人教版八年级数学下册勾股定理题型分类及针对性练习.pdf
- 格式:pdf
- 大小:198.72 KB
- 文档页数:3
—、基础达标:6. △ ABC 中,AB= 15,AC= 13,高 AD- 12,则厶ABC 勺周长为()A . 42B . 32C . 42 或 32D . 37 或 337. ※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周 长为()(A ) . d 2S 2d (B ) d 2_S _d(C ) 2 d 2 S 2d(D ) 2-d 2S d8在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 勺长为( )A : 3B : 4C : 5D :7勾股定理练习题1. 下列说法正确的是(A. 若 a 、B. 若 a 、C. 若 a 、D. 若 a 、 b 、 b 、b、 2. 3. )c是厶 ABC 的三边,贝S a 2+ b 2= c 2; 2 2 2c 是Rt △ ABC 的三边,贝y a + b = c ; c 是 Rt △ ABC 的三边,.A =90 訂则 a 2+ b 2= c 2;c 是 Rt △ ABC 的三边,.c=90:,贝S a 2+ b 2= c 2. b 、c,则下列各式成立的是( )C. a b :: cD. a 2b 2=c 22 k -1, 2k (k >1 ),那么它的斜Rt △ ABC 勺三条边长分别是a 、 A . a b =c B. a b c如果Rt △的两直角边长分别为 边长是()A 、2kB 、k+1 cABC 三边,)2 2CC k - 1D k+1且满足(a 2-b 2)(a 2+b 2-c 2) = 0,则A.直角三角形 C.等腰直角三角形5. 直角三角形中一直角边的长为 三角形的周长为( )A . 121B . 120 B.等腰三角形D.等腰三角形或直角三角形 9,另两边为连续自然数,则直角C . 90D.不能确定9.若厶ABC中, AB=25crpAC=26cn高AD=24贝卩BC的长为( )A. 17B.3C.17 或3D. 以上都不对10. 已知a、b、c是三角形的三边长,如果满足(a —6)2十応N+|c-10 I = 0则三角形的形状是()A:底与边不相等的等腰三角形 B :等边三角形C:钝角三角形 D :直角三角形11. 斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是_______ .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为_______ .13. 一个直角三角形的三边长的平方和为200,则斜边长为___________14. _____________________________________________ 一个三角形三边之比是10:8:6,则按角分类它是________________ 三角形.15. 一个三角形的三边之比为5:12:13,它的周长为60,则它的面积是_____ .16. 在Rt △ ABC 中,斜边AB=4 贝卩AW+BC+ AC二.17. 若三角形的三个内角的比是1:2:3,最短边长为1cm,最长边长为2cm,则这个三角形三个角度数分别是_______ ,另外一边的平方是_____ .18. 如图,已知ABC 中,• C =90 , BA-15, BAC =12,以直角边BC为直径作半圆,则这个半圆的面积是 ____ . f ' r、19. 一长方形的一边长为3cm,面积为 C A12cm2,那么它的一条对角线长是 ______ .、综合发展:1如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个木条,求木条的长. 厂…、2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cr现将直角边AC 沿/ CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?E3. 一个三角形三条边的长分别为15cm , 20cm , 25cm,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m棚宽a=4m棚的长为12m 现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?观测点5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴 在离该树12m 高8m 的一棵小树树梢上发出友好的叫声,它立刻 以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几 秒才可能到达小树和伙伴在一起? ____________________________________15. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上 行驶速度不得超过70 km/h.如图,,一辆小汽车在一条城市街路上直 道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 30m 处,过 了 2s 后,测得小汽车与车速检测仪间距离为50m 这辆小汽车超速 了吗?小汽车小汽车BCA答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案:D.2. 解析:本题考察三角形的三边关系和勾股定理答案:B.3. 解析:设另一条直角边为x,则斜边为(x+1 )利用勾股定理可得方程,可以求出x.然后再求它的周长•答案:C.4•解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外部,有两种情况,分别求解•答案:C.5. 解析:勾股定理得到:172-82 =152,另一条直角边是15,1 215 8 = 60cm 2所求直角三角形面积为2.答案:60cm.6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立. 答案:a2-b2=c2,c,直角,斜,直角.7. 解析:本题由边长之比是10:8:6可知满足勾股定理,即是直角三角形.答案:直角.& 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:30、60、90,3・9. 解析:由勾股定理知道:BC2二AB2- AC 2= 152- 122= 92,所以以直角边BC = 9 为直径的半圆面积为10.125 n.答案:10.125 n.10. 解析:长方形面积长X宽,即12长X 3,长二4,所以一条对角线长为5. 答案:5cm.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m.12解析:因为152 2。
人教版初中数学八年级下册17.1.1 勾股定理同步练习夯实基础篇一、单选题:1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【答案】C【分析】利用勾股定理即可得到结果.【详解】解:在△ABC中,∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:.故选:C.【点睛】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.2.在△ABC中,∠C=90°,AB=3,则AB2+BC2+AC2的值为()A.6B.9C.12D.18【答案】D【分析】根据,利用勾股定理可得,据此求解即可.【详解】解:如图示,∴在中,∴,故选:D.【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,,满足是解题的关键.3.如图,是由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1【答案】B【分析】根据勾股定理可进行求解【详解】解:如图所示:根据勾股定理得出:,,阴影部分面积是,故选:B.【点睛】此题考查勾股定理,解决此题的关键是清楚阴影部分的两个正方形的面积和等于的平方.4.直角三角形两边长为3,4,则第三边长为()A.5B.C.5或D.不能确定【答案】C【分析】分两种情况,3,4为直角边时和4为斜边时,利用勾股定理求解即可.【详解】解:当3,4为直角边时,第三边的长为,当4为斜边时,第三边的长为,则第三边的长为或,故选:C【点睛】此题考查了勾股定理,解题的关键是掌握勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,注意分类讨论.5.如图,在中,,,垂足为D .若,,则的长为( )A .2.4B .2.5C .4.8D .5【答案】A【分析】先由勾股定理求出的长,再运用等面积法求得的长即可.【详解】解:∵在中,,,,∴,∴,即.故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键.6.等腰三角形的腰长为5,底边上的中线长为4,它的面积为( )A .24B .20C .15D .12【答案】D【分析】根据等腰三角形的性质可知上的中线,同时也是边上的高线,根据勾股定理求出的长即可求得.【详解】解:如图所示,∵等腰三角形中,,是上的中线,,同时也是上的高线,,,,故选:D.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出底边上的中线是上的高线.7.在中,,,,则的长为( )A.3B.3或C.3或D.【答案】A【分析】在中,已知与的长,利用勾股定理求出的长即可;【详解】解:在中,,,,由勾股定理得:,∴的长为3;故选:A【点睛】本题考查了勾股定理,能灵活运用定理进行计算是解题的关键.二、填空题:8.在中,,,,则____.【答案】4【分析】直接根据勾股定理求解即可.【详解】解:∵在中,,,,.故答案为:4.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方和等于斜边长的平方是解答此题的关键.9.一直角三角形的两直角边长满足,则该直角三角形的斜边长为________.【答案】【分析】根据算术平方根的非负性,绝对值的非负性,得出的值,根据勾股定理即可求解.【详解】解:∵,∴,解得:,∴该直角三角形的斜边长为,故答案为:.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,勾股定理,得出的值是解题的关键.10.在中,,.则的面积为______.【答案】60【分析】画出图形,过点作于,利用等腰三角形的三线合一性质得到,再利用勾股定理求得即可求解.【详解】解:如图,过点作于,则,∵,,∴,∴在中,,∴,故答案为:60.【点睛】本题考查等腰三角形的性质、勾股定理、三角形的面积公式,熟练掌握等腰三角形的三线合一性质解答的关键.11.如图,在中,.以、为边的正方形的面积分别为、.若,,则的长为______.【答案】3【分析】根据正方形的面积求得,,再根据勾股定理求解即可.【详解】解:∵以、为边的正方形的面积分别为、,,,∴,,在中,,由勾股定理得:,故答案为:3.【点睛】本题考查勾股定理、正方形的面积,熟练掌握勾股定理是解答的关键.12.若直角三角形的两边长为a、b,且满足,则该直角三角形的斜边长的平方为_____.【答案】25或16##16或25【分析】先根据非负数的性质求出两直角边长、,已知两直角边求斜边可以根据勾股定理求解.【详解】解:,,解得:,,,,解得,,①当a,b为直角边,该直角三角形的斜边长的平方为,②4也可能为斜边,该直角三角形的斜边长的平方为16,故答案为:25或16.【点睛】本题考查了非负数的性质,根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.13.如图,为中斜边上的一点,且,过作的垂线,交于,若,,则的长为________.【答案】【分析】连接,根据已知条件,先证明,再根据全等三角形的性质,求得的长度,进而勾股定理即可求解.【详解】解:如图,连接.∵为中斜边上的一点,且,过作的垂线,交于,∴,∴在和中,,∴,∴,又∵,∴.在中,,∴故答案为:.【点睛】本题主要考查了直角三角形全等的判定()以及全等三角形的性质,勾股定理,连接是解决本题的关键.14.如图,Rt中,,现将沿进行翻折,使点A刚好落在上,则_____.【答案】##2.5【分析】设,将沿进行翻折,使点A刚好落在上,则.则直角中根据勾股定理,即可得到一个关于的方程,即可求得.【详解】解:设,则在Rt中,.则.在Rt中:.即:.解得:【点睛】此题考查了勾股定理的运用,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.三、解答题:15.如图,在△ABC中,AD⊥BC于点D,AB=3,BD=2,DC=1,求AC的长.解:在Rt△ABD中,AB=3,BD=2,由勾股定理得AD2=AB2-BD2=32-22=5.在Rt△ACD中,CD=1,由勾股定理得16.如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=8.求AC的长.解∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△BCD中,设AC=AB=x,则AD=x-6.在Rt△ACD中,AC2=AD2+CD2,即x2=(x-6)2+82,解得x=,即AC的长为.17.、、是的三边,且有.若是直角三角形,求的值.【答案】或【分析】先根据完全平方公式把原式变形为,可得,,再分两种情况讨论,即可求解.【详解】解:∵∴∴∴∴,,解得:,,当,为直角边时,;当为斜边时,;综上所述,的值为或.【点睛】本题主要考查了完全平方公式的应用,勾股定理,熟练掌握完全平方公式的应用,勾股定理,利用分类讨论思想解答是解题的关键.18.已知:如图,在中,,点是中点,于点,求证:.【答案】见解析【分析】在、、中,运用三次勾股定理,然后利用等量代换即可证明结论.【详解】证明:在中,,在中,,∴,又∵是中点,∴,∴,即:.【点睛】题目主要考查勾股定理的重复运用,熟练掌握勾股定理且准确应用等量代换是解题关键.能力提升篇一、单选题:1.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为( )A.1B.2C.3D.4【答案】B【分析】根据等腰三角形的性质可得,根据含角的直角三角形的性质可得的长,再求出的长,即可确定的长.【详解】解:,,,,,设,则,根据勾股定理,可得,解得或(舍去),,,,,,,设,则,根据勾股定理,得,或(舍去),,,故选:B.【点睛】本题考查了等腰三角形的性质,勾股定理、直角三角形的性质,熟练掌握这些性质是解题的关键.2.如图,在四边形中,,,点是边上一点,,,.下列结论:①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()A.2个B.3个C.4个D.5个【答案】D【分析】利用可证,故①正确;由全等三角形的性质可得出,,求出,即可得到②正确;根据梯形的面积公式可得③正确;根据列式,可得④正确;整理后可得,即⑤正确.【详解】解:∵,,∴,∴,在和中,,∴,故①正确;∴,,∵,∴,∵,∴,故②正确;∵,,∴梯形的面积是,故③正确;∵,∴,故④正确;整理得:,∴该图可以验证勾股定理,故⑤正确;正确的结论个数是5个,故选:D.【点睛】本题考查了全等三角形的判定及性质的运用,梯形的面积计算,三角形的面积计算,勾股定理等知识,解答时证明三角形全等是关键.3.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是( )A.①②B.②④C.①②③D.①③【答案】C【分析】由题意知,①﹣②可得2xy=45记为③,①+③得到,由此即可判断.【详解】解:由题意知,①﹣②可得2xy=45记为③,①+③得到,∴,∴.∵x>y,由②可得x-y=2由③得2xy+4=49∴结论①②③正确,④错误.故选:C.【点睛】本题考查勾股定理中弦图的有关计算,准确找出图中的线段关系,并利用完全平方公式求出各个式子的关系是解题的关键.二、填空题:4.如图,点在边长为5的正方形内,满足,若,则图中阴影部分的面积为______.【答案】19【分析】根据勾股定理求出,分别求出和正方形的面积,即可求出答案.【详解】解:∵在中,,,,由勾股定理得:,∴正方形的面积是,∵的面积是,∴阴影部分的面积是,故答案为:19.【点睛】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.5.如图,在中,,AB的垂直平分线交AB于点D,交BC的延长线于点E.若,,则EC的长为______.【答案】【分析】连接,根据垂直平分线的性质得出,再由勾股定理确定,设,则,利用勾股定理求解即可.【详解】解:连接,如图所示:∵的垂直平分线交于点D,交的延长线于点E,∴,∵,,,∴,设,则,在中,,即,解得:,∴,故答案为:.【点睛】题目主要考查垂直平分线的性质,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.6.如图,已知直角三角形的周长为24,且阴影部分的面积为24,则斜边的长为______.【答案】10【分析】根据阴影部分面积等于以为直径的半圆面积之和加上的面积减去以为直径的半圆面积进行求解即可.【详解】解;∵直角三角形的周长为24,∴,,∴,∵阴影部分的面积为24,∴,∴∴∴,∴,故答案为:10.【点睛】本题主要考查了勾股定理,完全平方公式,熟知相关知识是解题的关键.三、解答题:7.已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.【答案】(1),证明见解析(2)(3)24【分析】(1)由扇形的面积公式可知,,,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.(1)解:①,根据勾股定理可知:,;(2)解:由(1)知,同理根据根据勾股定理:,从而可得;(3)解:由(2)知.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.。
新人教版八年级下册勾股定理全章知识点和典型例习题基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数c ba HG FE D C B A b a c ba cc a b c a b a b c c b a E DC B A7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:A B C 30°D C B A AD B C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
初二数学八下勾股定理所有知识点总结和常考题型练习题TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】勾股定理知识点1. 勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,主要应用:(1)已知直角三角形的两边求第三边(在ABC∠=︒,则c,∆中,90Cb,a=)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2. 勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,运用时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。
(如若三角形三边长a,b,c满足222+=,那么以a,b,c为三边的三角形是a c b直角三角形,但是b为斜边)3. 勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5; 5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等③用含字母的代数式表示n 组勾股数:(,n 为正整数)4. 互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
勾股定理练习一、选择题1.三个正方形的面积如图,正方形A 的面积为( )A. 6B.4C. 64D. 82.已知直角三角形的两条边长分别是5和12,则第三边为 ( ) A. 13 B. 119 C.13或119 D. 不能确定3.三角形的三边长为(a+b )2=c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. 4、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :75. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+16.已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c ---=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形A106北南 A 第8题第10题C :钝角三角形D :直角三角形7. 直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d + (D )d8. 如图一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距 ( ) A 、25海里B 、30海里C 、35海里D 、40海里9. 如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( )A .8cm C .5.5cm D .1cm10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元二、填空题1. 直角三角形的三边长为连续自然数,则其周长为________。
第01课勾股定理【例1】如图,一个长为5m的梯子斜靠在墙上,梯子的底端距墙4m.(1)求梯子的顶端距地面的垂直距离;(2)若将梯子的底端向墙推进1m,求梯子的顶端升高了多少米;(3)若使梯子的顶端距地面4.8m,此时应将梯子再向墙推进多少米?【例2】如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B.已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?【例3】在如图所示的5×5的正方形网格中,每个小正方形的边长均为1,按下列要求画图或填空;(1)画一条线段AB使它的另一端点B落在格点上(即小正方形的顶点),且AB=2;(2)以(1)中的AB为边画一个等腰△ABC,使点C落在格点上,且另两边的长都是无理数;(3)△ABC的周长为,面积为.【例4】如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.【例5】如图,在这个漂亮的螺旋图中,所有的三角形都是直角三角形,按此方式继续画下去:根据图中所标数据.(1)填空:a4= ,a n= ;(2)记△OAA1的面积为S1,△OA1A2的面积为S2,…△OA n﹣1A n的面积为S n.求出S1和S n.勾股定理课堂练习一、选择题:1、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A.25B.7C.5和7D.25或72、如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式( )A.a<c<b B.a<b<c C.c<a<b D.c<b<a第2题图第3题图3、如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米4、若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6B.4C.4.8D.55、直角三角形两直角边长度为5,12,则斜边上的高( )A.6B.8C.D.6、已知一个直角三角形的三边的平方和为1800cm2,则斜边长为( )A.30 cmB.80 cmC.90 cmD.120 cm7、直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长( )A.4cmB.8cmC.10cmD.12cm8、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是( )A.12米B.13米C.14米D.15米9、我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为( )A.49B.25C.13D.1第9题图第10题图第11题图10、如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )A.3B.C.5D.11、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. B.4 C. D.512、如图,在Rt△中,∠,,点是的中点,点,是,边上的动点,且,连接. 有下列结论:①;②四边形面积为1;③点到距离的最大值为. 其中,正确的个数是().(A)(B)1 (C)(D)313、如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.14、已知一直角三角形的两条直角边长分别为5和12,则第三边的长为.15、在Rt△ABC中,∠C=90°,c=34,a:b=8:15,则a= ,b= .16、如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.17、如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD= .18、如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.19、如图,在Rt△OAA1中,∠OAA1=90°,OA=,∠AOA1=30°,以OA1为直角边作Rt△OA1A2,∠A1OA2=30°,以OA2为直角边作Rt△OA2A3,∠A2OA3=30°…则OA2016的长度为.20、图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=6,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是.三、简答题:21、《九章算术》中的“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。
(2017年)新人教版八年级数学下册勾股定理典型例题归类总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((2017年)新人教版八年级数学下册勾股定理典型例题归类总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(2017年)新人教版八年级数学下册勾股定理典型例题归类总结(word版可编辑修改)的全部内容。
勾股定理典型例题归类总结题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长跟踪练习:1。
在ABC ∆中,90C ∠=︒. (1)若a=5,b=12,则c= ;(2)若a:b=3:4,c=15,则a= ,b= .(3)若∠A=30°,BC=2,则AB= ,AC= .2. 在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 分别对的边为a ,b ,c ,则下列结论正确的是( ) A 、B 、C 、D 、3.一个直角三角形的三边为三个连续偶数,则它的三边长分别为( ) A 、2、4、6 B 、4、6、8 C 、6、8、10 D 、3、4、54.等腰直角三角形的直角边为2,则斜边的长为( ) A 、B 、C 、1D 、25。
已知等边三角形的边长为2cm,则等边三角形的面积为( ) A 、B 、C 、1D 、6.已知直角三角形的两边为2和3,则第三边的长为___________。
7.如图,∠ACB=∠ABD=90°,AC=2,BC=1,,则BD=___________。
八年级数学下册《勾股定理》练习题与答案(人教版)一、选择题1.由线段a 、b 、c 组成的三角形不是直角三角形的是( )A.=7,b =24,c =25;B.a =13,b =14,c =15;C.a =54,b =1,c =34; D.a =41,b =4,c =5;2.根据图形(图1,图2)的面积关系,下列说法正确的是( )A.图1能说明勾股定理,图2能说明完全平方公式B.图1能说明平方差公式,图2能说明勾股定理C.图1能说明完全平方公式,图2能说明平方差公式D.图1能说明完全平方公式,图2能说明勾股定理3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.12D.104.在Rt △ABC 中,∠C =90°.如果BC =3,AC =5,那么AB =( )A.34B.4C.4或34D.以上都不对5.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A. 5 +1B.5﹣1C.﹣ 5 +1D.﹣5﹣16.如图,在4×4的方格中,△ABC 的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( )A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2, 3C.三边长为a,b,c的值为11,2,4D.a2=(c+b)(c﹣b)8.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺9.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米10.如图一只蚂蚁从长宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )A.13cmB.10cmC.14cmD.无法确定11.如图,已知∠AOB=60°,点P是∠AOB的角平分线上的一个定点,点M、N分别在射线OA、OB上,且∠MPN与∠AOB互补.设OP=a,则四边形PMON的面积为( )A.34a2 B.14a2 C.38a2 D.18a212.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题13.若三角形三边之比为3:4:5,周长为24,则三角形面积.14.如图,等边△OAB的边长为2,则点B的坐标为.15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB于点E,若CD=2,BD =4,则AE的长是_____.16.如图,运载火箭从地面L处垂直向上发射,当火箭到达点A处时,从位于地面R处的雷达测得AR的距离是40 km,此时测得∠ARL=30°,n(s)后,火箭到达点B处,此时测得∠BRL=45°,则火箭在这n(s)中上升的高度是 km.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第二个等边三角形AB1C1;再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第三个等边三角形AB2C2;再以等边三角形AB2C2的B2C2边上的高AB3为边作等边三角形,得到第四个等边三角形AB3C3……记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3……则S n= .三、解答题19.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.20.如图,已知四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.24.已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:△AOM和△BON全等:(2)如图2,将△MON绕点O顺时针旋转,当点N恰好在AB边上时,求证:BN2+AN2=2ON2.25.如图,C为线段BD上的一个动点,分别过点B,D在BD两侧作AB⊥BD,ED⊥BD,连结AC,EC.已知AB =5,DE=9,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问:点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的结论,请构图求出代数式x2+4+(12-x)2+9的最小值.参考答案1.B.2.B3.B.4.A.5.B6.B.7.C.8.C9.B.10.B.11.A.12.A13.答案为:24.14.答案为:(1,3).15.答案为:2 3.16.答案为:(203﹣20).17.答案为:61.18.答案为:38(34)n-1.19.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1 ∵a=19,a2+b2=c2∴192+b2=(b+1)2∴b=180∴c=181;(2)通过观察知c﹣b=1∵(2n+1)2+b2=c2∴c2﹣b2=(2n+1)2(b+c)(c﹣b)=(2n+1)2∴b+c=(2n+1)2又c=b+1∴2b+1=(2n+1)2∴b=2n2+2n,c=2n2+2n+1;20.解:连接AC.∵∠ABC =90°,AB =1,BC =2∴AC = 5在△ACD 中,AC 2+CD 2=5+4=9=AD2∴△ACD 是直角三角形∴S 四边形ABCD =12AB •BC +12AC •CD =12×1×2+12×5×2=1+ 5.故四边形ABCD 的面积为1+ 5.21.解:∵∠BDC =45°,∠ABC =90°∴△BDC 为等腰直角三角形∴BD =BC∵∠A =30°∴BC =12AC 在Rt △ABC 中,根据勾股定理得AC 2=AB 2+BC2 即(2BC)2=(4+BD)2+BC 2 解得BC =BD =2+23.22.解:(1)∵AB =13,BD =8∴AD =AB ﹣BD =5∴AC =13,CD =12∴AD 2+CD 2=AC 2∴∠ADC =90°,即△ADC 是直角三角形∴△ADC 的面积=12×AD ×CD =12×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°由勾股定理得:BC =413,即BC 的长是413.23.解:操作一:(1)14 (2)35º操作二:∵AC =9cm ,BC =12cm∴AB =15(cm)根据折叠性质可得AC =AE =9cm∴BE =AB ﹣AE =6cm设CD=x,则BD=12﹣x,DE=x在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2解得x=4.5∴CD=4.5cm.24. (1)证明:∵∠AOB=∠MON=90°∴∠AOB+∠AON=∠MON+∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴AM=BN;(2)证明:连接AM∵∠AOB=∠MON=90°∴∠AOB-∠AON=∠MON-∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴∠MAO=∠NBO=45°,AM=BN∴∠MAN=90°∴AM2+AN2=MN2∵△MON是等腰直角三角形∴MN2=2ON2∴BN2+AN2=2ON2.25.解:(1)AC+CE=(8-x)2+25+x2+81.(2)当A,C,E三点共线时,AC+CE的值最小.(3)如图,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD(点A与点E在BD的异侧),使AB=2,ED=3,连结AE交BD于点C设BC=x,则AE的长即为x2+4+(12-x)2+9的最小值.过点E作EF⊥AB,交AB的延长线于点F.在Rt△AEF中,易得AF=2+3=5,EF=12∴AE=13即x2+4+(12-x)2+9的最小值为13.。
人教版八年级数学下册第17章勾股定理常考题型专题训练(附答案)1.由下列条件不能判定△ABC为直角三角形的是( )A.∠A:∠B:∠C=3:4:5B.∠A﹣∠B=∠CC.a=1,b=2,c=D.(b+c)(b﹣c)=a22.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是( )A.14B.13C.14D.143.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,则平板车的长最多为( )A.2B.2C.4D.44.如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为( )A.B.C.D.55.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于( )A.1.5B.2.4C.2.5D.3.56.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为( )A.1B.2C.3D.47.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是( )A.1.5B.1.8C.2D.2.58.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是( )A.10尺B.11尺C.12尺D.13尺9.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是( )A.12B.15C.20D.3010.如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为( )A.3B.4C.5D.611.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为 .12.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.13.如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯 米.14.在Rt△ABC中,斜边AB=3,则AB2+BC2+CA2= .15.如图,在△ABC中,AB=AC=10,BD是边AC上的高,CD=2,则BD= .16.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2= .17.如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BAC+∠CDE= °.18.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,点C 到AB边的距离为 .19.已知:直角△ABC的三边分别为a,b,c,且周长为9,斜边为4,则△ABC的面积 .20.如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为 (m).21.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)22.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH =1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?23.某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.24.已知:如图,△ABC的面积为84,BC=21,现将△ABC沿直线BC向右平移a(0<a<21)个单位到△DEF的位置.(1)求BC边上的高;(2)若AB=10,①求线段DF的长;②连接AE,当△ABE时等腰三角形时,求a的值.25.阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC 的形状吗?请说明理由.26.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.27.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?参考答案1.解:A、由题意:∠C=×180°=75°,△ABC是锐角三角形,本选项符合题意.B、∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,本选项不符合题意.C、∵a=1,b=2,c=,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,本选项不符合题意.D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,∴b2=a2+c2,∴△ABC是直角三角形,本选项不符合题意.故选:A.2.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.3.解:设平板手推车的长度为x米,当x为最大值,且此时平板手推车所形成的△CBP为等腰直角三角形.连接PO,与BC交于点N.∵直角通道的宽为2m,∴PO=4m,∴NP=PO﹣ON=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CN=2NP=4(m).故选:C.4.解:S阴影=AC2+BC2+AB2=(AB2+AC2+BC2),∵AB2=AC2+BC2=5,∴AB2+AC2+BC2=10,∴S阴影=×10=5.故选:D.5.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN===2.4.故选:B.6.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=52,∴(a﹣b)2=25﹣16=9,∵正方形的边长a﹣b>0,∴a﹣b=3,故选:C.7.解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故选:A.8.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.9.解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.10.解:如图所示:以AB为一边画△ABC,其中是直角三角形的格点C共有4个,故选:B.11.解:∵点A(﹣3,4),∴它到坐标原点的距离==5,故答案为:5.12.解:由勾股定理,得路长==5,少走(3+4﹣5)×2=4步,故答案为:4.13.解:根据勾股定理,楼梯水平长度为=12米,则红地毯至少要12+5=17米长,故答案为:17.14.解:∵△ABC为直角三角形,AB为斜边,∴AC2+BC2=AB2,又AB=3,∴AC2+BC2=AB2=9,则AB2+BC2+CA2=AB2+(BC2+CA2)=9+9=18.故答案为:1815.解:由已知得:AD=AC﹣CD=8,AB=10,∵BD是高,∴△ADB是直角三角形,∴BD2+AD2=AB2,∴BD==6.16.解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.17.解:连接AD,由勾股定理得:AD2=12+32=10,CD2=12+32=10,AC2=22+42=20,∴AD=CD,AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ACD=45°,∵AB∥DE,∴∠BAD+∠ADE=180°,∴∠BAC+∠CDE=180°﹣90°﹣45°=45°,故答案为:45°.18.解:∵S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=,AB==,∴点C到AB边的距离==.故答案为:.19.解:根据题意,得a+b=5,a2+b2=16,则ab=[(a+b)2﹣(a2+b2)]=(52﹣16)=.故答案是:.20.解:∵一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,∴折断的部分长为=2.5,∴折断前高度为2.5+1.5=4(m).故答案为:4.21.解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.22.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴CH⊥AB,所以CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,1.25﹣1.2=0.05(千米)答:新路CH比原路CA少0.05千米.23.证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴△ACD是直角三角形.24.解:(1)作AM⊥BC于M,∵△ABC的面积为84,∴×BC×AM=84,解得,AM=8,即BC边上的高为8;(2)①在Rt△ABM中,BM==6,∴CM=BC﹣BM=15,在Rt△ACM中,AC==17,由平移的性质可知,DF=AC=17;②当AB=BE=10时,a=BE=10;当AB=AE=10时,BE=2BM=12,则a=BE=12;当EA=EB=a时,ME=a﹣6,在Rt△AME中,AM2+ME2=AE2,即82+(a﹣6)2=a2,解得,a=,则当△ABE时等腰三角形时,a的值为10或12或.25.解:(1)AB==;(2)AB=丨5﹣(﹣1)丨=6;(3)△ABC是直角三角形理由:∵AB==,BC==5,AC==,∴AB2+AC2=()2+()2=25,BC2=52=25.∴△ABC是直角三角形.26.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.27.解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:,∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米。
2021-2022学年人教版八年级数学下册《第17章勾股定理》章末知识点分类训练(附答案)一.勾股定理1.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.12.如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣483.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm24.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A.2 B.4 C.8 D.165.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为.6.如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.7.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm28.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.9.如图所示,在△ABC中,BD是AC边上的中线,BD⊥BC,∠ABC=120°,AB=8,则BC 的值为()A.3 B.4 C.5 D.610.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()A.4.8 B.5 C.4 D.11.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对12.将一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E =30°,∠A=45°,AC=6,则CD的长为()A.2B.6﹣3C.6﹣2D.313.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB =,则CD=.14.如图,△ABC中,∠A=90°,AB=2,AC=4,点D是AC边的中点,点P是BC边上一点,若△BDP为等腰三角形,则线段BP的长度等于.15.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=.16.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高长度为.17.如图,等边三角形ABC中,M为AC上一点,AM=2,CM=8,P,Q分别为AB,BC上的动点,且∠PMQ=60°,则AP2+CQ2的最小值为.18.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.求:四边形ABDC的面积.19.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.二.勾股定理的证明20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.三.勾股定理的逆定理21.△ABC满足下列条件中的一个,其中不能说明△ABC是直角三角形的是()A.b2=(a+c)(a﹣c)B.a:b:c=1::2C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:522.若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是()A.5 B.6 C.D.5或23.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23 24.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形25.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形26.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.27.如图,在边长为1的小正方形组成的网格中,四边形ABCD的顶点都在格点上.(1)求四边形ABCD的周长;(2)连接AC,试判断△ACD的形状,并说明理由.四.勾股数28.在下各组数中,是勾股数的一组是()A.B.5,6,7C.0.3,0.4,0.5 D.40,41,929.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c 根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1(n为正整数)时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.五.勾股定理的应用30.如图一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤1331.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为m.32.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,求折断处离地面的高度.33.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB =1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.六.平面展开-最短路径问题34.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.35.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm36.如图,已知圆柱底面周长为8dm,高为3dm,在圆柱的侧面上,点A和点C相对,过点A和点C嵌有一圈金属丝,则这圈金属丝的长度最小为()A.10 B.8 C.5 D.1137.如图,圆柱形玻璃杯,高为11cm,底面周长为16cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为.(结果保留根号)38.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12cm,高是20cm,那么所需彩带最短的是()A.13cm B.4cm C.4cm D.52cm39.如图,O为圆锥的顶点,M为圆锥底面上一点,点P在OM上,一只蜗牛从点P出发,绕圆锥侧面沿最短路线爬行一圈回到点P,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.40.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.41.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25 C.10+5 D.3542.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.参考答案一.勾股定理1.解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.2.解:∵Rt△ABC中∠B=90°,AB=8,BC=6,∴AC===10,∴AC为直径的圆的半径为5,∴S阴影=S圆﹣S△ABC=25π﹣×6×8=25π﹣24.故选:C.3.解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F 的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.4.解:第一个正方形的面积是64;第二个正方形的面积是32;第三个正方形的面积是16;…第n个正方形的面积是,∴正方形⑤的面积是4.故选:B.5.解:在Rt△ABC中,AB2=AC2+BC2,AB=3,S阴影=S△AHC+S△BFC+S△AEB=×+×+×=(AC2+BC2+AB2)=AB2,=×32=.故图中阴影部分的面积为.6.解:过点A作AE∥BC交CD于点E,∵AB∥DC,∴四边形AECB是平行四边形,∴AB=EC,BC=AE,∠BCD=∠AED,∵∠ADC+∠BCD=90°,DC=2AB,∴AB=DE,∠ADC+∠AED=90°,∴∠DAE=90°,那么AD2+AE2=DE2,∵S1=AD2,S2=AB2=DE2,S3=BC2=AE2∴S2=S1+S3.故答案为:S2=S1+S3.7.解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.8.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.9.解:过点A作AE⊥BC,交CB的延长线于E.∵AE⊥BC,DB⊥BC,∴AE∥BD,∵AD=CD,∴BD是△ACE的中位线,∴BC=BE,∵∠ABC=120°,∴∠ABE=60°,∴∠BAE=30°,∴AB=2BE=2BC,∵AB=8,∴BC=4,故选:B.10.解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD===4,又∵S△ABC=BC•AD=BP•AC,∴BP===4.8.故选:A.11.解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=7+,故选:C.12.解:如图,过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=6,∴BC=AC=6,∵AB∥CF,∴BM=BC×sin45°=6×=6,CM=BM=6,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=6÷=2,∴CD=CM﹣MD=6﹣2.故选:C.13.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.14.解:如图,当PD=PB时,连接PA交BD于点H,过P作PE⊥AC于E,PF⊥AB于F.∵点D是AC边的中点,AC=4,∴AD=DC=2,∵AB=2,∴AB=AD,∵PB=PD,∴PA垂直平分线段BD,∴∠PAB=∠PAD,∴PE=PF,∵•AB•PF+•AC•PE=•AB•AC,∴PE=PF=,在Rt△ABD中,AB=AD=2,∴BD=AB=2,∵PA垂直平分BD,∴BH=DH=AH=BD=,∠PAE=∠APE=45°,∴PE=AE=,∴PA=PE=,PH=PA﹣AH=,在Rt△PBH中,PB===;当BD=BP′时,BP′=2,综上所述,线段BP的长度为2或,故答案为:2或.15.解:设AE=ED=x,CD=y,∴BD=2y,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∴AB2=4x2+4y2,∴x2+y2=1,在Rt△CDE中,∴EC2=x2+y2=1∵EC>0∴EC=1.另解:依据AD⊥BC,BD=2CD,E是AD的中点,即可得判定△CDE∽△BDA,且相似比为1:2,∴=,即CE=1.故答案为:116.解:四边形DEFA是正方形,面积是4;△ABF,△ACD的面积相等,且都是×1×2=1.△BCE的面积是:×1×1=.则△ABC的面积是:4﹣1﹣1﹣=.在直角△ADC中根据勾股定理得到:AC==.设AC边上的高线长是x.则AC•x=x=,解得:x=.17.解:∵△ABC是等边三角形,∴∠A=∠C=90°,∴∠APM+∠AMP=120°,∵∠PMQ=60°,∴∠QMC+∠AMP=120°,∴∠APM=∠QMC,∴△APM∽△CMQ,∴,∴AP•CQ=AM•MC=16,设AP=x(x>0),CQ=y(>0),即xy=16,∵(x﹣y)2>0,即x2﹣2xy+y2≥0,当且仅当x=y时,(x﹣y)2有最小值,∴x2﹣2xy+y2=0,即x2+y2=2xy=32,∴AP2+CQ2的最小值为32.故答案为:32.18.解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直角三角形,∴四边形ABDC的面积=S△ABC+S△BCD=×12×5+×3×4=36.19.解:(1)∵在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB2=AC2+BC2,解得AB=25.答:AB的长是25;(2)AC•BC=×20×15=150.答:△ABC的面积是150;(3)∵CD是边AB上的高,∴AC•BC=AB•CD,解得:CD=12.答:CD的长是12.二.勾股定理的证明20.解:(2)因为S△ABC=S△ABI+S△BIC+S△AIC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.三.勾股定理的逆定理21.解:A、由b2=(a+c)(a﹣c)可得:c2+b2=a2,可以组成直角三角形,故此选项不符合题意;B、12+()2=22,可以组成直角三角形,故此选项不符合题意;C、由∠C=∠A﹣∠B,∠A+∠B+∠C=180°,可得:∠A=90°,可以组成直角三角形,故此选项不符合题意;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C=75°,∴不能构成直角三角形,故选项符合题意;故选:D.22.解:当4是直角三角形的斜边时,32+x2=42,解得x=;当4是直角三角形的直角边时,32+42=x2,解得x=5.故使此三角形是直角三角形的x的值是5或.故选:D.23.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.24.解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.25.解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.26.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.27.解:(1)由题意可知AB==3,AD==,DC==2,BC==,∴四边形ABCD的周长=AB+BC+CD+AD=+3+3;(2)△ACD是直角三角形,理由如下:∵AD=,DC=2,AC=5,∴AD2+CD2=AC2,∴△ACD是直角三角形.四.勾股数28.解:A、∵不是整数,∴此选项不符合题意.B、∵52+62≠72,∴此选项不符合题意;C、∵不是整数,∴此选项符合题意;D、∵402+92=412,∴此选项符合题意;故选:D.29.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1 ∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.五.勾股定理的应用30.解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.31.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.32.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+62=(10﹣x)2.解得:x=3.2答:折断处离地面的高度是3.2尺.33.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.六.平面展开-最短路径问题34.解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.35.解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=×24=12cm,EF=18﹣1﹣1=16cm,在Rt△FES中,由勾股定理得:SF===20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.故选:C.36.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为8dm,圆柱高为3dm,∴AB=3dm,BC=BC′=4dm,∴AC2=32+42=25,∴AC=5dm.∴这圈金属丝的周长最小为2AC=10dm.故选:A.37.解:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′C,则A′C即为最短距离,A′C2=A′D2+CD2=82+122=208,∴CA′=4cm答:蚂蚁到达蜂蜜的最短距离的是4cm.故答案为4cm.38.解:由图可知,彩带从易拉罐底端的A处绕易拉罐4圈后到达顶端的B处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,∵易拉罐底面周长是12cm,高是20cm,∴x2=(12×4)2+202,所以彩带最短是52cm.故选:D.39.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.40.解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.41.解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.42.解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.。