−,)2()2(g g =−)3()3(g g =−。
1
)(2+−=x x g x
x g =)(
(−∞是增函数,在由图象可以看出,这个函数在)0,
是减函数。
师:大家是否已经理解了奇函数、偶函数的定义,学会了如何判断一个函数的奇偶性呢?我们来完成几个练。