高一数学函数的奇偶性2
- 格式:pdf
- 大小:1.15 MB
- 文档页数:9
高一数学函数的奇偶性知识点详解1.定义一般地,对于函数fx1如果对于函数定义域内的任意一个x,都有f-x=-fx,那么函数fx就叫做奇函数。
2如果对于函数定义域内的任意一个x,都有f-x=fx,那么函数fx就叫做偶函数。
3如果对于函数定义域内的任意一个x,f-x=-fx与f-x=fx同时成立,那么函数fx既是奇函数又是偶函数,称为既奇又偶函数。
4如果对于函数定义域内的任意一个x,f-x=-fx与f-x=fx都不能成立,那么函数fx 既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇或偶函数。
分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与fx比较得出结论③判断或证明函数是否具有奇偶性的根据是定义2.奇偶函数图像的特征:定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
fx为奇函数《==》fx的图像关于原点对称点x,y→-x,-y奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算1.两个偶函数相加所得的和为偶函数.2.两个奇函数相加所得的和为奇函数.3.一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.4.两个偶函数相乘所得的积为偶函数.5.两个奇函数相乘所得的积为偶函数.6.一个偶函数与一个奇函数相乘所得的积为奇函数.1. 集合的含义2. 集合的中元素的三个特性:1 元素的确定性如:世界上最高的山2 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}3 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2 集合的表示方法:列举法与描述法。
2,时的函∈,a R所以的特性。
⑵如果这个函数不是偶函数,你如何来判断?例2:判断下列函数是否是偶函数?(1)23f(x)=x(2)1()1xf x x-=+(3)2()f x x x =-提问7:偶函数的图像有什么特点? 结合f(x)=2x 的图象回答: 对于任意一个偶函数f(x),图象上的点))(,(x f x P 关于y 轴的对称点'P 的坐标是什么?点'P 是否也在函数f(x)的图象上?由此可得到怎样的结论。
知道了偶函数图像的特点,我们还可以解决这样的问题。
例题:如图,已知偶函数()y f x =,在y 轴左侧的图像,试作出()y f x =在y 轴右侧的图像。
1、定义域关于原点不对称,则函数不是偶函数。
2、定义域关于原点对称,存在某个a ,()()f a f a -≠,则函数不是偶函数。
(突出举具体的反例。
)例2 [学生口答教师板演][学生讨论](如果函数(),y f x x D =∈是偶函数,那么函数(),y f x x D =∈的图像关于y 轴对称,反之,如果一个函数的图像关于y 轴成轴对称图形,那么这个函数必是偶函数。
)两点:(1)函数的奇偶性是函数在定义域上的一个整体性质。
(2)函数的定义域关于原点对称是一个函数为偶函数的必要条件。
教师层层深入地提出问题,学生根据教师的诱导,思考问题并积极回答问题,加深对定义的理解。
类比学习 刚才我们研究了轴对称图形,接下来我们研究中心对称图形。
Ppt 演示先看一个简单的问题:3()f x x = 让学生对照偶函数的定义,用类比的方法讨论分析给出奇函数的定义并给出定义分析,判断函数是奇函数的方法及奇函数的图像特点。
[类比学习,学生讨论教师总结,课件投影列出对照表]学生学习了偶函数后,通过类比,相应的得到奇函数的定义、判断函数是奇函数的方法及奇函数的图像特点。
既减少了重复劳动,又锻炼的学生的类比学习的能力。
形成性练习例3、 判断下列函数的奇偶性 (1) 53)(x x x x f ++= (2) 1)(2+=x x f (3) 1)(+=x x f(4) 2)(x x f = []3,1-∈x(5) 0)(=x f提问:判断函数奇偶性的结果有哪几种?选例3的第(1)小题板书来示范解题的步骤,其他例题让几个学生板演,其余学生在下面自己完成,针对板演的同学所出现的步骤上的问题进行及时纠正,教师要适时引导学生做好总结归纳。