人教版九年级上第二十二章二次函数章末检测题(A)含答案
- 格式:doc
- 大小:405.50 KB
- 文档页数:8
第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A . y=(x +2)2﹣5 B . y=(x +2)2+5 C . y=(x ﹣2)2﹣5 D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12 D . 14或34 6.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表: x … ,1 0 1 2 2.5 3 4 … y 1 … 0 m 1 ,8 n 1 ,8.75 ,8 ,5 … y 2…5m 2,11n 2,12.5,11,5…则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc <0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数. 2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣b<1,2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.5.A【解析】【分析】首先根据题意确定a,b的符号,然后进一步确定a的取值范围,根据a,b为整数确定a,b的值,从而确定答案.【详解】,0,a+b,2=0,依题意知a,0,b2a故b,0,且b=2,a,a,b=a,,2,a,=2a,2,于是0,a,2,∴,2,2a,2,2,又a,b为整数,∴2a,2=,1,0,1, 故a=12,1,32,b=32,1,12,∴ab=34或1,故选A, 【点睛】根据开口和对称轴可以得到b 的范围。
第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
第二十二章《二次函数》章末检测题一.选择题(共10小题)1.对于二次函数y=a(x+k)2+k(a≠0)而言,无论k取何实数,其图象的顶点都在()A.x轴上B.直线y=x上C.y轴上D.直线y=﹣x上2.若抛物线y=x2先向左平移2个单位长度,再向下平移3个单位长度,则所得到的新抛物线的解析式时()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3 3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c ﹣m=0没有实数根,有下列结论:①abc<0;②m<﹣2;③b2﹣4ac<0;④b2﹣4ac﹣8a=0.其中正确的有()A.1 个B.2个C.3个D.4个4.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),有下列结论:①2a+b=0,②abc>0;③方程ax2+bx+c=3有两个相等的实数根,④当y<0时,﹣2<x<4,其中正确的是()A.②③B.①③C.①③④D.①②③④5.如图,是二次函数y=ax2+bx+c的图象,①abc>0;②a+b+c<0;③4a﹣2b+c<0;④4ac ﹣b2<0,其中正确结论的序号是()A.①②③B.①③C.②④D.③④6.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=;③当x=0时,y2﹣y1=6;④AB+AC=10;⑤y1最小﹣y2最小=﹣4,其中正确结论的是()A.①②③④B.②③④C.①②③④⑤D.①②④⑤7.已知二次函数y=kx2﹣6x﹣9的图象与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k>﹣1且k≠0C.k≥﹣1 D.k≥﹣1且k≠0 8.在同一坐标系中,二次函数y=ax2+bx+c(b>0)与一次函数y=ax+c的大致图象可能是()A.B.C.D.9.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,(a>b),x1、x2是此方程的两个实数根,且x1<x2.现给出四个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2;④x1<x2<b<a其中正确结论个数是()A.1 B.2 C.3 D.410.如图,抛物线与x轴交于A(﹣3,0),B(1,0),与y轴交于点C(0,3),连结AC,现有一宽度为1,长度足够的矩形沿x轴方向平移,交直线AC于点D和E,△ODE周长的最小值为()A.2+B.6 C.2D.2+3二.填空题(共6小题)11.已知函数y=x2﹣4x+m的图象与x轴只有一个交点,则m的值为.12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),该抛物线的部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当x<0时,y随x增大而减小;⑤点P(m,n)是抛物线上任意一点,则m(am+b)≤a+b,其中正确的结论是.(把你认为正确的结论的序号填写在横线上)13.已知抛物线y=x2+kx+4﹣k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.14.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是.15.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=v0t﹣gt2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面m.16.如图,在平面直角坐标系中,抛物线y=x与直线y=交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:.三.解答题(共6小题)17.已知二次函数y=﹣x2+2x.(1)在给定的平面直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.18.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.19.进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?20.如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.21.已知二次函数y=ax2+bx+c,当x=3时,y有最小值﹣4,且图象经过点(﹣1,12).(1)求此二次函数的解析式;(2)该抛物线交x轴于点A,B(点A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求P A+PC的最小值,并求当P A+PC取最小值时点P的坐标.22.如图,矩形OABC在平面直角坐标系中,点A在x轴正半轴,点C在y轴正半轴,OA=4,OC=3,抛物线经过O,A两点且顶点在BC边上,与直线AC交于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.D.2.B.3.B.4.B.5.D.6.D.7.B.8.A.9.B.10.A.二.填空题11.412.①②⑤.13.24.14.﹣2.15.716.P1(,),P2(,),P3(,).三.解答题17.解:(1)函数图象如图所示;(2)当y<0时,x的取值范围:x<0或x>2;(3)∵图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,∴平移后的二次函数图象的顶点坐标为(﹣2,0),∴平移后图象所对应的函数关系式为:y=(x+2)2.(或y=﹣x2﹣4x﹣4)18.解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=﹣×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时,=,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时,=,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).19.解:(1)由题意可得,y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤40),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000的二次项系数﹣5<0,顶点的横坐标为:x=,30≤x≤40∴当x<45时,w随x的增大而增大,∴x=40时,w取得最大值,w=﹣5×402+450×40﹣7000=3000,即当售价x(元/包)定为40元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是3000元.20.解:(1)由已知可得∠A′OE=60°,A′E=AE,由A′E∥x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=b,OE=2b,b+2b=2+,所以b=1,A′、E的坐标分别是(0,1)与(,1).(2)因为A′、E在抛物线上,所以,所以,函数关系式为y=﹣x2+x+1,由﹣x2+x+1=0,得x1=﹣,x2=2,与x轴的两个交点坐标分别是(,0)与(,0).(3)不可能使△A′EF成为直角三角形.∵∠F A′E=∠F AE=60°,若△A′EF成为直角三角形,只能是∠A′EF=90°或∠A′FE=90°若∠A′EF=90°,利用对称性,则∠AEF=90°,A、E、A三点共线,O与A重合,与已知矛盾;同理若∠A′FE=90°也不可能,所以不能使△A′EF成为直角三角形.21.解:(1)∵当x=3时,y有最小值﹣4,∴设二次函数解析式为y=a(x﹣3)2﹣4.∵二次函数图象经过点(﹣1,12),∴12=16a﹣4,∴a=1,∴二次函数的解析式为y=(x﹣3)2﹣4=x2﹣6x+5.(2)当y=0时,有x2﹣6x+5=0,解得:x1=1,x2=5,∴点A的坐标为(1,0),点B的坐标为(5,0);当x=0时,y=x2﹣6x+5=5,∴点C的坐标为(0,5).连接BC交抛物线对称轴于点P,此时P A+PC取最小值,最小值为BC,如图所示.设直线BC的解析式为y=mx+n(m≠0),将B(5,0)、C(0,5)代入y=mx+n,得:,解得:,∴直线BC的解析式为y=﹣x+5.∵B(5,0)、C(0,5),∴BC=5.∵当x=3时,y=﹣x+5=2,∴当点P的坐标为(3,2)时,P A+PC取最小值,最小值为5.22.解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).。
人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
人教版九年级上册第22章《二次函数》章末复习卷一、选择题1.函数的图象是抛物线,则的值( ) A .4 B .-4 C .2 D .-22.抛物线y =3x 2﹣6x +4的顶点坐标是( )A .(1,1)B .(﹣1,1)C .(﹣1,﹣2)D .(1,2)3.抛物线y =3x 2向右平移一个单位得到的抛物线是( )A .y =3x 2+1B .y =3x 2﹣1C .y =3(x+1)2D .y =3(x ﹣1)2 4.抛物线y =x 2﹣5x +6与x 轴的交点情况是( )A .有两个交点B .只有一个交点C .没有交点D .无法判断5.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D . 6.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟7.已知二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①ac <0,②b ﹣2a <0,③b 2﹣4ac <0,④a ﹣b +c <0,正确的是( ) www .czsx .com .cnA .①②B .①④C .②③D .②④8.对于下列结论:①二次函数y =6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a ≠0),则方程a (x +m +2)2+b =0的解是x 1=﹣4,x 2=﹣1;③设二次函数y =x 2+bx +c ,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是c ≥3.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个二、填空题9.二次函数y =-2x 2+3的开口方向是_________.10.把二次函数245y x x =-+化为()2y a x h k =-+的形式,那么h k +=_____. 11.方程ax 2+bx +c =0(a ≠0)的两根为x =﹣3和x =1,那么抛物线y =ax 2+bx +c (a ≠0)的对称轴是直线________.12.函数()2y ax bx c a 0=++≠的图象如图所示,那么ac ______0.(填“>”,“=”,或“<”)13.已知()2312y x =++,当x _______时,函数值随x 的增大而减小.14.如果A (﹣1,y 1),B (﹣2,y 2)是二次函数y =x 2+m 图象上的两个点,那么y 1________y 2(填“<”或者“>”)15.如图,若点B 的坐标为(3,0),则点 A 的坐标为_____.16.二次函数y=-x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△P AB=________.17.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:________.(注意标注自变量x的取值范围)18.抛物线的部分图象如图所示,则当y>0时,x的取值范围是_____.三、解答题19.已知二次函数y=(x-m)2-1(m为常数).(1)求证:不论m为何值,该函数图象与x轴总有两个公共点;(2)请根据m的不同取值,探索该函数图象过哪些象限?(直接写出答案)(3)当1≤x≤3时,y的最小值为3,求m的值.20.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.21.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?22.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.23.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图1,过点P作PE⊥y轴于点E,连接AE.求△P AE面积S的最大值;(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.24.如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?。
人教新版九年级上册数学第22章《二次函数》单元测试卷一.选择题1.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.函数y=(m﹣n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任何常数3.若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.若y=2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定5.在同一坐标系中,作y=x2,y=﹣x2,y=x2的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点6.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>a>c7.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)8.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣79.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.10.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.二.填空题11.若y=(2﹣m)是二次函数,且开口向上,则m的值为.12.如果函数是关于x的二次函数,那么k的值是.13.当m=时,函数y=(m﹣1)是关于x的二次函数.14.如果y=(m﹣2)是关于x的二次函数,则m=.15.抛物线y=ax2﹣3x+a2﹣1如图所示,则a=.16.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.17.已知抛物线y=x2+4x+5的对称轴是直线x=.18.在正方形的网格中,抛物线y1=x2+bx+c与直线y2=kx+m的图象如图所示,请你观察图象并回答:当﹣1<x<2时,y1y2(填“>”或“<”或“=”号).19.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是.20.抛物线y=(x﹣2)2+3的顶点坐标是.三.解答题21.画出函数y=x2﹣2x﹣8的图象.(1)先求顶点坐标:(,);(2)列表x……y……(3)画图.22.函数是关于x的二次函数,求m的值.23.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?24.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?25.已知是x的二次函数,求出它的解析式.26.已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.27.下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.答案与试题解析一.选择题1.解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.2.解:根据二次函数的定义可得:m﹣n≠0,即m≠n.故选:B.3.解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.4.解:由y=2是二次函数,得m2﹣2=2,解得m=±2,故选:C.5.解:因为y=ax2形式的二次函数对称轴都是y轴,且顶点都在原点,所以它们的共同特点是:关于y轴对称的抛物线,有公共的顶点.故选:D.6.解:由函数图象已知a>0,c<0,∵﹣=﹣1,∴b=2a,∴b>a,∴b>a>c,故选:D.7.解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是直线x=﹣1,故选:D.8.解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选:D.9.解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y =﹣4k>0,故D选项不合题意;故选:C.10.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.二.填空题11.解:根据题意得,m2﹣3=2,解得m=±,∵开口向上,∴2﹣m>0,解得m<2,∴m=﹣.故﹣.12.解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴k的值是0时.故0.13.解:依题意可知m2+1=2得m=1或m=﹣1又因为m﹣1≠0∴m≠1∴当m=﹣1时,这个函数是二次函数.14.解:根据二次函数的定义:m2﹣m=2,m﹣2≠0,解得:m=﹣1,故﹣1.15.解:∵二次函数的图象过原点(0,0),代入抛物线解析式,得a2﹣1=0,解得a=1或a=﹣1,又∵抛物线的开口向下,故a<0,∴a=﹣1.16.解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.17.解:由对称轴公式:对称轴是直线x=﹣=﹣=﹣2,故﹣2.18.解:根据图示知,①当x≤﹣1时,y2≤y1;②当﹣1<x<2时,y2<y1;③当x≥2时,y2≥y1;故<.19.解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).20.解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故(2,3)三.解答题21.解:(1)y=x2﹣2x﹣8=(x﹣1)2﹣9∴其顶点坐标为(1,﹣9)故1,﹣9(2)列表x…﹣2﹣101234…y…0﹣5﹣8﹣9﹣8﹣50…(3)画图:22.解:由题意可知解得:m=2.23.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.24.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.25.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.26.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,利用函数对称性列表如下:x…﹣10123…y…41014…在给定的坐标中描点,画出图象如下.(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.27.解:(1)当0≤x≤4时,y=x+3;当x>4时,由图表可知y=(x﹣6)2+k,由函数图象可知,当x=4时,y=x+3=6,此时(4﹣6)2+k=6,解得k=2,所以,当x>4时,y=(x﹣6)2+2;(2)他说的错误.把y=3代入y=x+3中,得x+3=3,解得x=0,把y=3代入y=(x﹣6)2+2中,得(x﹣6)2+2=3,解得x=5或7,正确说法是:所输出y的值为3时,输入x的值为0或5或7.。
第22章《二次函数》章末复习题限时:120分钟满分:120分一.选择题(每题3分,共36分)1.抛物线y=x2﹣6x+5的顶点坐标为()A.(3,﹣4)B.(3,4)C.(﹣3,﹣4)D.(﹣3,4)2.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y 2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y23.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)4.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米5.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3 6.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根7.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+48.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x29.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限10.下列图象中,能反映函数y随x增大而减小的是()A.B.C.D.11.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.12.小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0,②abc>0,③a﹣b+c>0,④2a﹣3b=0,⑤4a+2b+c>0,你认为其中正确信息的个数有()。
2023-2024学年人教版九年级数学上册《第二十二章 二次函数》单元测试卷附有答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.关于抛物线22y x x =-+,下列说法错误的是( ) A .该抛物线经过原点B .该抛物线的对称轴是直线1x =C .该抛物线的最大值为1D .当0x >时,y 随x 增大而减小2.已知一次函数y =ax +b 的图象如图所示,那么二次函数y =ax 2+bx +1的图象大致为( )A .B .C .D .3.用20cm 长的绳子围成一个矩形,如果这个矩形的一边长为xcm ,面积是Scm 2,则S 与x 的函数关系式为( )A .S =x (20﹣x )B .S =x (20﹣2x )C .S =x (10﹣x )D .S =2x (10﹣x )4.将抛物线向左平移2个单位后,得到的抛物线的解析式是( ) A . B . C .D .5.若抛物线2y x bx c =++与x 轴两个交点之间的距离为2,抛物线的对称轴为直线1x =,将此抛物线向左平移3个单位,再向下平移2个单位,得到的新抛物线的顶点坐标为( ) A .(2,3)--B .(1,3)-C .(3,2)-D .(2,3)-6.如图所示,抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①<0abc ;①40a c +>;①方程20ax bx c ++=有一个实根大于2;①当0x <时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个7.下列抛物线平移后可得到抛物线y=-(x -2)2的是( ) A .y=-x 2B .y=x 2-2C .y=(x -2)2+1D .y=(2-x )28.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论正确的是( ) ①abc <0;①a+c >0;①2a+b=0;①关于x 的一元二次方程ax 2+bx+c=0的解是x 1=﹣1,x 2=3①b 2<4acA .①①①B .①①①①C .①①①D .①①①9.设函数221y x kx k =-+-(k 为常数),下列说法正确的是( )A .对任意实数k ,函数与x 轴都没有交点B .存在实数n ,满足当x n ≥时,函数y 的值都随x 的增大而减小C .k 取不同的值时,二次函数y 的顶点始终在同一条直线上D .对任意实数k ,抛物线221y x kx k =-+-都必定经过唯一定点 10.在平面直角坐标系中,若点()11,M x y ,()()2212,N x y x x <是抛物线()220y mx x m m =-+>上的两点,且满足124x x +=时,都有12y y >,则m 的取值范围是( )A .102m <<B .104m <<C .12m >D .1142m <<二、填空题(共8小题,满分32分)11.二次函数y=﹣2(x ﹣1)2+3的图象与y 轴的交点坐标是 .12.若点A(2,m )在函数21y x =-的图象上,则点A 关于x 轴的对称点的坐标是 . 13.把抛物线2y x =-向右平移1个单位,再向上平移3个单位,得到抛物线()213y x =--+. ( )14.已知抛物线22y x mx m =-++,当21x -<<时,y 随x 的增大而增大,m 的取值范围是 . 15.已知抛物线y =ax 2(a ≠0)过点(﹣2,6),在下列5个点中,对于不在此抛物线上的一点P ,将点P 平移到点P ′,使点P ′在此抛物线上,写出点P 的坐标及平移方法:(1,32),(﹣1,32),(1,﹣32),(2,8),(2,3)答: .16.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 .17.若将图中的抛物线y =x 2-2x +c 向上平移,使它经过点(2,0),则此时的抛物线位于x 轴下方的图象对应x 的取值范围是 .18.如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;①b>a+c;①4a+2b+c>0;①b2﹣4ac>0;其中正确的是.三、解答题(共6小题,每题8分,满分48分)19.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,并让顾客得到实惠,则每件商品的售价应为多少元?(2)如果要使商场一天获得最大利润,每件衬衫应降价多少元?20.已知二次函数2=++过点A(1,0),B(-3,0),C(0,-3)y ax bx c(1)求二次函数的解析式;(2)在抛物线的对称轴上求点F,使AF+CF最小,求点F的坐标.(3)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.21.如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B (4,0),交直线AD 于点D (3,52),过点D 作DC ①x 轴于点C .(1)直接写出:a = ,b = ;(2)点P 为x 轴正半轴上一动点,过点P 作PN ①x 轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求①PCM 面积的最大值.22.函数y=ax 2(a≠0)的图象与直线y=2x ﹣3交于点(1,b ). (1)求a 和b 的值.(2)求抛物线y=ax 2的解析式,并求出顶点坐标和对称轴.(3)求抛物线与直线y=﹣2的两个交点及顶点所构成的三角形的面积.23.如图,已知抛物线()20y ax bx c a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点()0,3C .(1)求拋物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.24.在平面直角坐标系xOy中,抛物线23=-++与x轴交于点A和点B(点A在点By x mx左侧),(1)若抛物线的对称轴是直线x=1,求出点A和点B的坐标,并画出此时函数的图象;(2)当已知点P(m,2),Q(-m,2m-1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.参考答案:12.(2,-3)13.√14.m1≥15.(1,﹣32)向上平移3个单位,点(2,8)向下平移2个单位16.0<a<617.0<x<218.①①①.19.(1)92(2)520.(1)223y x x=+-;(2)F(1-,2-);(3)P(17-+,3)或(17--,3)或(0,3-)或P(2-,3-).21.(1)﹣34和114;(2)最大值为251622.(1)a=-1,b=-1;(2) 顶点坐标(0,0),对称轴x=0;(3)6 23.(1)223y x x=--+(2)存在,点P坐标为(1,6)-或(1,10)-或(1,10)--或5 (1,)3 -24.(1)点A坐标为(-1,0),点B坐标为(3,0);(2)m≤-2 或m≥1。
九年级数学上册《第二十二章 二次函数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________1、二次函数定义:一般的,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数叫做二次函数。
其中x 是自变量,a 、b 、c 分别是函数解析式的二次项系数、一次项系数、常数项。
2、二次函数解析式的表示方法:(1)一般式:y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0);(2)顶点式:y =a (x -h )2+k (a ≠0),它直接显示二次函数的顶点坐标是(h ,k ); (3)交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是图象与x 轴交点的横坐标.3.二次函数的图象是一条抛物线:当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。
|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大。
(0,k ) >0x <0(h 或a b 2-)时,y 随x 的增大而减小;x >0(h 或a b 2-)时,y 随x 的增大而增大。
即在对称轴的左边,y 随x 的增大而减小;在对称轴的右边,y 随x 的增大而增大。
<0x <0(h 或a b 2-)时,y 随x 的增大而增大;x >0(h 或ab 2-)时,y 随x 的增大而减小。
即在对称轴的左边,y 随x 的增大而增大;在对称轴的右边,y 随x 的增大而减小。
4、二次函数的图象与各项系数之间的关系:(1)a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. (2)b 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”(3)c 决定了抛物线与y 轴交点的位置5、二次函数与一元二次方程之间的关系:一元二次方程ax2+bx +c=0的实数根有两个不相等有两个相等的实数根x1=x2一、选择题1.下列函数中,二次函数是()A.y=2x−1B.y=2x2+2C.y=x3+x−1D.y=1x22.已知函数 y=(m+2)x m2−2是二次函数,则 m 等于()A.±2 B.2 C.-2 D.±√23.对于抛物线y=-x2,下列说法不正确的是()A.开口向下B.对称轴为直线x=0C.顶点坐标为(0,0)D.y随x的增大而减小4.要得到二次函数y=−x2+2x−2图象,需将y=−x2的图象()A.先向左平移2个单位,再向下平移2个单位B.先向右平移2个单位,再向上平移2个单位C.先向左平移1个单位,再向上平移1个单位D.先向右平移1个单位,再向下平移1个单位5.二次函数y=kx2−4x+2的图象与x轴有两个交点,则k满足的条件是()A.k>2B.k=3C.k<2且k≠0D.k≤26.已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则对y1,y2和y3的大小关系判断正确的是()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 7.如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(−1,3),抛物线与x轴的一个交点为B(−3,0),直线y2=mx+n(m≠0)与抛物线交与A、B两点,下列结论:①2a−b=0;②abc>0;③ax2+bx+c−2=0方程有两个不相等的实数根:①抛物线与x轴的另一个交点是(1,0);⑤当−3<x<−1时,有y2<y1,其中结论正确的个数有()A.5个B.4个C.3个D.2个8.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定二、填空题9.二次函数y=−x2+2的最大值为.x2向左平移1个单位,再向下平移3个单位,则得到的抛物线的解析式10.若将抛物线y=﹣12是.11.函数y=x2+m与坐标轴交于A、B、C三点,若△ABC为等腰直角三角形,则m=.12.已知函数y=x2−2x−3当−1≤x≤a时,函数的最小值是-4,实数a的取值范围是.13.已知二次函数y=−x2+2x+m的部分图象如图所示,则关于x的一元二次方程−x2+2x+ m=0的解为.14.如图,某抛物线型桥拱的最大高度为16米,跨度为40米,如图所示建立平面直角坐标系,则该抛物线对应的函数关系式为:.三、解答题15.已知一条抛物线分别过点(3,−2)和(0,1),且它的对称轴为直线x=2,试求这条抛物线的解析式.16.求抛物线y=x2−2x的顶点坐标,并直接写出y随x增大而增大时自变量x的取值范围.17.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,求实数m的值.18.如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.19.某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.20.如图,抛物线y=x2+bx+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式及顶点坐标;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)抛物线上是否存在点P使得S△PAB=6?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案 1.B 2.B 3.D 4.D 5.C 6.B 7.B 8.C 9.210.y =﹣ 12 (x+1)2﹣3 11.-1 12.a ≥113.x 1=4,x 2=−2 14.y =−125x 2+85x15.解:∵抛物线的对称轴为 x =2 ∴可设抛物线的解析式为 y =a(x −2)2+b把 (3,−2) , (0,1) 代入解析式得 {a(3−2)2+b =−2a(0−2)2+b =1解得 a =1 b =−3∴所求抛物线的解析式为 y =(x −2)2−3 16.解:∵y=x 2-2x= x 2-2x +1-1=(x-1)2-1 ∴该函数的顶点坐标为(1,-1) ∵a=1>0∴抛物线开口向上又抛物线对称轴为直线 x =1 ∴当x>1时,y 随x 的增大而增大. 17.解:该抛物线的对称轴为:x =m ; ∵a =﹣1<0 ∴抛物线开口向下∴当x<m时,y随x的增大而增大;当x>m时,y随x的增大而减小;当m≥1时∵﹣2≤x≤1,当x=1时,y取得最大值,即﹣(1﹣m)2+m2+1=4解得:m=2.当﹣2≤m≤1时,x=m时,y取得最大值,即m2+1=4,解得:m=﹣√2或√3(不合题意,舍去);当m≤﹣2时,x=﹣2时,y取得最大值,即﹣(﹣2﹣m)2+m2+1=4解得:m=﹣74(不合题意,舍去).综上所述,实数m的值为2或- √318.(1)解:由题意得,{a+b=−3−b2a=2,解得{a=1b=−2∴抛物线的解析式为y=x2-2x令y=0,得x2-2x=0,解得x=0或2结合图象知,A的坐标为(2,0)根据图象开口向上,则y≤0时,自变量x的取值范围是0≤x≤2(2)解:如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F设P(x,x2-2x),∵PA⊥BA∴∠PAF+∠BAE=90°,∵∠PAF+∠FPA=90°,∴∠FPA=∠BAE 又∠PFA=∠AEB=90°∴△PFA∽△AEB∴PFAE =AFBE,即x2−2x2−1=2−x3,解得x= −13,∴x2-2x= 79.∴点P的坐标为(−13,79)∴△PAB 的面积=|- 13 −2|×| 79 −(−3)|- 12 ×|− 13 −2|× 79 - 12 ×|- 13 −1|×| 79 −(−3)|- 12 ×|2-1|×|0-(-3)|= 359 19.(1)解:设p =kx+b把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b 中 得: {k +b =3.92k +b =4.0,解得: {k =0.1b =3.8∴p=0.1x+3.8(2)解:设该品牌手机在去年第x 个月的销售金额为w 万元 w =(﹣50x+2600)(0.1x+3.8) =﹣5x 2+70x+9880 =﹣5(x ﹣7)2+10125 当x =7时,w 最大=10125答:该品牌手机在去年七月份的销售金额最大,最大为10125万元; (3)解:当x =12时,y =2000,p =51月份的售价为:2000(1﹣m%)元,则2月份的售价为:0.8×2000(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台; ∴0.8×2000(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400 解得:m 1%= 53 (舍去),m 2%= 15 ∴m=20 答:m 的值为2020.(1)解:∵抛物线y =x 2+bx +c 与x 轴的两个交点分别为A(−1,0),B(3,0){1−b +c =09+3b +c =0∴{b =−2c =−3∴抛物线的解析式为y =x 2−2x −3.y =x 2−2x −3=(x −1)2−4∴顶点坐标F(1,−4).(2)解:由(1)知,抛物线的解析式为y =x 2−2x −3,则C(0,−3)设直线BC的解析式为y=kx−3(k≠0)把B(3,0)代入,得0=3k−3解得k=1,则直线BC的解析式为y=x−3.故当x=1时y=−2,即E(1,−2)由(1)知F(1,−4)∴EF=|−4|−|−2|=2即EF=2(3)解:存在×4y=6设点P(x,y),由AB=4,得S△PAB=12∴|y|=3∴y=±3当y=−3时x2−2x−3=−3∴x1=0,x2=2当y=3时x2−2x−3=3∴x3=1−√7,x4=1+√7∴当点P 的坐标分别为P1(0,−3),P2(2,−3),P3(1−√7,3),P4(1+√7,3)时。
第二十二章 二次函数 单元复习与检测题(含答案)一、选择题1、下列结论正确的是( )A.二次函数中两个变量的值是非零实数;B.二次函数中变量x 的值是所有实数;C.形如y=ax 2+bx+c 的函数叫二次函数;D.二次函数y=ax 2+bx+c 中a,b,c 的值均不能为零 2、抛物线的顶点在( )A .第一象限B .第二象限C .轴上D .轴上3、已知抛物线y=x 2﹣8x+c 的顶点在x 轴上,则c 等于( ) A .4B .8C .﹣4D .164、把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ).A . ()231y x =+-B .()233y x =++C .()231y x =--D .()233y x =-+ 5、关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上 B .与x 轴有两个重合的交点C .对称轴是直线x=1D .当x >1时,y 随x 的增大而减小6、二次函数223y x x =--的图象如上图所示.当y <0时,自变量x 的取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >37、将函数y=x 2+6x+7进行配方正确的结果应为( ) A 、y=(x+3)2+2 B 、y=(x-3)2+2C 、y=(x+3)2-2D 、y=(x-3)2-28、抛物线y=a (x-h )2+k 向左平移2个单位,再向下平移3个单位得到y=x 2+1,则h 、k 的值是( )A .h=-2,k=-2B .h=2,k=4C .h=1,k=4D .h=2,k=-2 9、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。
若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =- D 、2(1)y a x =- 10、关于平行四边形的对称性的描述,错误的是( )A .平行四边形一定是中心对称图形;B .平行四边形一定是轴对称图形;C .平行四边形的对称中心是两条对角线的交点;D .平行四边形的对称中心只有一个二、填空题11、用一根长为8m 的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.12、若点P 和Q (1,)都在抛物线上,则线段PQ 的长为 。
第二十二章 二次函数章末检测题(A )(时间:120分钟 满分:120分)班级: 姓名: 得分:___________一、选择题(每小题3分,共30分)1.函数y =mx 2+nx +p 是y 关于x 的二次函数的条件是( ) A .m =0 B .m ≠0 C .mnp ≠0 D .m +n +p =02.下列函数:①y =-3x 2;②y =-3(x +3)2;③y =-3x 2-1;④y =-2x 2+5;⑤y =-(x -1)2,其中函数图象形状、开口方向相同的是( )A .①②③B .①③④C .③④D .②⑤ 3.对于二次函数y =41x 2+x -4,下列说法正确的是( ) A .当x >0时,y 随x 的增大而增大 B .当x =2时,y 有最大值-3 C .图象的顶点为(-2,-7) D .图象与x 轴有两个交点4.将抛物线y =x 2-4x -4向左平移3个单位,再向上平移5个单位,得到抛物线的解析式为( ) A .y =(x +1)2-13 B .y =(x -5)2-3 C .y =(x -5)2-13 D .y =(x +1)2-3 5.抛物线y =2x 2-22x +1与坐标轴的交点个数是( )A .0B .1C .2D .36.已知a ≠0,在同一直角坐标系中,函数y =ax 与y =ax 2的图象有可能是( )A B C D7.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =x m .若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S 的最大值为( ) A .196 B .195 C .132 D .148. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=-x 2+2x+c 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 3>y 1=y 2C .y 1>y 2>y 3D .y 1=y 2>y 39.二次函数y =ax 2+bx +c 的图象如图所示,对称轴是x =-1.有以下结论:①abc >0,②4ac <b 2,③2a +b =0,④a -b +c >2,其中正确的结论的个数是( ) A .1 B .2 C .3 D .410.已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-3B .1或3C .1或-5D .-1或5 二、填空题(每小题4分,共24分)11.抛物线y =-2(x +5)2-3的顶点是 .12.如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线231x y 于点B ,C ,则BC 的长为 .13.如图所示是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是y =91-(x -6)2+4,则选取点B 为坐标原点时的抛物线解析式是___ _______. 14.已知抛物线y =x 2+bx +2的顶点在x 轴的正半轴上,则b = .15.【导学号81180952】科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:科学家经过猜想、推测出l 与t 之间是二次函数关系.由此可以推测最适合这种植物生长的温度为 ℃.16.如图,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一个交点为B ,且与y 轴交于点C .若该二次函数图象上有一点D (x ,y ),使S △ABD =S △ABC ,则D 点的坐标为 .三、解答题(共66分) 17.(6分)已知y =(2-a )72-a x 是二次函数,且当x >0时,y 随x的增大而增大,求a 的值.18.(8分)已知二次函数y =x 2-4x +3. (1)求该二次函数图象的顶点和对称轴. (2)在所给坐标系中画出该二次函数的图象.19.(8分)一条抛物线的开口大小与方向、对称轴均与抛物线y =21x 2相同,并且抛物线经过点(1,1). (1)求抛物线的解析式,并指明其顶点;(2)所求抛物线如何由抛物线y =21x 2平移得到? 20.(10分)已知抛物线的函数解析式为y =x 2-(2m -1)x +m 2-m . (1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线y =x -3m +4的一个交点在y 轴上,求m 的值.21.(10分)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树. (1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系; (2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?22.(12分)如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .(1)当抛物线F 经过点C 时,求它的解析式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.23.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中3所示的直角坐标系,抛物线可以用y =61-x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为217m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?附加题(20分,不计入总分)24.如图,抛物线y =ax 2+bx +25与直线AB 交于点A (-1,0),B (4,52),点D 是抛物线A ,B 两点间部分上的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD .(1)求抛物线的解析式;(2)设点D 的横坐标为m ,△ADB 的面积为S ,求S 关于m 的函数解析式,并求出当S 取最大值时的点C 的坐标.第二十二章 二次函数章末检测题(A )参考答案:一、1.B 2.A 3.B 4.D 5.C 6.C 7.B 8.D 9.C 10.D 二、11.(-5,-3) 12.6 13.y =91-(x +6)2+4 14.22- 15.-1 16.(2,3)或(1-7,-3)或(1+7,-3)三、17.解:由已知,得a 2-7=2且2-a ≠0.解得a =±3.又当x >0时,y 随x 的增大而增大, ∴2-a >0,即a <2. ∴a =-3.18.解:(1)当x =ab2-=2时,y =-1, ∴该二次函数图象的顶点是(2,-1),对称轴为x =2. (2)图象如图所示:19.(1)根据题意,可设所求抛物线的解析式为y =21x 2+k ,把点(1,1)代入上式,得21×12+k =1,解得k =21.所以抛物线的解析式为y =21x 2+21,其顶点是(0,21). (2)抛物线y =21x 2向上平移21个单位可得所求抛物线y =21x 2+21.20.解:(1)证明:当y =0时,x 2-(2m -1)x +m 2-m =0, ∵△=[-(2m -1)]2-4(m 2-m )=1>0, ∴方程有两个不等的实数根,∴此抛物线与x 轴必有两个不同的交点.(2)解:当x =0时,根据题意,得m 2-m =-3m +4,解得m 1=51+-,m 2=51--.21.解:(1)y=600-5x (0≤x<120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w , 则w=(600-5x )(100+x )=-5x 2+100x+60000=-5(x-10)2+60500, ∵a=-5<0,∴当x=10时,w 有最大值,最大值是60500.所以果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个. 22.(1) ∵抛物线F 经过点C (-1,-2), ∴22122m m -=++-.∴m 1=m 2=-1. ∴抛物线F 的解析式是221y x x =+-.(2)当x =-2时,2442P y m m =++-=2(2)2m +-. ∴当m =-2时,P y 的最小值为-2. 此时抛物线F 的表达式是2(2)2y x =+-. ∴当2x ≤-时,y 随x 的增大而减小. ∵12x x <≤-2,∴1y >2y . 23.解:由题意,知点B (0,4),C (3,217)在抛物线上, ∴⎪⎩⎪⎨⎧++⨯-==.3961217,4c b c 解得⎩⎨⎧==.4,2c b ∴y =61-x 2+2x +4. 则y=61-(x-6)2+10.所以点D 的坐标为(6,10).所以抛物线的函数关系式为y =61-x 2+2x +4,拱顶D 到地面OA 的距离为10 m .(2)由题意知货车最外侧与地面OA 的交点为(2,0)(或(10,0)), 当x =2(或x =10)时,y =322>6,所以货车能安全通过. (3)令y =8,即61-x 2+2x +4=8,可得x 2-12x +24=0,解得x 1=6+23,x 2=6-23. 则x 1-x 2=43.答:两排灯的水平距离最小是43 m .24.解:(1)由题意,得5025516422a b a b ⎧-+=⎪⎪⎨⎪++=⎪⎩,解得122a b ⎧=-⎪⎨⎪=⎩.∴y =-12x 2+2x +52. (2)设直线AB 的解析式为y =kx +b ,则有⎪⎩⎪⎨⎧=+=+-,254,0b k b k 解得⎪⎪⎩⎪⎪⎨⎧==.21,21b k ∴y =12x +12,则D (m ,-12m 2+2m +52),C (m ,12m +12). CD =(-12m 2+2m +52)-(12m +12)=-12m 2+32m +2.∴S =12(m +1)·CD +12(4-m )·CD =12×5CD =12×5(-12m 2+32m +2)=-54m 2+154m +5.∵-54<0,∴当m =32时,S 有最大值.当m =32时,12m +12=12×32+12=54,∴点C (32,54).。