分类加法计数原理与分步乘法计数原理(一)
- 格式:doc
- 大小:25.50 KB
- 文档页数:4
龙源期刊网
分类加法计数原理与分步乘法计数原理
作者:廖军
来源:《数学金刊·高考版》2014年第02期
分类加法计数原理与分步乘法计数原理是学习概率统计的基础,在高考中占有特殊的地位,大多以选择题和填空题的形式出现,有时与概率统计知识综合出现在解答题中,主要考查基础知识、基本运算与思维能力,难度不大,多为送分题.
重点难点
重点:理解分类加法计数原理与分步乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的问题.
难点:分类加法计数原理与分步乘法计数原理的区别.
方法突破
(1)正确使用两个原理,注意两者的区别:分类加法计数原理与分类有关,各种方法相互独立,用其中任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成了.
(2)使用两个原理时,要注意以下问题:①分类要做到“不重不漏”,分类后再分别对每
一类进行计数,最后用分类加法计数原理求和,得到总数;②分步要做到“步骤完整”,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
点评两个计数原理的混合应用是学习的难点,注意分类讨论思想的不重不漏原则.。
第一章计数原理1.1分类加法计数原理与分步乘法计数原理(1)一、选择题1.某小组有8名男生,6名女生,要从中选出一名当组长,不同的选法有() A.48种B.24种C.14种D.12种解析:由分类加法计数原理共有8+6=14(种)选法.答案:C2.将1,2,3,…,9这9个数字填入如图所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法有()A.6种B.12种C.18种D.24种解析:根据题意,1,2,9的位置是确定的,如图所示,则数字5,6,7,8应位于a,b,c,d中的位置.第一类,若5,6在a,b位置,则7,8在c,d位置.且a=5, b=6, c=7, d =8, 或者5,6与7,8换位置,所以共2种情况;第二类,5,6在a,c位置,则7,8在b,d位置,则共有2×2=4(种)情况.综上所述,空格的填写方法共2+4=6(种),故选A.答案:A3.(2019·长沙高二检测)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10解析:对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13.故选B.答案:B4.(2020·天津市南开中学滨海生态城学校高二期中)4名同学分别报名参加学校的手工、绘画、机器人设计三个校本课程,每人限报其中一个课程,不同报法的种数是()A.81 B.64C.24 D.16解析:∵每名同学都有3种报名方案,∴四名同学共有3×3×3×3=81种报名方案.故选A.答案:A5.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种解析:第一步,先从4个盒子中选一个盒子准备装两个球,有4种选法;第二步,从5个球里选出两个球放入刚才选到的盒子里,有10种选法;第三步,把剩下的3个球依次放入余下的3个盒子中,有3×2×1=6(种)放法.由分步乘法原理得不同的放球方法有4×10×6=240(种),故选C.答案:C二、填空题6.十字路口来往的车辆,如果不允许回头,共有________种行车路线.解析:若从西来,有南、北、东3种行车路线,同理从南、北、东来也各有3种行车路线.因此共有3+3+3+3=12种.答案:127.等腰三角形的三边均为正整数,且其周长不大于10,这样的三角形共有________个.解析:可分4类,第一类,等腰三角形底边长为1,腰长可以是1,2,3,4,共4个;第二类,等腰三角形底边长是2,腰长可以是2,3,4,共3个;第三类,等腰三角形底边长是3,腰长可以是2,3,共2个;第四类,等腰三角形底边长是4,腰长可以是3,共1个.∴共有三角形4+3+2+1=10(个).答案:108.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法有________种(用数字填空).解析:先把A,B放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D在同一盒中,只能是余下的1个盒,1种放法;若C,D在不同盒中,则必有一球在余下的1个盒中,另一球在A球或B球所在的盒中,有2×2=4(种)放法.故共有6×(1+4)=30(种)放法.答案:30三、解答题9.(2020·唐山市第十一中学高二期中)某班有男生28名、女生20名,从该班选出学生代表参加校学代会.(1)若学校分配给该班1名代表,则有多少种不同的选法?(2)若学校分配给该班2名代表,且男、女生代表各1名,则有多少种不同的选法?解:(1)选出1名代表,可以选男生,也可以选女生,因此完成“选1名代表”这件事分2类:第1类,从男生中选出1名代表,有28种不同方法;第2类,从女生中选出1名代表,有20种不同方法;根据分类加法计数原理,共有28+20=48种不同的选法.(2)完成“选出男、女生代表各1名”这件事,可以分2步完成:第1步,选1名男生代表,有28种不同方法;第2步,选1名女生代表,有20种不同方法.根据分步乘法计数原理,共有28×20=560种不同的选法.10.(2020·宜昌市第二中学高二月考)已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数?(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?解:(1)因为a不能取0,所以有5种取法,b有6种取法,c有6种取法,所以y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a不能取小于等于0的数,所以a有2种取法,b有6种取法,c有6种取法,所以y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.。
第01课时
1.1.1 分类加法计数原理与分步乘法计数原理(一)
学习目标
1.理解分类加法计数原理与分步乘法计数原理;2.会利用两个原理分析和解决简单的应用问题.
学习过程
一、学前准备
阅读课本P1内容,知道:(1)现实生活中的计数问题普遍存在的;(2)计算问题的思路;(3)明确本章学习的主要内容。
二、新课导学
◆探究新知(预习教材P2~P6,找出疑惑之处)
问题1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?你能说说这个问题的特征吗?
问题2:用前6个大写英文字母和九个阿拉伯数字,以的方式给教室里的座位编号,总共能编出多少个不同的号码?你能说说这个问题的特征吗?
◆应用示例
例1.(课本P2例1)在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:
A大学B大学
生物学数学
化学会计学
医学信息技术学
物理学法学
工程学
如果这名同学只能选一个专业,那么他共有多少
种选择呢?
例2. (课本P4例2)设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?
例3. (课本P5例3)书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.
(1)从书架中任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
例4. (课本P5例4) 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?
◆反馈练习
1.(课本P6练1)填空:
( 1 )一件工作可以用2 种方法完成,有5 人只会用第1 种方法完成,另有4 人只会用第2 种方法完成,从中选出l 人来完成这件工作,不同选法的种数是; ( 2 )从A 村去B 村的道路有3 条,从B 村去C 村的道路有2 条,从A 村经B村到C村
的路线有条.
2.(课本P6练3)在例1中,如果数学也是A 大学的强项专业,则A 大学共有6 个专业可以选择,B 大学共有4个专业可以选择,那么用分类加法计数原理,得到这名同学可能的专业选择共有6 + 4 = 10 (种) . 这种算法有什么问题?
学习评价
1.从甲地到乙地每天有直达班车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地,不同的乘车法有( )
A.12种
B.19种
C.32种
D.60种
2.若x∈{1,2,3},y∈{5,7,9},则的不同值有( )
A.2个
B.6个
C.9个
D.3个
3.某同学逛书店,发现三本喜欢的书,决定至少买其中一本,则购买方案有( )
A.3种
B.6种
C.7种
D.9种
课后作业
1.(课本P6练2)现有高一年级的学生3 名,高二年级的学生5 名,高三年级的学生4 名.( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?
( 2 )从3 个年级的学生中各选1 人参加接待外宾的活动,有多少种不同的选法?
2.(课本P12A1)一个商店销售某种型号的电视机,其中本地的产品有4种,外地的产品有7种,要买1台这种型号的电视机,有多少种不同的选法?
3.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?
高二数学创优课教案
高中二年级《数学》选修2-3第一章:计数原理
§1.1分类加法计数原理和分步乘法计数原理(第二课时)
教材地位:
分类计数原理和分步计数原作用并不限于用来推导排列数、组合数公式,实际上其解决问题的思想方法贯穿在整个学习的始终:当将一个较复杂的问题通过分类
进行分解时,用的是加法原理;当将它通过分步进行分解时,用的是乘法原理由于其思想方法独特,它也是培养和发展抽象思维能力和逻辑思维能力的好素材。
教材作用:
分类计数原理和分步计数原理是解决计数问题的最基本、最重要的方法。
它起到承前启后的作用:它可以弥补列举法一一数出这个数的不足,使其计数时更加灵活,同时又为研究排列与组合,运用归纳法导出排列数公式与组合数公式,并提出组合数的两个性质,以简化组合数的计算和为推导二项式定理作好铺垫。
一、教学目标:
1、知识与技能:
(1)进一步熟悉分类计数原理与分步计数原理的内容.
(2)归纳总结分类或分步标准的确定.
(3)正确运用两个基本原理分析、解决一些实际应用题.
(4)了解基本原理在实际生产、生活中的应用.
2、过程与方法:
(1)通过对分类计数原理与分步计数原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力.。
教学内容
两个原理的复习
1、分类计数原理和分步计数原理的概念
①分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有
N=m1+m2+…+mn种不同的方法.
②分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有mn种不同的方法.那么完成这件事共有
N=m1×m2×…×mn种不同的方法.
2、分类计数原理和分步计数原理的共同点是什么?不同点什么?
共同点是:它们都是研究完成一件事情,共有多少种不同的方法.
不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,即任何一类办法中的任何一个方法都能完成这件事.
分步计数原理是“分步完成”,即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情.
3.何时用分类计数原理、分步计数原理呢?
完成一件事情有n类方法,若每一类方法中的任何一种方法均能将这件事情从头至尾完成,则计算完成这件事情的方法总数用分类计数原理.
完成一件事情有n个步骤,若每一步的任何一种方法只能完成这件事的一部分,并且必须且只需完成互相独立的这n步后,才能完成这件事,则计算完成这件事的方法总数用分步计数原理.
教学内容。