3.1圆 第2课时 教案(湘教版九年级下)1
- 格式:doc
- 大小:53.00 KB
- 文档页数:5
湘教版九年级下册第2章圆教案第(1~4课时)第一课时2、1 圆得对称性学习目标:1、理解圆及弧、等弧、弦、等圆、半圆、直径等有关概念得定义;2、理解圆既就是轴对称图形又就是中心对称图形、;3、掌握点与圆得位置关系及判定条件、教学重点、难点:1、重点:圆、等圆、弧、等弧、弦、半圆、直径等有关概念得理解、2、难点:圆、等圆、弧、等弧、弦、半圆、直径等有关概念得区别与联系、教学过程:一、新课引入:1、创设情境、导入新课:圆就是生活中常见得图形,许多物体都给我们以圆得形象、(1)观察以上图形,请大家说说生活中还有哪些圆形,让学生体验圆得与谐与美丽、(2)活动:请同学们在草稿纸上用圆规画圆,体验画圆得过程,想想圆就是怎样形成得、二、新知探究:1、探究一:圆得定义(1)活动:如教材P43图所示,用绳子与圆规画圆;(2)思考:通过用绳子与圆规画圆得过程,您发现了什么?由此您能得到什么结论?(3)凝炼结果:圆得定义及表示方法:如右图:在一个平面内,线段OA绕它固定得一个端点O旋转一周,另一个端点A所形成得圆形叫做圆、固定得端点O叫做圆心,线段OA叫做半径、以点O 为圆心得圆,记作“⊙O ”,读作“圆O ”、注意:圆指得就是圆周,不就是圆面、2、探究二:点与圆得位置关系:(1)观察:与、、321P P P ⊙O 得位置关系,您发现了点与圆得有哪几种位置关系什么?点P 到圆心O 得距离d 与⊙O 得半径为r有何关系?(2)结论:点与圆得位置关系及性质:一般地,设⊙O 得半径为r ,点P 到圆心O 得距离为d,则有①若点P 在⊙O 内,则d <r ;②若点P 在⊙O 上,则d=r ;③若点P 在⊙O 外,则d >r 。
(3)点与圆得位置关系得判定方法:数形结合法;①若d <r ,则点P 在⊙O 内;②若d=r ,则点P 在⊙O 上;③若d >r ,则点P 在⊙O 外。
3、与圆有关得概念:(结合图形理解)(1)弦:连接圆上任意两点得线段叫做弦、(如:线段AB 、AC)(2)直径:经过圆心得弦(如AB)叫做直径、注:直径就是特殊得弦,但弦不一定就是直径、(3)弧得定义及分类:定义:圆上任意两点间得部分叫做圆弧,简称弧、如图,以A 、B 为端点得弧记作,»AB ,读作:弧AB 、分类:①圆得任意一条直径得两个端点把圆分成两条弧,每一条弧都叫做半圆、②大于半圆得弧,用三个点表示,如图中得¼ABC ,叫做优弧、 小于半圆得弧,用两个点表示,如图中得»AC ,叫做劣弧、 (4)等圆:能够重合得两个圆叫做等圆、注:半径相等得两个圆就是等圆,反过来,同圆或等圆得半径相等、(5)等弧:在等圆或同圆中,能够互相重合得弧叫等弧、 32P 1注:①等弧就是全等得,不仅就是弧得长度相等、②等弧只存在于同圆或等圆中、4、探究三:圆得对称性(1)探究活动:通过教材P44探究1、2,引导学生仔细体会,必要时可通过画图或折叠圆心纸片演示、(2)凝炼结果:①圆就是中心对称图形,圆心就是它得对称中心、②圆就是轴对称图形,任意一条直径所在得直线都就是圆得对称轴、(3)思考车轮为什么做成圆形得?如果车轮不就是圆得(如椭圆或正方形等),坐车人会就是什么感觉?分析:把车轮做成圆形,车轮上各点到车轮中心(圆心)得距离都等于车轮得半径,当车轮在平面滚动时,车轮中心与平面得距离保持不变、因此,车辆在平路上行驶时,坐车得人会感到非常平稳、如果车轮不就是圆得,车辆在行驶时,坐车人会感觉到上下颠簸,不舒服、三、自学成果展示:1、在Rt△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,2cm长为半径作圆,则点C( C )A、在⊙A内B、在⊙A上C、在⊙A外D、可能在⊙A上也可能在⊙A外2、(1)以点A为圆心,可以画____个圆、(2)以已知线段AB得长为半径,可以画____个圆、(3)以A为圆心AB长为半径,可以画___个圆、【参考答案】2、(1)无数(2)无数 (3)13、如图,半圆得直径AB=________、【参考答案】3、22第3题图第4题图4、如图,图中共有____条弦、5、如图,就是两个同心圆,其中两条直径互相垂直,大圆得半径就是2,则其阴影部分得面积之与为(结果保留π).四、课堂小结:小组交流,共享受收获得喜悦1、师生共同回顾圆得两种定义,弦(直径),弧(半圆、优弧、劣弧、等弧),等圆等知识点、2、通过这节课得学习,您掌握了哪些新知识,还有哪些疑问?请与同伴交流、五、课堂检测:1、下列图形中,对称轴最多得图形就是()2.已知⊙O得半径就是5,点A到圆心O得距离就是7,则点A与⊙O得位置关系就是()A.点A在⊙O上 B.点A在⊙O内C.点A在⊙O外 D.点A与圆心O重合3、已知⊙O得半径为5,圆心O得坐标为(0,0),点P得坐标为(3,4),那么点P与⊙O得位置关系就是()A.点P在⊙O内 B.点P在⊙O上C.点P在⊙O外 D.无法确定4、下列图形中,既就是轴对称图形又就是中心对称图形得就是()5、已知一点到圆得最小距离为1 cm,最大距离为3 cm,则圆得半径为()A. 1 cm B.2 cm C. 3 cm D.1 cm或2 cm6、已知矩形ABCD得边AB=6,AD=8、如果以点A为圆心作⊙A,使B、C、D三点中在圆内与在圆外都至少有一个点,那么⊙A得半径r得取值范围就是()A.6<r<10 B.8<r<10 C.6<r≤8 D.8<r≤107、如图,⊙O与⊙O′就是任意两个圆,把这两个圆瞧作一个整体,它就是一个轴对称图形,请您作出这个图形得对称轴.8、如图,⊙O中,点A,O,D以及B,O,C分别都在同一条直线上.(1)图中共有几条弦?请将它们写出来;(2)请任意写出两条劣弧与两条优弧.六、课后作业1、布置作业:从教材“习题2、1”中选取、拓展练习:1、在△ABC 中,∠C =90°,AC =4,AB =5,以点C 为圆心,以r =3为半径作圆,判断A ,B 两点与⊙O 得位置关2、由于过度采伐森林与破坏植被,我国某些地区多次受到沙尘暴得侵袭.近日,A 市气象局测得沙尘暴中心在A 市正东方向400 km 得B 处,正在向西北方向转移,如图,距沙尘暴中心300 km 得范围内将受其影响,问A 市就是否会受到这次沙尘暴得影响?七、教学反思:第二课时 2、2 圆心角、圆周角(第1课时)2、2、1 圆心角学习目标:1、理解并掌握圆心角得概念、2、掌握圆心角与弧及弦得关系定理、教学重点、难点:1、重点:弧、弦、圆心角之间关系得定理及推论与它们得应用、2、难点:探索定理与推论及其应用、教学过程:一、新课引入1、问题1:如图中,时钟得时针与分钟所成得角与时钟得外围所成得圆有哪些位置关系?教师引导:让学生关键指出两点:一就是角得顶点在圆心,二就是两边与圆相交、2、引入课题:2、2、1 圆心角二、思考探究,获取新知1、学生自学课文:P47,弄清:圆心角得定义(1)圆心角概念:顶点在圆心,角得两边与圆相交得角叫圆心角、如图,∠AOB 叫做AB ︵所对得圆心角, AB ︵叫做圆心角∠AOB 所对得弧、注:圆心角得定义可以简化为:顶点在圆心得角叫圆心角、2、探究:圆心角与弧、弦关系定理(1)探究1:请同学们按下列要求作图并回答下列问题:如图所示得⊙O 中,分别作相等得圆心角∠AOB 与∠A ′OB ′,将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′位置,您能发现哪些等量关系,为什么?学生回答:【教学说明】AB ︵=¼A B '',AB=A ′B ′、 理由:∵半径OA 与OA ′重合,且∠AOB=∠A ′OB ′,∴半径OB 与OB ′重合、∵点A 与点A ′重合,点B 与点B ′重合,∴AB ︵与¼A B ''重合,弦AB 与弦A ′B ′重合、 ∴AB ︵=¼A B '',AB=A ′B ′、 (2)探究2:同学们思考一下,在等圆中,这些结论就是否成立?学生回答:教师指导:在等圆⊙O 与⊙O ′中分别作∠AOB=∠A ′O ′B ′,然后滚动一个圆,使圆心O 与O ′重合,固定圆心,将其中得一个圆旋转一个角度,使得OA 与O ′A ′重合,∠AOB 与∠A ′O ′B ′重合,则有上面相同结论,AB=A ′B ′, »AB =¼A B ''、(3)凝炼结果:弧、弦、圆心角之间关系得定理:在同一个圆或等圆中,相等得圆心角所对得弧相等,所对得弦相等、(4)推论:在同圆或等圆中,如果两个圆心角,两条弧与两条弦中有一组量相等,那么它们所对应得其余各组量都分别相等。
湘教版数学九年级下册第二章《圆》说课稿一. 教材分析湘教版数学九年级下册第二章《圆》是学生在学习了平面几何相关知识后,进一步深入研究圆的相关性质和定理。
本章内容主要包括圆的定义、圆的性质、圆的方程、圆与直线的位置关系等。
通过本章的学习,使学生掌握圆的基本性质和应用,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章内容时,已具备了一定的几何知识基础,如平行线、相交线、三角形等。
但圆的概念和性质较为抽象,对学生空间想象能力和逻辑思维能力要求较高。
此外,学生对于实际问题的解决能力也有待提高。
三. 说教学目标1.知识与技能:掌握圆的定义、性质、方程,了解圆与直线的位置关系;能运用圆的知识解决实际问题。
2.过程与方法:通过观察、实践、探究、合作等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.圆的定义和性质2.圆的方程3.圆与直线的位置关系及其应用五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究圆的性质和定理。
2.利用多媒体课件,展示圆的相关图形和动画,提高学生的空间想象能力。
3.发挥学生的主体作用,鼓励学生参与课堂讨论和实践活动。
4.通过实际例子,培养学生运用圆的知识解决实际问题的能力。
六. 说教学过程1.导入:以生活中的实例引入圆的概念,激发学生的学习兴趣。
2.探究圆的性质:引导学生观察、实践,发现圆的基本性质。
3.学习圆的方程:引导学生根据圆的性质,推导出圆的方程。
4.探讨圆与直线的位置关系:通过实际例子,引导学生了解圆与直线的位置关系及应用。
5.实践与应用:布置适量的练习题,让学生运用所学知识解决实际问题。
七. 说板书设计1.圆的定义2.圆的性质3.圆的方程4.圆与直线的位置关系5.实际应用八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
1.圆的对称性(第一课时)教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是旋转对称图形和中心对称图形及圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.通过对圆的图形的认识,使学生认识新的几何图形的对称美,体会所体现出的完美性,培养学生美的感受,激发学习兴趣.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程一、情境导入:[师]前面我们已经学习过两种常见的几何图形,三角形、四边形.大家回忆一下我们是通过一些什么方法研究了它们的性质?[师]好!大家总结得很详细,今天我们继续运用这些方法来学习和研究小学已接触过的另一种常见的几何图形——圆.和三角形、四边形一样,圆的性质与应用同样需要通过轴反射、平移、旋转、推理证明等方法去学习和探究.二、自主学习:同学们以前画过圆,画一个圆很简单.将圆规的一个脚固定,另一个带有铅笔头的脚转一圈,一个圆就画出来了.固定的那一点称为圆心.所画得的圆圈叫圆周.从画圆的过程中可以看到,圆规两个脚之间的长度始终保持不变,也就是说圆心到圆周上任意一点的距离都相等.这是圆的一个重要而又最基本的性质.人们就是用圆的这种性质来制造车轮的,车轴总是安装在车轮的圆心位置上,这样,车轴到车轮边缘的距离处处相等.也就是说,车子在行进中,车轴离路面的距离总是一样的.车子在平路上行走较平稳,假如是方形的,车轴到路面的距离时大时小,车子就会产生颠簸.圆的定义:平面内到一定点的距离等于定长的所有点组成的图形叫做圆(circle).其中,定点称为圆心(Centre of a circle),定长称为半径(radius).以点O为圆心的圆记作⊙O,读作“圆O”.注意:确定一个圆需要两个要素,一是位置,二是大小.圆心确定其位置,半径确定其大小.只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定.只有圆心和半径都固定,圆才被唯一确定.问: 1.体育教师想利用一根3m长的绳子在操场上画一个半径为3m的圆,你能帮他想想办法吗?答:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈,B所经过的路径就是所希望的圆.小结:圆也可以看成平面内一动点绕一个定点旋转一周所形成的图形。
九年级数学湘教版圆这章的教案教案标题:九年级数学湘教版圆这章的教案教学目标:1. 理解圆的基本概念,包括圆心、半径、直径等。
2. 掌握圆的性质,如圆的内切、外切、相切等。
3. 能够应用圆的性质解决与圆相关的问题。
4. 培养学生的逻辑思维和问题解决能力。
教学准备:1. 教材:湘教版九年级数学教材。
2. 教具:圆规、直尺、图形纸、投影仪等。
3. 多媒体课件:包含圆的基本概念、性质和相关例题的多媒体课件。
4. 练习题:包含不同难度的练习题,以巩固学生对圆的理解和应用能力。
教学步骤:1. 导入(5分钟)通过展示一些有关圆的图片或视频,引起学生对圆的兴趣,并激发他们对圆的认知。
2. 知识讲解(15分钟)a. 介绍圆的基本概念,如圆心、半径、直径等,并通过多媒体课件进行图示解释。
b. 讲解圆的性质,如圆的内切、外切、相切等,并通过示意图和例题进行说明。
3. 概念理解(10分钟)a. 分组讨论:将学生分成小组,让他们用自己的话解释圆的基本概念和性质。
b. 随机抽取几组学生,让他们在黑板上进行概念的解释,进行互动讨论。
4. 练习与巩固(15分钟)a. 分发练习题,让学生在课堂上独立完成,然后互相交流答案。
b. 教师在黑板上解答练习题,并与学生一起讨论解题思路和方法。
5. 拓展应用(10分钟)a. 提供一些与圆相关的实际问题,让学生运用所学知识解决问题。
b. 鼓励学生提出自己的问题,并尝试用圆的性质进行解答。
6. 总结与归纳(5分钟)教师对本节课的重点内容进行总结,并强调学生在复习时需要重点关注的知识点。
7. 作业布置(5分钟)布置相关的作业,包括完成剩余的练习题和预习下一节课的内容。
教学评价:1. 在课堂上观察学生的参与度和回答问题的能力。
2. 批改学生的练习题,评价他们对圆的理解和应用能力。
3. 收集学生的作业,核对他们的完成情况,并提供必要的反馈和指导。
教学延伸:1. 鼓励学生参加数学竞赛,提升他们的数学思维和应用能力。
第三章圆【课标要求】(1)认识圆并掌握圆的有关概念和计算①知道圆由圆心与半径确定,了解圆的对称性.②通过图形直观识别圆的弦、弧、圆心角等基本元素.③利用圆的对称性探索弧、弦、圆心角之间的关系,并会进行简单计算和说理.④探索并了解圆周角与圆心角的关系、直径所对圆周角的特征.⑤掌握垂径定理及其推论,并能进行计算和说理.⑥了解三角形外心、三角形外接圆和圆内接三角形的概念.⑦掌握圆内接四边形的性质(2)点与圆的位置关系①能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系.②知道“不在同一直线上的三个点确定一个圆”并会作图.(3)直线与圆的位置关系①能根据圆心到直线的距离和半径的大小关系确定直线与圆的位置关系.②了解切线的概念.③能运用切线的性质进行简单计算和说理.④掌握切线的识别方法.⑤了解三角形内心、三角形内切圆和圆的外切三角形的概念.⑥能过圆上一点画圆的切线并能利用切线长定理进行简单的切线计算.(4)圆与圆的位置关系①了解圆与圆的五种位置关系及相应的数量关系.②能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系.③掌握两圆公切线的定义并能进行简单计算(5)圆中的计算问题①掌握弧长的计算公式,由弧长、半径、圆心角中已知两个量求第三个量.②掌握求扇形面积的两个计算公式,并灵活运用.③了解圆锥的高、母线等概念.④结合生活中的实例(模型)了解圆柱、圆锥的侧面展开图.⑤会求圆柱、圆锥的侧面积、全面积,并能结合实际问题加以应用.⑥能综合运用基本图形的面积公式求阴影部分面积.【知识回顾】1、知识脉络2、基础知识(1)掌握圆的有关性质和计算①弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.②垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.③在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.④圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角.(2)点与圆的位置关系①设点与圆心的距离为,圆的半径为,则点在圆外;点在圆上;点在圆内.②过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆.③三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系①设圆心到直线的距离为,圆的半径为,则直线与圆相离;直线与圆相切;直线与圆相交.②切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径.③切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线.到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线.④三角形的内心是三角形三条内角平分线的交点.三角形的内心到三角形三边的距离相等.⑤切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.⑥切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)圆与圆的位置关系①圆与圆的位置关系有五种:外离、外切、相交、内切、内含.设两圆心的距离为,两圆的半径为,则两圆外离两圆外切两圆相交两圆内切两圆内含②两个圆构成轴对称图形,连心线(经过两圆圆心的直线)是对称轴.由对称性知:两圆相切,连心线经过切点. 两圆相交,连心线垂直平分公共弦.③两圆公切线的定义:和两个圆都相切的直线叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线.两个圆在公切线两旁时,这样的公切线叫做内公切线.④公切线上两个切点的距离叫做公切线的长.(5)与圆有关的计算①弧长公式:扇形面积公式:(其中为圆心角的度数,为半径)②圆柱的侧面展开图是矩形.圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体.圆柱的侧面积=底面周长×高圆柱的全面积=侧面积+2×底面积③圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体.④圆锥的侧面积=×底面周长×母线;圆锥的全面积=侧面积+底面积3、能力要求例1 如图,AC为⊙O的直径,B、D、E都是⊙O上的点,求∠A+∠B +∠C的度数.【分析】由AC为直径,可以得出它所对的圆周角是直角,所以连结AE,这样将∠CAD(∠A)、∠C放在了△AEC中,而∠B与∠EAD是同弧所对的圆周角相等,这样问题迎刃而解.【解】连结AE∵AC是⊙O的直径∴∠AEC=90O∴∠CAD +∠EAD+∠C =90O∵∴∠B=∠EAD∴∠CAD +∠B+∠C =90O【说明】这里通过将∠B转化为∠EAD,从而使原本没有联系的∠A、∠B、∠C都在△AEC中,又利用“直径对直角”得到它们的和是90O.解题中一方面注意到了隐含条件“同弧所对的圆周角相等”,另一方面也注意到了将“特殊的弦”(直径)转化为“特殊的角”(直角),很好地体现了“转化”的思想方法.例2 △ABC中,AC=6,BC=8,∠C=90O,以点C为圆心,CA为半径的圆与AB 交于点D,求AD的长.【分析】圆中有关弦的计算问题通常利用垂径定理构造直角三角形求解,所以作CH⊥AB,这只要求出AH的长就能得出AD的长.【解】作CH⊥AB,垂足为H∵∠C=90O,AC=6,BC=8 ∴AB=10∵∠C=90O,CH⊥AB∴又∵AC=6,AB=10 ∴AH=3.6∵CH⊥AB∴AD=2AH∴AD=7.2答:AD的长为7.2.【说明】解决与弦有关的问题,往往需要构造垂径定理的基本图形——由半径、弦心距、弦的一半构成的直角三角形,它是解决此类问题的关键.定理的应用必须与所对应的基本图形相结合,教师在复习时要特别注重基本图形的掌握.例3 (1)如图,△ABC内接于⊙O,AB为直径,∠CAE=∠B,试说明AE与⊙O相切于点A.(2)在(1)中,若AB为非直径的弦,∠CAE=∠B,AE还与⊙O相切于点A吗?请说明理由.(1) (2)【分析】第(1)小题中,因为AB为直径,只要再说明∠BAE为直角即可.第(2)小题中,AB为非直径的弦,但可以转化为第(1)小题的情形.【解】(1)∵AB是⊙O的直径∴∠C=90O∴∠BAC+∠B=90O又∵∠CAE=∠B∴∠BAC+∠CAE =90O即∠BAE =90O∴AE与⊙O相切于点A.(2)连结AO并延长交⊙O于D,连结CD.∵AD是⊙O的直径∴∠ACD=90O∴∠D+∠CAD=90O又∵∠D=∠B∴∠B+∠CAD=90O又∵∠CAE =∠B∴∠CAE+∠CAD=90O即∠EAD =90O∴AE仍然与⊙O相切于点A.【说明】本题主要考查切线的识别方法.这里可以引导学生依据第(1)小题的特殊情况,大胆提出猜想,渗透“由特殊到一般”的数学思想方法,这对于学生的探索能力培养非常重要.例4 如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5.(1)若,求CD的长.(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留).【分析】图形中有“直径对直角”,这样就出现了“直角三角形及斜边上的高”的基本图形,求CD的长就转化为求DE的长.第(2)小题求扇形OAC的面积其关键是求∠AOD的度数,从而转化为求∠AOD的大小.【解】(1)∵AB是⊙O的直径,OD=5∴∠ADB=90°,AB=10又∵在Rt△ABD中,∴∵∠ADB=90°,AB⊥CD∴BD2=BE·AB CD= 2DE∵AB=10∴BE=在Rt△EBD中,由勾股定理得∴答:CD的长为.(2)∵AB是⊙O的直径,AB⊥CD∴∴∠BAD=∠CDB,∠AOC=∠AOD∵AO=DO∴∠BAD=∠ADO∴∠CDB=∠ADO设∠ADO=4k,则∠CDB=4k由∠ADO:∠EDO=4:1,则∠EDO=k∵∠ADO+∠EDO+∠EDB=90°∴得k=10°∴∠AOD=180°-(∠OAD+∠ADO)=100°∴∠AOC=∠AOD=100°则答:扇形OAC的面积为【说明】本题涉及到了圆中的重要定理、直角三角形的边角关系、扇形面积公式等知识点的综合,考查了学生对基本图形、基本定理的掌握程度.求DE长的方法很多,可以用射影定理、勾股定理,也可以运用面积关系来求,但都离不开“直角三角形及斜边上的高”这个基本图形.解题中也运用了比例问题中的设k法,同时也渗透了“转化”的思想方法.例5 半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4 : 3,点P在半圆AB上运动(不与A、B两点重合),过点C作CP的垂线,与PB的延长线交于点Q.(l)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到半圆AB的中点时,求CQ的长;(3) 当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.【分析】当点P与点C关于AB对称时,CP被直径垂直平分,由垂径定理求出CP的长,再由Rt△ACB∽Rt△PCQ,可求得CQ的长.当点P在半圆AB上运动时,虽然P、Q点的位置在变,但△PCQ始终与△ACB相似,点P运动到半圆AB的中点时,∠PCB=45O,作BE⊥PC于点E,CP=PE+EC.由于CP与CQ的比值不变,所以CP取得最大值时CQ也最大.【解】(l)当点P与点C关于AB对称时,CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=900.∴AB=5,AC:CA=4:3∴BC=4,AC=3S Rt△ACB=AC·BC=AB·CD∴∵在Rt△ACB和Rt△PCQ中,∠ACB=∠PCQ=900, ∠CAB=∠CPQ,∴Rt△ACB∽Rt△PCQ∴∴(2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E(如图).∵P是弧AB的中点,∴又∠CPB=∠CAB∴∠CPB= tan∠CAB=∴从而由(l)得,(3)点P在弧AB上运动时,恒有故PC最大时,CQ取到最大值.当PC过圆心O,即PC取最大值5时,CQ最大值为【说明】本题从点P在半圆AB上运动时的两个特殊位置的计算问题引申到求CQ的最大值,一方面渗透了“由特殊到一般”的思想方法,另一方面运用“运动变化”观点解决问题时,寻求变化中的不变性(题中的Rt△ACB∽Rt△PCQ)往往是解题的关键.【复习建议】①教材对圆的知识要求有了适当的降低,但教学中必须注重指导学生在较复杂的“背景”下分析出隐含的基本图形,或通过添加适当的辅助线,构造或分解基本图形.学会将较复杂问题转化为易解决问题.②对于常见的辅助线的添法,在解题中可以多加引导.③注意圆中一些隐含条件的作用.如:“同弧所对的圆周角相等”;“半径都相等”.④由特殊到一般、转化、方程、分类讨论等思想方法以及运动变化观点的渗透,在圆的综合问题中更能提高学生解决问题能力,在复习时应及时归纳并注重方法的指导.。
数学初三下湘教版第三章圆教案第一课时教学目标1、知识与技能:了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题、2、过程与方法:从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念、利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴、通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解、3、情感、态度与价值观:经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望、重难点、关键1、重点:垂径定理及其运用、2、难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题、教学过程【一】复习引入〔学生活动〕请同学口答下面两个问题〔提问【一】两个同学〕1、举出生活中的圆【三】四个、2、你能讲出形成圆的方法有多少种?【二】探索新知从以上圆的形成过程,我们可以得出:定义一:在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆、固定的端点O叫做圆心,线段OA叫做半径、以点O为圆心的圆,记作“⊙O”,读作“圆O”、定义二:圆心为O,半径为R的圆可以看成是所有到定点O的距离等于定长R的点组成的图形、同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图24-1线段AB;③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作AC”,读作“圆弧AC”或“弧AC”、大于半圆的弧〔如下图ABC叫做优弧,•小于半圆的弧〔如下图〕AC或BC叫做劣弧、④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆、〔学生活动〕请同学们回答下面两个问题、1、圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴?2、你是用什么方法解决上述问题的?与同伴进行交流、3、我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的、因此,我们可以得到:圆是轴对称图形,其对称轴是任意一条过圆心的直线、〔学生活动〕请同学按下面要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M 、〔1〕如图是轴对称图形吗?如果是,其对称轴是什么?〔2〕你能发现图中有哪些等量关系?说一说你理由、这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧、下面我们用逻辑思维给它证明一下::直径CD 、弦AB 且CD ⊥AB 垂足为M求证:AM =BM ,AC BC =,AD BD =.分析:要证AM =BM ,只要证AM 、BM 构成的两个三角形全等、因此,只要连结OA 、•OB 或AC 、BC 即可、证明: 进一步,我们还可以得到结论:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧、〔此题的证明作为课后练习〕例1、如图,一条公路的转弯处是一段圆弦〔即图中CD ,点O 是CD 的圆心,•其中CD =600M ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF =90M ,求这段弯路的半径、分析:例1解决几何问题即几何代数解的数学思想方法一定要掌握、 【三】巩固练习教材P61 练习 、【四】应用拓展 例2、有一石拱桥的桥拱是圆弧形,如图24-5所示,,水面到拱顶距离CD =18M ,当洪水泛滥时,水面宽MN =32M 请说明理由、分析:要求当洪水到来时,水面宽MN =32M•是否需要采取紧急措施,•只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R 、【五】归纳小结〔学生归纳,老师点评〕本节课应掌握:1、圆的有关概念;2、圆是轴对称图形,任何一条直径所在直线都是它的对称轴、3、垂径定理及其推论以及它们的应用、六、布置作业3.1 圆(第2课时)教学内容1、圆心角的概念、2、有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等、3、定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等、在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等、教学目标1、知识与技能了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用、2、过程与方法通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题、3、情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望、重难点、关键1、重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用、2、难点与关键:探索定理和推导及其应用、教学过程【一】复习引入〔学生活动〕请同学们完成下题、△OAB,如下图,作出绕O点旋转30°、45°、60°的图形、A Array BO【二】探索新知如下图,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角、如下图的⊙O中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?B '发现:在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等、在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作、'A '(1) (2)你能发现哪些等量关系?说一说你的理由?我能发现:AB =''A B ,AB =A /B /、现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等、同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等、在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等、例1、如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF 、 〔1〕如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?〔2〕如果OE =OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?D【三】巩固练习教材P63 练习、【四】应用拓展例2、如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM、〔1〕由以上条件,你认为AB和CD大小关系是什么,请说明理由、〔2〕假设交点P在⊙O的外部,上述结论是否成立?假设成立,加以证明;假设不成立,请说明理由、NP(3)(4)【五】归纳总结〔学生归纳,老师点评〕本节课应掌握:1、圆心角概念、2、在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用、六、布置作业七、教学反思3.1 .2圆教学内容1、圆周角的概念、2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半、推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用、教学目标1、知识与技能、了解圆周角的概念、2、过程与方法:理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半、理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径、熟练掌握圆周角的定理及其推理的灵活运用、3、情感、态度与价值观A 经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望、设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题、重难点、关键1、重点:圆周角的定理、圆周角的定理的推导及运用它们解题、2、难点:运用数学分类思想证明圆周角的定理、3、关键:探究圆周角的定理的存在、 教学过程 【一】复习引入 〔学生活动〕请同学们口答下面两个问题、1、什么叫圆心角?2、圆心角、弦、弧之间有什么内在联系呢?老师点评:〔1〕我们把顶点在圆心的角叫圆心角 〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等、【二】探索新知问题:如下图的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如下图的A 、B 、C 点、通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角、现在通过圆周角的概念和度量的方法回答下面的问题、 1、一个弧上所对的圆周角的个数有多少个?2、同弧所对的圆周角的度数是否发生变化?3、同弧上的圆周角与圆心角有什么关系? 〔学生分组讨论〕提问【二】三位同学代表发言 〔2〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC =12∠AOC 吗?请同学们独立完成这道题的说明过程、老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD =2∠ABO ,∠DOC =2∠CBO ,因此∠AOC =2∠ABC 、〔3〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC =12∠AOC 吗?请同学们独立完成证明、现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的、从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、C 进一步,我们还可以得到下面的推导:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径、 下面,我们通过这个定理和推论来解一些题目、例1、如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC =AB ,BD 与CD 的大小有什么关系?为什么?分析:BD =CD ,因为AB =AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可、【三】巩固练习1、教材P65 动脑筋、2、教材P66 练习、【四】应用拓展 例2、如图,△ABC 内接于⊙O ,∠A 、∠B A ,B ,C ,⊙O 半径为R ,求证:sin a A =sin b B =sin cC =2R 、 【五】归纳小结〔学生归纳,老师点评〕本节课应掌握:六、布置作业1、圆周角的概念;2、圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3、半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径、4、应用圆周角的定理及其推导解决一些具体问题、六、布置作业七:教学反思3.1.3与圆有关的位置关系(第1课时)教学目标1、知识与技能、理解并掌握设⊙O 的半径为R ,点P 到圆心的距离OP =D ,那么有:点P 在圆外⇔D 》R ;点P 在圆上⇔D =R ;点P 在圆内⇔D 《R 及其运用、2、过程与方法:理解不在同一直线上的三个点确定一个圆并掌握它的运用、了解三角形的外接圆和三角形外心的概念、了解反证法的证明思想、3、情感、态度与价值观:经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望、复习圆的两种定理和形成过程,并经历探究一个点、两个点、•三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆、接下去从这三点到圆心的距离逐渐引入点P•到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题、重难点、关键1、•重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用、2、难点:讲授反证法的证明思路、3、关键:由一点、二点、三点、•四点作圆开始导出不在同一直线上的三个点确定一个圆、教学过程【一】复习引入〔学生活动〕请同学们口答下面的问题、1、圆的两种定义是什么?2、你能至少举例两个说明圆是如何形成的?3、圆形成后圆上这些点到圆心的距离如何?4、如果在圆外有一点呢?圆内呢?请你画图想一想、【二】探索新知由上面的画图以及所学知识,我们可知:设⊙O的半径为R,点P到圆心的距离为OP=D那么有:点P在圆外⇒D》R 点P在圆上⇒D=R 点P在圆内⇒D《R反过来,也十分明显,如果D》R⇒点P在圆外;如果D=R⇒点P在圆上;如果D《R⇒点P在圆内、因此,我们可以得到:下面,我们接下去研究确定圆的条件:〔学生活动〕经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆、〔1〕作圆,使该圆经过点A,你能作出几个这样的圆?〔2〕作圆,使该圆经过点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?〔3〕作圆,使该圆经过点A、B、C三点〔其中A、B、C三点不在同一直线上〕,•你是如何做的?你能作出几个这样的圆?老师在黑板上演示:〔1〕无数多个圆,如图1所示、〔2〕连结A、B,作AB的垂直平分线,那么垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个、其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示、lBAA(1)(2)(3)〔3〕作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;l m BA C ED OF ③以O 为圆心,以OA 为半径作圆,⊙O 就是所要求作的圆,如图3所示、在上面的作图过程中,因为直线DE 与FG 只有一个交点O ,并且点O 到A 、B 、C•三个点的距离相等〔中垂线上的任一点到两边的距离相等〕,所以经过A 、B 、C 三点可以作一个圆,并且只能作一个圆、即:不在同一直线上的三个点确定一个圆、也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆、 外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心、 下面我们来证明:经过同一条直线上的三个点不能作出一个圆、证明:如图,假设过同一直线L 上的A 、B 、C 三点可以作一个圆,设这个圆的圆心为P ,那么点P 既在线段AB 的垂直平分线L1,又在线段BC 的垂直平分线L2,•即点P 为L1与L2点,而L1⊥L ,L2⊥L ,这与我们以前所学的“过一点有且只有一条直线与直线垂直”矛盾、所以,过同一直线上的三点不能作圆、 上面的证明方法与我们前面所学的证明方法思路不同,它不以作一个圆〕,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立、这种证明方法叫做反证法、在某些情景下,反证法是很有效的证明方法、例1、某地出土一明代残破圆形瓷盘,如下图、为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心、作法:〔1〕在残缺的圆盘上任取三点连结成两条线段;〔2〕作两线段的中垂线,相交于一点、那么O 就为所求的圆心、【三】巩固练习教材P69练习、【四】应用拓展例2、如图,梯形ABCD 中,AB ∥CD ,AD =BC ,AB =48CM ,CD =30CM ,高27CM ,求作一个圆经过A 、B 、C 、D 四点,写出作法并求出这圆的半径〔比例尺1:10〕分析:要求作一个圆经过A 、B 、C 、D 四个点,应该先选三个点确定一个圆,•然后证明第四点也在圆上即可、要求半径就是求OC 或OA 或OB ,因此,•要在直角三角形中进行,不妨设在RT △EOC 中,设OF =X ,那么OE =27-X 由OC =OB 便可列出,•这种方法是几何代数解、作法分别作DC 、AD 的中垂线L 、M ,那么交点O 为所求△ADC 的外接圆圆心、 ∵ABCD 为等腰梯形,L 为其对称轴∵OB =OA ,∴点B 也在⊙O 上 ∴⊙O 为等腰梯形ABCD 的外接圆 设OE =X ,那么OF =27-X ,∵OC =OB解得:X =20∴OC25,即半径为25M 、【五】归纳总结〔学生总结,老师点评〕本节课应掌握:点和圆的位置关系:设⊙O 的半径为R ,点P 到圆心的距离为D ,那么;;.P d r P d r P d r ⇔>⎧⎪⇔=⎨⎪⇔<⎩点在圆外点在圆上点在圆内2、不在同一直线上的三个点确定一个圆、3、三角形外接圆和三角形外心的概念、4、反证法的证明思想、5、以上内容的应用、六、布置作业七、教学反思:3.2.1点、直线与圆的位置关系点与圆的位置关系教学目标:掌握点与圆的位置关系。
湘教版九年级下册数学《圆》教案【教学目标】1.经历形成圆的概念的过程,经历探索点与圆的位置关系的过程.2.理解圆的概念,理解点与圆的位置关系.3.经历由生活现象揭示其数学本质的过程,培养抽象思维和归纳概括的能力.4.经历探索点与圆的位置关系的过程,让学生体会定量分析对图形性质的判定方法. 【教学重难点】对圆的形成过程的理解,探索点与圆的位置关系的过程.【教学过程】一.情景引入:让学生通过观察图片,找出存在的平面图形,即圆形,圆代表着团圆,和谐,圆满,圆是平面图形中较完美的图形,让我们一起走进圆的世界,探索圆的奥秘.二.新知探究:问题一:圆的形成.请同学们在练习本上画一个圆,并思考下列问题:(1)画圆的工具是什么?.(2)画圆的要素是什么?.(3)圆是怎样形成的?(给学生3分钟的画图和思考的时间,然后老师引导学生完成上面的三个问题)总结:在平面内,圆可以看成是到的距离等于的所有点组成的图形,就是圆心,就是半径.根据圆的定义思考下面的一个游戏:如图所示,一些学生正在做投圈游戏,他们的投圈目标都是图中的小车,他们呈“一”字排开.这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?问题二:圆的相关概念结合图形,让学生理解下列圆的有关概念:(1)弦:,直径:.(2)弧:,半圆:优弧:,劣弧:(3)等圆:,等弧:(为了加深对这些概念的理解,紧接着让学生完成下面的选择题)跟踪练习:下列命题正确的是()A.直径不是弦B.长度相等的弧是等弧C.圆上两点间的部分叫做弦D.大小不等的圆中不存在等弧问题三:点与圆的位置关系想一想:已知⊙O是一个半径为r的圆,在圆内、圆外、圆上分别取一点,点到圆心的距离为d,你能用r与d的大小关系刻画它们的位置特征吗?点在圆内 d r 点在圆上 d r点在圆外 d r(让学生结合图形说出上面的结论,老师加以强调两者之间的相互转化,并通过以下的练习加深对点与圆的位置关系的理解.)跟踪练习:已知⊙O的面积为9π,请根据点与圆的位置关系完成下列各题.(1)若PO=4.5,则点P在;(2)若PO=2,则点P在;(3)若PO= ,则点P在圆上.(为了能够灵活应用所学知识和调动学生的积极性,让学生参与其中,对于下面这道题就可以师生互动,在这道题的基础上可以让学生自己提出一些问题.)想一想:老师站在教室的这里,我要让小明同学与我的距离为1m,那么他应该站在哪里呢?如果小明离我的距离大于1m,他应该站哪里呢?小于1m呢?请同学们通过画图来说明.三.盘点收获,总结反思通过本节课的学习,我最大的收获是.感到自己有待加强的是.(让学生自己来总结出本节课的知识点,并说出自己存在的疑惑或者有待加强的地方.)四.尝试练习,达标检测(为了检测学生对本节课的学习效果,让学生先独立完成下面的三个问题,如果时间允许就课堂解决,否则就课下交流.)1.判断:(1)直径是弧()(2)过圆心的线段是直径()(3)优弧一定大于劣弧()(4)周长相等的两个圆是等圆()(5)长度相等的两条弧是等弧()2.画图:已知Rt△ABC,AB<BC,∠B=90°,试以点B为圆心,BA为半径画圆.根据图形回答下列问题:Rt△ABC的各个顶点与⊙B在位置上有什么关系?3.车轮为什么做成圆的?阐述一下你的观点.五.板书设计:3.1圆1.圆的形成2.圆的有关概念3.点与圆的位置关系。
3.1.2 圆周角教学目标(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想. 教学过程一、讲解圆周角回忆圆心角,引出圆周角;观察下图,找出圆周角思考:① 请同学考虑一条弦所对的圆周角有几个;② 画出直径所对的圆周角,并试着找出直径所对的圆周角的特殊性结论:① 半圆或直径所对的圆周角都相等,都等于90º(直角)② 90º的圆周角所对的弦是圆的直径二、讲解等弧圆周角的关系以及同弧(等弧)所圆周角与圆心角之间的关系。
请同学们各自画一条弧的圆心角和圆周角,分别测量两种角的度数,并找出两种角的关系。
(分三种情况给以说明,得出结论)结论:在同一圆内,同弧(等弧)所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等。
三、知识巩固例1、这是一个圆形零件,你能找到它的圆心位置吗?你有什么简捷的方法?B A例2、已知AB 为⊙O 的直径,C 为⊙O 外一点,BC 交⊙O 于E ,AC 交⊙O 于D ,∠DOE=60º,求∠C 的度数。
四 随堂练习:如图,CD 是⊙O 的直径,,∠BAC=45°,求BC 的长度。
五 课堂小结:知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题AB。
3.1 圆(第2课时)
教学内容
1.圆心角、弧的有关定义.
2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
3.定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
教学目标
了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.
通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键
1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.
2.难点与关键:探索定理和推导及其应用.
教学过程
Ⅰ.知识回顾,引入新课
昨天我们学了圆的哪些知识?
Ⅱ.讲授新课
下面,我们在昨天的基础上来认识一下弧、圆心角这些与圆有关的概念.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).
如下图,以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”
注意:
1.弧包括优弧(major arc)和劣弧(minor arc),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧用三个大
写字母表示⌒ACD(记作
ACD),劣弧用两个大写字母表示AD(记作AD).半圆:
圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆也用三个大写字母表示.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.
2.认识圆心角:观察教室内的石英钟的时针、分针、秒针所成的角度的特点。
3、圆心角、弧、弦之间相等关系定理.
[师]同学们请观察老师手中的两个圆有什么特点?
[生]大小一样.
[师]现在老师把这两个圆叠在一起,使它俩重合,将圆心固定.
将上面这个圆旋转任意一个角度,两个圆还重合吗?
[生]重合.
[师]通过旋转的方法我们知道:圆是旋转对称图形.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.圆的中心对称性是其旋转不变性的特例.即圆是中心对称图形,对称中心为圆心.
[师生共析]我们在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O'A'重合时,由于∠AOB=∠A'O'B'.这样便得到半径OB与O'B'重合.因为点A和点A'重合,点B和点B'重合,所以
和重合,弦AB与弦A'B'重合,即,AB=A'B'.[师]在上述操作过程中,你会得出什么结论?
[生]在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
[师]同学做得很好,这就是我们通过实验利用圆的旋转不变性探索到的圆的另一个特性:圆心角、弧、弦之间相等关系定理.
下面,我们一起来看一看命题的证明.
教师板书
如上图所示,已知:⊙O 和⊙O '是两个半径相等的圆,∠AOB =∠A 'O 'B '. 求证:,AB =A 'B '.
证明:将⊙O 和⊙O '叠合在一起,固定圆心,将其中的一个圆旋转,一个角度,使得半径OA 与O 'A '重合,∵∠AOB =∠A 'O 'B ',
∴半径OB 与O 'B '重合.
∵点A 与点A '重合,点B 与点B '重合, ∴与重合,弦AB 与弦A 'B '重合. ∴,AB =A 'B '.
于是得到下面的定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
(用因为、所以的几何语言来表达)
注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.
[师](通过举反例强化对定理的理解)请同学们画一个只能是圆心角相等的这个条件的图.
[生]如下图示,虽然∠AOB =∠A 'O 'B ',但AB ≠A 'B ',
下面我们共同想一想.
[师]如果我们把两个圆心角用①表示;两条弧用②表示;两条弦用③表示.我们就可以得出这样的结论: ⎫⎧⇒⎬⎨⎩⎭在同圆或等圆中②也相等③
①相等 如果在同圆或等圆这个前提下.将题设和结论中任何一项交换一下,结论正确吗?你是怎么想的?请你说一说.(同学们互相交流、讨论)
[生甲]如果将上述题设①和结论②换一下,结论仍正确.可以通过旋转法或叠合法得到证明.
[生乙]如果将上述题设①和结论③互换一下,结论也正确,可以通过证明全等或叠合法得到.
[师]好,通过上面的探索,你得到了什么结论?
[生]在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.
(用因为、所以的几何语言来表达)
注意:(1)不能忽略“在同圆或等圆中”这个前提条件,否则,丢掉这个前提,虽然圆心角相等,但所对的弧、弦、弦心距不一定相等.
(2)此定理中的“弧”一般指劣弧.
(3)要结合图形深刻体会圆心角、弧、弦、弦心距这四个概念和“所对”一词的含义.否则易错用此关系.
(4)在具体应用上述定理解决问题时,可根据需要,择其有关部分.如“在同圆中,等弧所对的圆心角相等”“在等圆中,弦心距相等的弦相等”等等.
例如,下图中的∠1=∠2,有的同学认为∠1对AD ,∠2对BC ,就推出了AD =BC ,显然这是错误的,因为AD 、BC 不是“等圆心角对等弦”的弦.
4、回顾:
问:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .
(1)如图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?说一说你理由.
(老师点评)(1)是轴对称图形,其对称轴是CD .
(2)AM=BM ,即直径CD 平分弦AB .
这样,我们就得到下面的定理:
还有什么相等?
(用因为、所以的几何语言来表达)
5、证明:圆的两条平行弦所夹的弧相等。
理由:如下图示,过圆心O作垂直于弦的直径EF,由垂径定理设=,
=,用等量减等量差相等,得-=-,即=,故结论成立.
符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.
Ⅲ.课时小结
[师]通过这一节的学习,在得出本节结论的过程中,回忆一下我们使用了哪些研究图形的方法?(同学们之间相互讨论、归纳)
Ⅳ.课后作业。